Summary

This application note covers the design considerations of a video over IP networks system using the performance features of the LogiCORE™ IP SMPTE 2022-1/2 Video Over IP transmitter and receiver cores [Ref 1]. The design demonstrates a constant bit rate (CBR) MPEG2 transport stream (TS) over a dual gigabit Ethernet link with forward error correction (FEC). The software application is based on the Xilinx SMPTE 2022 reference design format.

The reference design consists of two platforms: the transmitter and the receiver. Both platforms use the provided DVB-ASI block to receive or transmit the serial video stream using the SDI port of an Inrevium TB-FMCH-3GSDI2A 3G/HD-SD-SDI mezzanine card. For transmit transactions, the DVB-ASI block converts the received serial video stream to an AXI4 interface stream which is delivered to the SMPTE 2022-1/2 Video Over IP transmitter core. For receive transactions, the DVB-ASI block converts the AXI4 interface stream from the SMPTE 2022-1/2 Video Over IP receiver core to an ASI stream for transmitting from the SDI port.

On the transmit platform, the incoming AXI4 interface video stream is multiplexed and encapsulated into user-configured IP datagram packets by the SMPTE 2022-1/2 Video Over IP transmitter core and sent by a Tri-Mode Ethernet MAC v8.0 core [Ref 2] which interfaces with an Inrevium TB-FMCL-GLAN-B dual gigabit Ethernet PHY mezzanine card. The transmitted packet is transferred through a 1G Ethernet cable to the receive platform.

On the receive platform, the Ethernet datagram packets are collected by the Tri-Mode Ethernet MAC core. The SMPTE 2022-1/2 Video Over IP receiver core filters the datagram based on user-configured parameters on the selected RTP header, de-encapsulates and de-multiplexes the datagram packets into individual streams (channels) and outputs the streams to the DVB-ASI block for transmitting from the ASI port.

The Ethernet datagram packets are buffered in DDR3 SDRAM on both the transmit and receive platforms. The DDR traffic passes through the Advanced Microcontroller Bus Architecture (AMBA® protocol) Advanced eXtensible Interface (AXI) interconnect to the AXI4 memory controller on the Kintex®-7 FPGA. A MicroBlaze™ processor is included in the design to initialize the cores and read the status of the entire platform.

The reference design is targeted for the Xilinx Kintex-7 FPGA KC705 evaluation kit [Ref 3], which uses the Kintex-7 XC7K325T-2FFG900 FPGA [Ref 4] and the Inrevium TB-FMCH-3GSDI2A [Ref 5] and TB-FMCL-GLAN-B [Ref 6] mezzanine cards.

Included Systems

The reference design was created and built using the Vivado® Design Suite, System Edition 2013.4. The design also includes software built using the Xilinx Software Development Kit (SDK) 2013.4. The software runs on the MicroBlaze processor subsystem and implements control and status functions. Complete project files for Vivado Design Suite and the SDK are provided with this application note to allow examination and rebuilding of the design or to use it as a template for starting a new design. See Reference Design, page 23.
Introduction

The reference design covers the 1G SMPTE 2022-1/2 Video Over IP cores with hitless protection implementation on the KC705 evaluation board. In this design, the DVB-ASI block was added to interface to the TB-FMCH-3GSDI2A SDI mezzanine board which receives or transmits the video TS through the ASI port. The top-level representation of the video over IP system is shown in Figure 1.

![Figure 1: Top-Level Video Over IP System on KC705 Evaluation Board](image)

The transmit platform is shown in Figure 2 and the receive platform is shown in Figure 3.

![Figure 2: Transmit Platform Diagram](image)
High-level control of the system is provided by a simplified embedded MicroBlaze processor subsystem containing I/O peripherals and processor support blocks. A clock generator and processor system reset block supply clocks and resets for the system, respectively. This logic is contained in the customized axilite_bridge core. Figure 4 shows a block diagram of the MicroBlaze processor subsystem.
Table 1 shows the address map of the MicroBlaze processor subsystem.

