\ XILINX
DEVELOPER
FORUM

Develop Computational Storage
Applications using SDAccel

Presented By

Sumit Roy
Senior R&D Director, SDAccel, SDSoC, HLS
October 2nd. 2018

XILINX.

'Agenda

> Introduction
>> SDAccel Benefits
>> Computational Storage Programmer’s View

> What to accelerate
>> 3 rules of the game

> How to accelerate

> Summary

PKDF e © Copyright 2018 Xilinx £ XILINX.

' Why Use SDAccel For Computational Storage Acceleration?

> Platform and runtime library optimized for performance

> Choice of HLS or RTL for acceleration kernel

> Dedicated visualization, profiling and debug Tools SDACCe‘

Environment

> Optimized libraries

> Portability: Easy porting from existing SDAccel applications

Performance — Productivity — Portability

PKDF e © Copyright 2018 Xilinx £ XILINX.

'Computational Storage — Overview

Buffer2’

XXXXXX
EEEEEEEEE
FFFFF

PCIE BUS

Host.exe

Buffer2’

PCIE BUS

Bufferl

Kernel

© Copyright 2018 Xilinx

& XILINX

'Computational Storage Benefit

Without acceleration

CPU ----

Host to
FPGA-DDR

SSD to
FPGA funcl

Computational Storage Solution avoids copying to x86 DDR
)XDFE’E&%%"’E” © Copyright 2018 Xilinx & XILINX.

'Agenda

> Introduction
>> SDAccel Benefits
>> Computational Storage Programmer’s View

> What to accelerate
>> 3 rules of the game

> How to accelerate

> Summary

PKDF e © Copyright 2018 Xilinx £ XILINX.

'Developing Applications Using SDAccel

. \ SDAccel Application Timeline View
| want to achieve... ‘----------------. .

\ \ 7 Device "xilinxinppntt-pcie—ku:lddr3.2-0"

¥ Binary Container binary_container _1
III III III e

/
|
1
1

[

Read il [111 111 I

Write [1 Qi (L1
¥ Kernel "krnl_vadd" 4:1:1

Compurte Unit "all"

u
Compute Unit "krnl_vadd_1" [ROWNTRG]
Compute Unit "krnl_vadd_2" [ruwiEng]
U
u

nit "krnl_vadd_3" [ROANTNG]
nit "krnl_vadd_4" [RownTG]

Compute
Compure

>
",
\ S | S / ¥ Device "xilimxn...~ku:1ddr:3.2-0"
\ /7 Binary Contain..._container. _1
N e e e =~ ’ . ¥ Kernel Data Transfer
. Pead I I I I (. I (. | (. I |
Write L1 11 111 111111 11 T 1
¥ Kernel "krnl_vadd" 1:1:1
|< o al
.

Compute Unit "all

Compute Un,.nl_vadd_: [RONING] [FomNING] [RUNNING] [CRUNNTNG]
Un.onl .
8]
Ui

Compute Un...nl_va
Compute Un..nl_va

O Compute Un...nl_va ¢

O </> > Start with the end in mind = conceptualize system architecture

> Use visualization and guidance tools = confirm and converge

PKDF e © Copyright 2018 Xilinx £ XILINX.

' Rule #1 — Remember Amdahl’s Law

It's better to accelerate ...than to accelerate
func2 by 2x... func3 by 50x !

> Consider overall performance, not just individual functions

> When working “top-down”, identify performance bottlenecks in the application
>> Use profiling tools, analyze the “roof line” of a Flame Graph

> Target accelerators that will impact end-to-end performance of the application

PKDF e © Copyright 2018 Xilinx £ XILINX.

'Rule #2 — Target Tasks with high % of I/O time

Read-time
significant % higher PCle b/w

Output smaller, giving

> Look for functions with where {read/write SSD time} is significant % of total time
>> Good: file-compression— reading file from SSD to host DDR significant compared total time
>> Bad: Video-compression — HEVC, VP9 encoding significantly larger than streaming video

> Prefer functions that are filters, encoders
>> [ncreases overall bandwidth of the PCle throughput to x86

))(D F E’gl&%%’PE” © Copyright 2018 Xilinx & XILINX.

'Rule #3 — Balance Compute and Communication

Software Pipelining

w: write inputs from SSD to FPGA
e:. execute kernel device function
r: read outputs back to x86 host

M FPGA-DDR ' """"""""""""""""""""""""""""""""""" g
Read B/w similar to

compute b/w Output smaller, giving
higher PCle b/w

> Target applications with streaming data
>> Task-level, Data-level streaming like Apache Spark

> Balance throughput of data-movement and computation
>> Data-movement throughput should be high and similar to compute

))(D F E’gl&%%“" © Copyright 2018 Xilinx & XILINX.

