Implementing Multi-Gigabit Serial Links in a System of PCBs

日本ケイデンス・デザイン・システムズ社
PCBシステム事業本部 プロダクトマーケティングマネジャー
益子 行雄
2002年7月9日
Multi-Gigabit Links on PCBs

AGENDA

• Industry Trends
• Process Overview
• Process Step Details
• Summary & Resources
Multi-Gigabit Links on PCBs

AGENDA

• Industry Trends
 – Data Movement
 – Analog Challenges
 – Higher Integration
 – New Solutions

• Process Overview
• Process Step Details
• Summary & Resources
#1: Data Movement

"Data Processing" to "Packet Switching"

Interconnects

Fabrics
“A state-of-the-art serial link can move 3.125 Gbits/s – three to four times faster than Rambus and other high-speed interfaces. Achieving that speed across a backplane is not easy. …fabric designers must possess high-speed analog expertise to keep pace.”

Linley Gwennap “Fabrics make the switch”, EETimes January 14, 2002 – page 37
3: Higher Integration

“We’re now at the point where it’s getting cheaper to put more gates behind a fast serial line than to lay down copper traces.”

Jim Pappas, Intel – commenting on why 3GIO used serial technology and PCI used parallel – EETimes February 18, 2002 page 92
New Solutions

• Virtex-II Pro™ FPGA with Rocket I/O™ transceivers
 – Up to 3.125 Gbits/s
 – Supports XAUI, Infiniband, 3GIO, …

• SPECCTRAQuest
 – High-speed PCB constraint & analysis
 – Integrated IC and PCB simulation

• High-Speed Design Kits
 – Fastlane to implementation
 – First of its kind offering
Multi-Gigabit Links on PCBs

AGENDA

• Industry Trends

• Process Overview
 – Flow Diagram
 – Iterations
 – Getting Started

• Process Step Details

• Summary & Resources
Remove Iterations

Propose System Architecture
Feasibility Simulations
Solution Space Simulations
Capture & Bind Constraints
High-Speed PCB Layout
Virtual Verification
Product $
Manufacture
Hardware Test & Verify
Fab & Assemble Prototype

Time, Dollars, Opportunity
Getting Started

Start by gathering these components

- IC / PCB Models
- Starter Simulations
- Layout Constraints
- Documentation

- IC Simulator
- PCB Simulator
- Constraint-Driven Layout
- GUI & PCB Interfaces

Xilinx Design Kit

SPECTRAQuest
Multi-Gigabit Links on PCBs

AGENDA

• Industry Trends
• Process Overview

• Process Step Details
 – Challenges & solutions for each step

• Summary & Resources
#1: Architecture

- IC Options?
- distance?
- Cable? Connectors?
- Serial Standard?
- How Wide?
- PCB Construction?
#2: Feasibility

Simulations

Distance?

Cable? Connectors?
#2: Feasibility cont’d

Feasibility Simulations

PCB Construction?
1 & 2: Concurrency

- Direct use of silicon model in SPECCTRAQuest
 - Encrypted too
- > 20x faster to include
 - Compared to conversion to behavioral model
 (data in notes)
- SPECCTRAQuest
 - Supports IBIS 3.2, Hspice, and MacroModel structures

Can use structural transistor-level (Hspice) models concurrent with IC development & test
Simulator Option

Can use Hspice option for:
1. Concurrent IC/PCB Design
2. Complex Silicon Models
#3: Solution Space

- **Test / Determine**
 - Voltage Swing
 - Pre-emphasis
 - AC Coupling
 - Impedance Match
 - Terminations
 - ISI, PRBS, 8b/10b
 - Jitter Tolerance

- **Target / Tolerance**
 - PCB Stackup
 - PCB Materials
 - Trace Geometries
 - Xtalk Spacing
 - Signal Attenuation
 - Route Mis-match
 - Power Rails

ISI=Inter-Symbol Interference, PRBS=Pseudo-Random Bit Sequence, 8b/10b=see notes
#3: Solution Space cont’d

- Same Environment
- Sweep Simulations
- Stimulus Patterns
- Eye Diagrams
- Bound Solution
#4: Constraints

- Same Environment
- Capture Electronically
- Bind in Layout Database
- Constraint Manager
 - Schematic, Simulation, Layout Tools
#5: PCB Layout

- High-speed constraints
 - Electrical
 - Physical
 - Timing
- Real-time margins in Constraint Manager
#6: Verification

- DRC Reports
- CM “Green”
- Post-Layout Simulation
 - Direct from PCB
 - Waveforms
 - Reports
#6: Virtual Debug

1. Failure?
2. Extract differential net to electrical view
3. Examine, debug, simulate, fix
Process Review

Turning the corner to physical hardware

- Propose System Architecture
- Feasibility Simulations
- Solution Space Simulations
- Capture & Bind Constraints
- High-Speed PCB Layout
- Virtual Verification
- Manufacture
- Hardware Test & Verify
- Fab & Assemble Prototype
- Product $
#7: Tapeout!

By using the process, simulations, and automation described, you’re ready to tapeout an error-free Multi-Gigabit system design.
Multi-Gigabit Links on PCBs

AGENDA

• Industry Trends
• Process Overview
• Process Step Details
• Summary & Resources
Summary

• Multi-gigabit links are becoming mainstream
• A high-speed implementation process is needed for first-pass success
• High-speed Design Kits are available to assist
 – Xilinx Rocket I/O and Cadence SPECCTRAQuest
Recommended Resources

• Virtex II Pro FPGA
 – http://www.xilinx.com/virtex2pro/

• Rocket I/O

• Xilinx SPECCTRAQuest Design Kit
 – Click license NDA, download free Kit
 – http://www.xilinx.com/publications/xcelonline/partners/xc_speckit42.htm

• Cadence High-Speed PCB Tools
 – Visit the booth at the Conference
 – www.pcb.cadence.com
 – www.pcbhighspeed.com
 – www.specctraquest.com
Design Kit Contents

- Simulation Files
 Models, Topologies, etc.
- Automated Layout Guideline
- Constraint Files
- Scripts, Tools, Utilities
- Tutorial Movies
- ...all organized into a web-site