Table 1: MicroBlaze Processor Subsystem Address Map

<table>
<thead>
<tr>
<th>Peripherals</th>
<th>Instance</th>
<th>Base Address</th>
<th>High Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>lmb_bram_if_ctrl</td>
<td>ilmb_bram_if_ctrl</td>
<td>0x00000000</td>
<td>0x0001FFFF</td>
</tr>
<tr>
<td>lmb_bram_if_ctrl</td>
<td>dlmb_bram_if_ctrl</td>
<td>0x00000000</td>
<td>0x0001FFFF</td>
</tr>
<tr>
<td>mig_7series</td>
<td>mig_1</td>
<td>0xC0000000</td>
<td>0xFFFFFFFF</td>
</tr>
<tr>
<td>axi_uartlite</td>
<td>axi_uartlite_1</td>
<td>0x40600000</td>
<td>0x4060FFFF</td>
</tr>
<tr>
<td>axilite_bridge</td>
<td>smpte2022_axilite</td>
<td>0x70E00000</td>
<td>0x70E0FFFF</td>
</tr>
</tbody>
</table>
Hardware Requirements

The hardware requirements for the reference design are:

- Two Xilinx Kintex-7 FPGA KC705 evaluation kits, Rev 1.0 or 1.1
- Two Inrevium 3GSDI FMC Connectivity mezzanine cards (TB-FMCH-3GSDI2A)
- Two Inrevium 1000 Base-T Ethernet FMC Connectivity mezzanine cards (TB-FMCL-GLAN-B)
- Ethernet cable
- Vivado Design Suite 2013.4
- SDK 2013.4

Reference Design Specifics

Other than the SMPTE 2022-1/2 Video Over IP transmitter and receiver cores, the reference design includes these cores:

- AXI4 Interconnect
- MicroBlaze Processor
- MicroBlaze Processor Debug Module
- Local Memory Bus
- LMB BRAM Interface Controller
- Block RAM
- Clocking Wizard
- Processor System Reset Module
- AXI UART Lite
- SMPTE2022 AXI4-Lite Bridge (customized)
- MIG 7 Series
- Tri-Mode Ethernet MAC
This section describes the high-level features of the reference design, including how the main IP blocks are configured.

Video Over IP System

The reference design implements the SMPTE 2022-1/2 Video Over IP cores as modules for broadcast applications that require bridging between broadcast connectivity standards and a gigabit Ethernet Network. The cores are intended for developing Internet protocol based systems to reduce the overall cost in broadcast facilities for distribution and routing of audio and video data. The TS data are mapped into media datagram payloads as per SMPTE 2022-2. The systemically-generated redundant forward error correction datagrams are formatted according to SMPTE 2022-1. IP/UDP/RTP protocols provide standard headers when transporting the media and FEC datagrams over the IP network.

To support the system functions correctly, the bandwidth available in the network must meet what is required to support the stream generated by the system. The overhead size required for media datagram generation is 54 Bytes due to the IP/UDP/RTP and SMPTE 2022-2 headers.

SMPTE 2022-1/2 Video Over IP Transmitter

The SMPTE 2022-1/2 Video Over IP transmitter in the reference design is configured to accept four channels of TS input from the SMPTE TS receiver. The transmitter connects to a dual port gigabit Ethernet MAC (Tri Mode Ethernet MAC) through an AXI4-Stream data interface for two links (hitless protection). The transmitter also connects to a customized IP core in the MicroBlaze processor subsystem through an AXI4-Lite control interface. The transmitter core does not have native register access support. Thus, a customized IP core called `smpte2022_axilite` is created for the register access. The transmitter core uses three AXI4 external master connectors to access the DDR3 SDRAM through the AXI4 interconnect. The initial memory map address range is fixed from \(0xC0000000\) up to a user-determined value based on the FEC and RTP packet allocation. The maximum user address is \(0xFFFFFFFF\).

The transmitter also contains an AXI4-Lite interface which allows dynamic control of the parameters within the core from a processor. For more information about the registers, see *LogiCORE IP SMPTE 2022-1/2 Video Over IP Transmitter v1.0 Product Guide* (PG180) [Ref 8].