' FPGA-Based Computational Storage Acceleration

» When to USE
— PCle b/w is bottleneck
— Time to read from SSD significant % of total

» When May Not be beneficial
— Small problem size
— Additional preprocessing done on host

» When NOT beneficial

— Little to no parallelism
 Algorithm is highly sequential over multiple data

— Compute heavy with very small data-transfer overhead

PKDF e © Copyright 2018 Xilinx £ XILINX.

'Agenda

> Introduction
>> SDAccel Benefits
>> Computational Storage Programmer’s View

> What to accelerate
>> 3 rules of the game

> How to accelerate

> Summary

PKDF e © Copyright 2018 Xilinx £ XILINX.

'Porting Existing Compute Acceleration Apps

» Step 1: Move data directly from SSD to FPGA
» Step 2: Move pre/postprocess from Host to FPGA

» Step 3: Target multi-board for max. performance

» Step 4: Multi-process if FPGA throughput is higher than single application
throughput

PKDF e © Copyright 2018 Xilinx £ XILINX.

'Step 1: Move data directly from SSD to FPGA

> Source file needs to be opened with O_DIRECT to
bypass page cache
>> Source_file fd = open(path, O_ RDWR | O_DIRECT);
>> Read(source_file_fd, target_ ptr, size);
>> Success!

Restrictions for O_DIRECT read() from file

>> Read() can only be done in block size unit with block size
aligned buffer pointer

\Y4

> Restrictions for O_DIRECT write() to file

>> Write() can only be done in block size unit with block size
aligned buffer pointer

>> Call fallocate() to allocate blocks in file system before write,
or page cache may kick in implicitly

> Kernel may need to be modified to iterate on data in
block-size chunks

\ XILINX . .
)/<D F DEveLoper © Copyright 2018 Xilinx

Host.exe

Target_ptr

Target_ptr

1
1
1
L

nvm,

& XILINX

'Step 1: Move data directly from SSD to FPGA

No Preprocess

> Read to x86 buffer from file

> Read to DDR from file

[* Allocate BO */
cl_mem_ext_ptr_t clmem_ext={0};
cimem_ext.flags = get_bank_flag(bank);
target = clCreateBuffer(context,
CL_MEM_EXT_PTR_XILINX | CL_MEM_READ_WRITE,
size,
&clmem_ext, &err);

I* Read source data from file */

target_ptr = clEnqueueMapBuffer(cmdq, target,
CL_TRUE, CL_MAP_WRITE | CL_MAP_READ,
0, size, 0, NULL, NULL, &err);

source_file_fd = open(path, O_RDONLY);

read(source_file_fd, target_ptr, size);

clEnqueueMigrateMemObject(..., target,...);

I* Kick off kernel */
setKernelArgAndExecKernel();

[* Allocate BO */
cl_mem_ext_ptr_t clmem_ext={0};
cimem_ext.flags = get_bank_flag(bank) | XCL_MEM_EXT_P2P_BUFFER;
target = clCreateBuffer(context,
CL_MEM_EXT_PTR_XILINX | CL_MEM_READ_WRITE,
size [* Multiple of blk size of FS */,
&clmem_ext, &err);

I* Read source data from file */

target_ptr = clEnqueueMapBuffer(cmdq, target,
CL_TRUE, CL_MAP_WRITE | CL_MAP_READ,
0, size, 0, NULL, NULL, &err);

source_file_fd = open(path, O_RDONLY | O_DIRECT);

read(source_file_fd, target_ptr, size);

I* Kick off kernel */
setKernelArgAndExecKernel();

\ XILINX
DEVELOPER
FORUM

© Copyright 2018 Xilinx

& XILINX

'Step 2. Move Pre/Postprocess to FPGA

> Applications may have pre/postprocessing functions
of data read from SSD

>> Accelerate function to FPGA to avoid copy into host

> PostgreSQL: preprocess

Packed Compressed Data

CPU

>> Table is read in 2MB block size in a loop

>> Preprocess relevant rows and sends data to FPGA 4B BIk1
hdr

4B Blk2

> LZ4 . postprocess
>> |LZ4 compression kernel creates hole in the data layout

>> Postprocess compacts the data
LZ4 Compressed Data

OINEENEN SSD_y36 DDR SR fUNC] EEEESIEERNENRERENSESSINNSESEUIN {| |3 S

FPGA

))(D F E’gl&%%“" © Copyright 2018 Xilinx & XILINX.

'Step 3: Improve performance using multi-board

> Single FPGA acceleration does not
saturate PCle b/w

> Application output uses 2GB/s for 1 card
> PCle x16 has 16GB b/w

> Increase performance by multiple

folds using multi-board

>> Attach 8 cards to get 8X performance
improvement

PCle Switch

> Steps for replicating across boards X4 = 4GB/s
>> Open all FPGA cards and NVMe E J Rl E J EPGA
. NVMel NVMeS8
devices Accel 8

>> Pair NVMe device with corresponding

FPeA o R T — g
>> Ensure that data used by FPGAis resident

on paired NVMe device

))(D F E’gl&%%“" © Copyright 2018 Xilinx & XILINX.