The registers are categorized into two main sections: the general space and the channel space. The parameters in the general space apply to all of the channels. The parameters in the channel space apply to an individual channel. The channel space register is divided into two sections where the parameters are set based on either the respective links and channel or the respective channel only. In this reference design, four channels are supported and all of the parameters are differentiated by the UDP destination port and the primary and secondary links are differentiated by the IP Address. See Software Configuration, page 9 for details.

For the general registers, normal address read and write access is applied. For the channel registers, follow these steps to update the registers:

1. Select either the primary or secondary link to be configured using the most significant bit of the register address `base_addr + 0x00C`.
2. Set the channel to be configured at register address `base_addr + 0x00C`.
3. Configure the channel-specific register.
4. Pulse bit 1 of register address `base_addr + 0x000` to commit the channel registers change.
5. Repeat step 1 through step 4 for another channel or registers (see Figure 5).
SMPTE 2022-1/2 Video Over IP Receiver

The SMPTE 2022-1/2 Video Over IP receiver in the reference design is configured to stream four channels of TS output to the DVB-ASI port. The receiver connects to a dual port gigabit Ethernet MAC through an AXI4-Stream for two links (hitless protection). The receiver also connects to a customized IP core in the MicroBlaze processor subsystem through an AXI4-Lite control interface. The receiver core does not have native register access support. Thus, a customized IP core called `smpte2022_bridge` is created for register access. The receiver core uses two AXI4 external master connectors to access the DDR3 SDRAM through an AXI4 interconnect. The initial memory map address range is fixed from `0xC0000000` up to a user-determined value based on the FEC and RTP packet allocation. The maximum user address is `0xFFFFFFFF`.

The receiver contains an AXI4-Lite interface which allows dynamic control of the parameters within the core from a processor. For more information about the registers, see Logicore IP SMPTE 2022-1/2 Video Over IP Receiver v1.0 Product Guide (PG181) [Ref 9].

Figure 5: Channel Register Configuration Flow Chart
The registers are categorized into two main sections: the general space and the channel space. The parameters in the general space apply to all of the channels. The parameters in the channel space apply to an individual channel. The channel space register is divided into two sections where the parameter are set based on either the respective links and channel or the respective channel only. In this reference design, four channels are supported and all of the parameters are differentiated by the UDP destination port and the primary and secondary links are differentiated by the IP address. Refer to Software Configuration, page 9 for details.

For the general registers, normal address read and write access is applied. For the channel registers, use the same method described in the SMPTE 2022-1/2 Video Over IP Transmitter section. See Figure 5.

AXI4 Interconnect (AXI_MMM)

This AXI4 interconnect instance provides the high F_{MAX} and throughput needed for the design by providing a 128-bit core data width and running at 200 MHz. The AXI4 interconnect core data width and clock frequency matches the capabilities of the attached AXI4 MIG so that width and clock converters are not required between them. Setting the AXI4 Interconnect core data width and clock frequency below the native width and clock frequency of the memory controller creates a bandwidth bottleneck within the system. To help meet the timing requirements of a 256-bit AXI4 interface at 200 MHz, a rank of register slices are enabled between the AXI_MMM interconnect and the AXI4 MIG. Together, the AXI4 interconnect and AXI4 MIG form a 4-port AXI4 multi-port memory controller (MPMC) connected to four AXI4 external master connectors. The configuration of this AXI4 interconnect is consistent with the system performance optimization recommendations for an AXI4 MPMC-based system as described in AXI Reference Guide (UG761) [Ref 10].

MIG 7 Series

The 7 series FPGAs AXI4 memory controller (a block that integrates the MIG tool into the Vivado IDE) forms the single slave connected to the AXI4 Interconnect. The memory controller AXI4 interface is 128 bits wide, runs at 200 MHz, and disables narrow burst support for optimal throughput and timing. This configuration matches the native AXI4 interface clock and width corresponding to a 64-bit DDR3 DIMM with an 800 MHz memory clock which is the nominal performance of the memory controller for a Kintex-7 device with a -2 speed grade. Register slices are enabled to ensure that the interface meets timing at 200 MHz. These settings help ensure that a high degree of transaction pipelining is active to improve system throughput. See the 7 Series FPGAs Memory Interface Solutions v2.0 User Guide (UG586) [Ref 11] for more information about the memory controller.

AXI4 Interconnect (AXI4-Lite)

The MicroBlaze processor data peripheral (DP) interface master writes to and reads from all AXI4-Lite slave registers in the design for control and status information. These interconnects are 32 bits and do not require high F_{MAX} and throughput. Therefore, a separate AXI4 interconnect with a lower F_{MAX} requirement is used. Because high throughput is not required, this block is configured for shared-access mode allowing for the optimization of area over performance. Also, this interconnect is clocked at 100 MHz to allow the use of synchronous integer ratio clock converters in the AXI4 interconnect which offer lower latency and less area than asynchronous clock converters. The slaves on the AXI4-Lite interconnect are MDM, AXI4 UART (AXI4-Lite) and a customized IP core to the SMPTE 2022-1/2 Video Over IP transmitter or receiver core.

Tri-Mode Ethernet MAC

The Tri-Mode Ethernet MAC instance on the transmitter side has its AXI4-Stream transmit interface connected to the output of the SMPTE 2022-1/2 Video Over IP transmitter. The Tri-Mode Ethernet MAC instance on the receiver side has its AXI4-Stream receive interface

Software Configuration

The software application initializes the video over IP transmitter and receiver systems. After the software initialization, commands can be selected from the menu at the UART display.

Application-level software and the drivers for controlling the system are written in C. Alternatively, drivers and application software can be written directly to the IP control registers.

The software configures the values for the transmitter general space registers as shown in Table 2. The configuration for the transmitter primary and secondary channel access registers is shown in Table 3 and Table 4. The configuration for the receiver general space registers is shown in Table 5. The configuration for the receiver primary and secondary channel access registers is shown in Table 6 and Table 7. The base address of the register set is the AXI4-Lite bridge base address (0x70E00000). Registers not shown in the tables are not initialized and remain at their respective default values.

Table 2: Initialized Transmitter General Space Register Values

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00000000</td>
<td>Primary Mac Address (Low)</td>
<td>0x000000AA</td>
</tr>
<tr>
<td>0x00000014</td>
<td>Primary Mac Address (High)</td>
<td>0x00000000</td>
</tr>
<tr>
<td>0x00000018</td>
<td>Secondary Mac Address (Low)</td>
<td>0x000000CC</td>
</tr>
<tr>
<td>0x0000001C</td>
<td>Secondary Mac Address (High)</td>
<td>0x00000000</td>
</tr>
</tbody>
</table>

Table 3: Initialized Transmitter Primary Channel Access Register Values

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00000080</td>
<td>ip_header</td>
<td>0x00006480</td>
</tr>
<tr>
<td>0x00000084</td>
<td>vlan_tag_info</td>
<td>0x0000AB00 0x0000AB10 0x0000AB20 0x0000AB30</td>
</tr>
<tr>
<td>0x00000088</td>
<td>dest_mac_low_addr</td>
<td>0x000000FF</td>
</tr>
<tr>
<td>0x0000008C</td>
<td>dest_mac_high_addr</td>
<td>0x00000000</td>
</tr>
<tr>
<td>0x00000090</td>
<td>dest_ip_host_low_addr</td>
<td>0xC0A80060</td>
</tr>
<tr>
<td>0x00000094</td>
<td>src_ip_host_low_addr</td>
<td>0xC0A80032</td>
</tr>
<tr>
<td>0x00000098</td>
<td>udp_src_port</td>
<td>0x00000010 0x00000020 0x00000030 0x00000040</td>
</tr>
<tr>
<td>0x000000A0</td>
<td>udp_dest_port</td>
<td>0x00000010 0x00000020 0x00000030 0x00000040</td>
</tr>
<tr>
<td>0x000000A8</td>
<td>ssrc</td>
<td>0x12345600 0x12345610 0x12345620 0x12345630</td>
</tr>
<tr>
<td>0x000000B0</td>
<td>fec_config</td>
<td>0x00000000</td>
</tr>
<tr>
<td>0x000000B4</td>
<td>fec_col_offset</td>
<td>0x00000000</td>
</tr>
<tr>
<td>0x000000B8</td>
<td>fec_L_value</td>
<td>0x00000004</td>
</tr>
<tr>
<td>0x000000BC</td>
<td>fec_D_value</td>
<td>0x00000004</td>
</tr>
<tr>
<td>0x000000C0</td>
<td>FEC BaseAddress</td>
<td>0xC0000000 0xC0AC0000 0xC1580000 0xC2040000</td>
</tr>
</tbody>
</table>
Table 4: Initialized Transmitter Secondary Channel Access Register Values