'Step 4. Multiple Applications

> Supports multiple processes using 1 or more Granted access Granted access
device concurrently to device to device

> LZ4 over PCle gen3x16 supports 16 GB/s
compression rate

>> Can feed 8 instances of application requiring 2GB/s
compression data

. : Shared
> Application

>> Create 1 or more CU per FPGA device
>> Runtime grants CU to a process in a first come first

serve
. C : CUa reference
>> Processes using same application is scheduled in a count
round-robin
>> SSD can be shared between all the processes Device running appl

>> Application needs to ensure different processes do
not modify the same file at same time

PKDF e © Copyright 2018 Xilinx £ XILINX.

'Agenda

> Introduction
>> SDAccel Benefits
>> Computational Storage Programmer’s View

> What to accelerate
>> 3 rules of the game

> How to accelerate

> Summary

PKDF e © Copyright 2018 Xilinx £ XILINX.

'Summary

> Computational Storage Platform brings compute close to data, thereby improving
performance, reducing power

> SDAccel provides productive way to develop new applications or port existing
compute accelerated applications

> Considering system-level architecture is key to developing successfully
accelerated application

PKDF e © Copyright 2018 Xilinx £ XILINX.

'Getting Started Is Easy

iv X”_l NX > SDAccel Tutorials for U200 and VCU1525
- > www.qgithub.com/Xilinx/SDAccel-Tutorials

aWS > On-Demand Developer Labs for AWS F1
> https://github.com/Xilinx/SDAccel-AWS-F1-Developer-Labs

> Free trial of the Nimbix FPGA Developer Program

NIMBIX

> https://www.nimbix.net/fpga-developer-program/

Learn and practice how to accelerate applications with FPGAS

PKDF e © Copyright 2018 Xilinx £ XILINX.

https://github.com/Xilinx/SDAccel-Tutorials/blob/master/README.md
https://github.com/Xilinx/SDAccel-AWS-F1-Developer-Labs/blob/master/README.md
https://www.nimbix.net/fpga-developer-program/

' SDx value proposition: Improve EoU

SDx"

Envi mnmunhs

Virtex Ultrascale+ VU9P

Cloud (Compute) On Premises (Compute)

COsmammces 2

HUAWEI

© Copyright 2018 Xilinx 8 XI I_INX

'SDAcceI: Faster path to FPGA Acceleration

-
| =N
Debugging Profiling

K % SDAccel”™ /J@

Environmen

OpenCL Libraries
“ Runtime E

Platform

Optimized Framework Accelerato_r Kernel
for Acceleration Compiler

SDAccel enables performance, productivity and portability

20 PKDF e © Copyright 2018 Xilin £ XILINX.

' P2P Across FPGA and NVMe SSD - Through Filesystem

> Write Non-P2P buffer to file > Write P2P buffer to file

/* Allocate BO */ /* Allocate BO */

cl_mem_ext_ptr_t clmem_ext={0}, cl_mem_ext_ptr_t clmem_ext={0};

clmem_ext.flags = get_bank_flag(bank); clmem_ext.flags = get_bank_flag(bank) | XCL_MEM_EXT_P2P_BUFFER;
source = clCreateBuffer(context, CL_MEM_EXT_PTR_XILINX | source = clCreateBuffer(context, CL_MEM_EXT_PTR_XILINX |
CL_MEM_READ_WRITE, size, &clmem_ext, &err); CL_MEM_READ_WRITE, size /* Multiple of blk size of FS */, &clmem_ext, &err);
I* Kick off kernel */ I* Kick off kernel */

setKernelArgAndExecKernel(...); setKernelArgAndExecKernel(...);

I* Write result back to file */ I* Write result back to file */

clEnqueueMigrateMemObject(..., source,...); "
source_ptr = clEnqueueMapBuffer(cmdgq, target, CL_TRUE, CL_MAP_READ source_ptr = clEnqueueMapBuffer(cmdq, target, CL_TRUE, CL_MAP_WRITE |

| CL_MAP_WRITE, 0, size, 0, NULL, NULL, &err); CL_MAP_READ, 0, size, 0, NULL, NULL, &err);
target_file_fd = open(path, O_CREAT | O_WRONLY); target_file_fd = open(path, O_CREAT | O_WRONLY | O_DIRECT);
write(target_file_fd, source_ptr, size); fallocate(target_file_fd, ..., size);

write(target_file_fd, source_ptr, size);
ftruncate(target_file_fd, actual_size);

>>25 © Copyright 2018 Xilinx 8 X”_INX

'SDAcceI: Faster Path to FPGA Acceleration

SDAccel”

Environment

%

Xilinx

http://www.xilinx.com

&

High Performance Platform Advanced FPGA Productive IDE &
and Runtime Library Compiler Optimized Libraries

\ XXXXXX . .
)/<D F DEveLores © Copyright 2018 Xilinx

] Repositories 90 People

User
Onboarding

& XILINX