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00000000</td>
<td>ip_header</td>
<td>0x00000000</td>
</tr>
<tr>
<td>0x00000004</td>
<td>vlan_tag_info</td>
<td>0x0000AB00 0x0000AB10 0x0000AB20 0x0000AB30</td>
</tr>
<tr>
<td>0x00000008</td>
<td>dest_mac_low_addr</td>
<td>0x00000000</td>
</tr>
<tr>
<td>0x0000000C</td>
<td>dest_mac_high_addr</td>
<td></td>
</tr>
<tr>
<td>0x00000010</td>
<td>dest_ip_host_low_addr</td>
<td>0xC0A80066</td>
</tr>
<tr>
<td>0x00000020</td>
<td>src_ip_host_low_addr</td>
<td>0xC0A80034</td>
</tr>
<tr>
<td>0x00000030</td>
<td>udp_src_port</td>
<td>0x00000010 0x00000020 0x00000030 0x00000040</td>
</tr>
<tr>
<td>0x00000034</td>
<td>udp_dest_port</td>
<td>0x00000010 0x00000020 0x00000030 0x00000040</td>
</tr>
<tr>
<td>0x00000100</td>
<td>ssrc</td>
<td>0x12345600 0x12345610 0x12345620 0x12345630</td>
</tr>
<tr>
<td>0x00000104</td>
<td>fec_config</td>
<td></td>
</tr>
<tr>
<td>0x00000108</td>
<td>fec_col_offset</td>
<td></td>
</tr>
<tr>
<td>0x00000112</td>
<td>fec_L_value</td>
<td></td>
</tr>
<tr>
<td>0x00000116</td>
<td>fec_D_value</td>
<td></td>
</tr>
<tr>
<td>0x00000120</td>
<td>fec_base_addr</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Initialized Receiver General Space Register Values

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00000010</td>
<td>Primary Mac Address (Low)</td>
<td>0x000000FF</td>
</tr>
<tr>
<td>0x00000014</td>
<td>Primary Mac Address (High)</td>
<td>0x00000000</td>
</tr>
<tr>
<td>0x00000018</td>
<td>Secondary Mac Address (Low)</td>
<td>0x00000000</td>
</tr>
<tr>
<td>0x0000001C</td>
<td>Secondary Mac Address (High)</td>
<td>0x00000000</td>
</tr>
<tr>
<td>0x00000028</td>
<td>packet_delay</td>
<td>0x013C6800</td>
</tr>
<tr>
<td>0x00000030</td>
<td>reorder_delay</td>
<td>0x00000200</td>
</tr>
<tr>
<td>0x00000034</td>
<td>fec_base_addr</td>
<td>0xD8000000</td>
</tr>
<tr>
<td>0x00000038</td>
<td>fec_pool_size</td>
<td>0x0000E1000</td>
</tr>
</tbody>
</table>

Table 6: Initialized Receiver Primary Channel Access Register Values

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00000000</td>
<td>ip_header</td>
<td>0x00000000</td>
</tr>
<tr>
<td>0x00000004</td>
<td>ip_header_parameter</td>
<td>0x000006480</td>
</tr>
<tr>
<td>0x00000008</td>
<td>vlan_tag_info</td>
<td>0x0000AB00 0x0000AB10 0x0000AB20 0x0000AB30</td>
</tr>
<tr>
<td>0x00000010</td>
<td>dest_ip_host_low_addr</td>
<td>0xC0A80064</td>
</tr>
<tr>
<td>0x00000020</td>
<td>src_ip_host_low_addr</td>
<td>0xC0A80032</td>
</tr>
<tr>
<td>0x00000030</td>
<td>udp_src_port</td>
<td>0x00000010 0x00000020 0x00000030 0x00000040</td>
</tr>
<tr>
<td>0x00000034</td>
<td>udp_dest_port</td>
<td>0x00000010 0x00000020 0x00000030 0x00000040</td>
</tr>
</tbody>
</table>
Table 6: Initialized Receiver Primary Channel Access Register Values (Cont’d)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00000100</td>
<td>recovery_enable</td>
<td>0x00000003</td>
</tr>
<tr>
<td></td>
<td>match_sel</td>
<td>0x00000003E</td>
</tr>
<tr>
<td></td>
<td>ssrc</td>
<td>0x12345610</td>
</tr>
<tr>
<td></td>
<td>playout_delay</td>
<td>0x00465000</td>
</tr>
<tr>
<td></td>
<td>chan_buf_base_addr</td>
<td>0xC0000000</td>
</tr>
<tr>
<td></td>
<td>chan_pkt_buf_size</td>
<td>0x0000FFFF</td>
</tr>
<tr>
<td>0x00000080</td>
<td>ip_header</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ip_header_parameter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vlan_tag_info</td>
<td>0x0000AB00</td>
</tr>
<tr>
<td></td>
<td>dest_ip_host_low_addr</td>
<td>0xC0A80066</td>
</tr>
<tr>
<td></td>
<td>src_ip_host_low_addr</td>
<td>0xC0A80034</td>
</tr>
<tr>
<td></td>
<td>udp_src_port</td>
<td>0x00000010</td>
</tr>
<tr>
<td></td>
<td>udp_dest_port</td>
<td>0x00000010</td>
</tr>
</tbody>
</table>

Table 7: Initialized Receiver Secondary Channel Access Register Values

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00000100</td>
<td>recovery_enable</td>
<td>0x00000003</td>
</tr>
<tr>
<td></td>
<td>match_sel</td>
<td>0x00000003E</td>
</tr>
<tr>
<td></td>
<td>ssrc</td>
<td>0x12345610</td>
</tr>
<tr>
<td></td>
<td>playout_delay</td>
<td>0x00465000</td>
</tr>
<tr>
<td></td>
<td>chan_buf_base_addr</td>
<td>0xC0000000</td>
</tr>
<tr>
<td></td>
<td>chan_pkt_buf_size</td>
<td>0x0000FFFF</td>
</tr>
</tbody>
</table>

Figure 6 shows the video over IP transmitter and receiver overall software process.
Figure 6: Video Over IP Transmitter and Receiver Overall Software Process
Executing the Reference Design in Hardware

This section provides instructions to execute the reference design in hardware. This reference design runs on the Kintex-7 FPGA KC705 Evaluation Kit, the Inrevium 3G/HD/SD-SDI (TB-FMCH-3GSDI2A) and the Inrevium 1000 Base-T Ethernet (TB-FMCL-GLAN-B) mezzanine cards shown in Figure 7 and Figure 8.

Figure 7: Video Over IP System
In these instructions, numbers in parentheses correspond to callout numbers in Figure 8.

1. Connect a USB cable from the host PC to the USB JTAG port (4). Ensure the appropriate device drivers are installed.
2. Connect a second USB cable from the host PC to the USB UART port (5). Ensure that USB UART drivers described in Hardware Requirements, page 5 have been installed.
3. Connect a TB-FMCH-3GSDI2A board (2) to the HPC-FMC connector of the KC705 boards.
4. Connect a TB-FMCL-GLAN-B board (3) to the LPC-FMC connector of the KC705 boards.
5. Connect one end of the Ethernet LAN cable to the GLAN port 1 (13) for the primary link and another Ethernet LAN cable to the GLAN port 2 (12) for Secondary Link.
6. Connect a power supply to the J49 (16) connector of the KC705 boards.
7. Set the KC705 board power switch (15) to the ON position.
8. Make sure that the HW-KC705 board revision numbers (1) are the same for both the transmit and receive platforms.
9. On the video over IP transmitter board, connect the TS source cables to the specified 3G/HD/SD DIN connectors:
 - Channel 0 to connector 2 (10)
 - Channel 1 to connector 4 (8)
 - Channel 2 to connector 5 (7)
 - Channel 3 to connector 6 (6)

10. On the video over IP receiver board, connect the TS monitor cables to the specified 3G/HD/SD DIN connectors:
 - Channel 0 to connector 1 (11)
 - Channel 1 to connector 4 (8)
 - Channel 2 to connector 5 (7)
 - Channel 3 to connector 6 (6)

11. Start a terminal program (HyperTerminal, for example) on the host PC with these settings:
 - Baud Rate: 115200
 - Data Bits: 8
 - Parity: None
 - Stop Bits: 1
 - Flow Control: None

Executing the Reference System Using the Pre-Built Bitstream and Compiled Software Application

This section details the steps necessary to execute the system using the files in the ready_for_download directory:

1. Launch the Xilinx Microprocessor Debugger by selecting Start > All Programs > Xilinx Design Tools > Vivado 2013.4 > SDK.

2. In the Xilinx command shell window, change to the ready_for_download directory:
 - VoIP_TX:
 `>cd <unzip dir>/KC705_SMPTE2022_12_4Ch/kc705_smpte2022_12_4ch_tx/ready_for_download`
 - VoIP_RX:
 `>cd <unzip dir>/KC705_SMPTE2022_12_4Ch/kc705_smpte2022_12_4ch_rx/ready_for_download`

3. Download the bitstream to the FPGA:
 `XMD% fpga -f download.bit`

4. Exit the XMD command prompt:
 `XMD% exit`

 Note: Start-up order is not critical.

Running the Hardware and Software

Transmitter

A HyperTerminal screen displaying the video over IP transmitter initialization sequence is shown in Figure 9. All four channels are initialized with a different configuration.
VoIP TX Reset

VoIP TX Initializing...
Primary MAC Address: 00-00-00-00-00-AA
Secondary MAC Address: 00-00-00-00-00-CC
VoIP TX Initialization done

Initializing for Primary Channel 1
Dest MAC Address: 00-00-00-00-00-FF
TS Packet Size: 188 Bytes
TS Packets: 7 Packets
IP Version: IPv4
TTL: 128
TOS: 100
VLAN: Disabled
VLAN Tag: 0xABB0
Source IP Addr: 192.168.0.50
Dest IP Addr: 192.169.0.100
Source Port: 0x2200
Dest Port: 0x2202
SSRC: 0x12345678
FBC (ID) : On
FBC (IID) : On
FBC Size: 5x20
Block Align: Block Aligned
FBC BASEDATA: 0x0000000
Channel Enable
Primary Channel 1 Initialization Done
TS Configuration for Primary 1 Initialization Done

Initializing for Secondary Channel 1
Dest MAC Address: 00-00-00-00-00-EF
TS Packet Size: 188 Bytes
TS Packets: 0 Packets
IP Version: IPv4
TTL: 128
TOS: 100
VLAN: Disabled
VLAN Tag: 0xABB0
Source IP Addr: 192.168.1.50
Dest IP Addr: 192.168.1.100
Source Port: 0x2200
Dest Port: 0x2202
SSRC: 0x12345678
FBC (ID) : On
FBC (IID) : On
FBC Size: 5x20
Block Align: Block Aligned
FBC BASEDATA: 0x0000000
Channel Enable
Secondary Channel 1 Initialization Done
TS Configuration for 1 Initialization Secondary Done

Figure 9: **VOIP_TX Initializing Channel 1 Hyperterminal Output**
Five options are displayed on the HyperTerminal screen as shown in Figure 10:

1 = Reset core
2 = Initialize Core (general space registers only)
s = Configure channel (opens “Select Channel” submenu)
p = Probe Current Settings (displays status of selected registers in general space)
? = Display current menu

```
-- VoIP TX Main Menu --

Select option
1 = Reset Core
2 = Initialize Core
s = Configure Channel
p = Probe Current Settings
? = help
```

Figure 10: VOIP_TX Main Menu Hyperterminal Output

Selecting option s produces the Select Channel menu as shown in Figure 11:

```
Select Channel
Primary Channels
1 = Channel 1
2 = Channel 2
3 = Channel 3
4 = Channel 4
Secondary Channels
5 = Channel 1
6 = Channel 2
7 = Channel 3
8 = Channel 4
m = Main menu
```

Figure 11: VOIP_TX Select Channel Menu Hyperterminal Output

Options allow the choice of one of the 4 channels (either Primary or Secondary link) or to return to the main menu:

Primary Channel:
1 = Channel 1
2 = Channel 2
3 = Channel 3
4 = Channel 4

Secondary Channel:
5 = Channel 1
6 = Channel 2
7 = Channel 3
8 = Channel 4
m = Main menu

After selecting any of the channels, the Select Option submenu is displayed as shown in Figure 12.
One of twenty options in the menu list can be chosen:

1 = Channel Init (configure target channel registers)
2 = Channel Enable/Disable
3 = Change Host IP Address
4 = VLAN Enable/Disable
5 = Change VLAN Tag
6 = Set Dest MAC Addr
7 = Set Dest IP Addr
8 = Set Source UDP Port
9 = Set Dest UDP Port
0 = Set SSRC
a = Set Packet Size
b = FEC On/Off
c = Toggle FEC Level
d = Set Column FEC
e = Set Row FEC
f = Toggle Block Alignment
g = Set Number of TS Packets
p = Probe Status
m = Main Menu
s = Channel Select

To transmit video over network, enable the channel by selecting option 2 from the menu. The channel is not automatically enabled during initialization.

Receiver

A HyperTerminal screen showing the video over IP receiver output display is shown in Figure 13. All four channels are initialized with a different configuration.
Six options are displayed on the HyperTerminal screen as shown in Figure 14:

1 = Reset core
2 = Initialize core general space registers
3 = Secondary Link Enable/Disable
s = Configure channel (opens Select Channel submenu)
p = Probe Current Settings (displays status of selected registers in general space)
? = Display current menu
Selecting option s produces the Select Channel menu as shown in Figure 15:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Channel 1</td>
</tr>
<tr>
<td>2</td>
<td>Channel 2</td>
</tr>
<tr>
<td>3</td>
<td>Channel 3</td>
</tr>
<tr>
<td>4</td>
<td>Channel 4</td>
</tr>
<tr>
<td>5</td>
<td>Channel 1</td>
</tr>
<tr>
<td>6</td>
<td>Channel 2</td>
</tr>
<tr>
<td>7</td>
<td>Channel 3</td>
</tr>
<tr>
<td>8</td>
<td>Channel 4</td>
</tr>
<tr>
<td>m</td>
<td>Main menu</td>
</tr>
</tbody>
</table>

Figure 15: VOIP_RX Select Channel Menu Hyperterminal Output

Options allow the choice of one of the 4 channels (either Primary or Secondary link) or to return to the main menu:

Select Channel
Primary Channels
1 = Channel 1
2 = Channel 2
3 = Channel 3
4 = Channel 4
Secondary Channels
5 = Channel 1
6 = Channel 2
7 = Channel 3
8 = Channel 4
m = Main menu

After selecting any of the channels, the Select Option submenu is displayed as shown in Figure 16.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Channel Init</td>
</tr>
<tr>
<td>2</td>
<td>Channel Enable/Disable</td>
</tr>
<tr>
<td>p</td>
<td>Probe Status</td>
</tr>
<tr>
<td>m</td>
<td>Main menu</td>
</tr>
<tr>
<td>s</td>
<td>Channel Select</td>
</tr>
</tbody>
</table>

Figure 16: VOIP_RX Select Option Submenu Hyperterminal Output
One of five options in the menu list can be chosen:

1 = Channel Init (configure target channel registers)
2 = Channel Enable/Disable
p = Probe Status
m = Main menu
s = Channel Select

This section covers rebuilding the hardware design. Before rebuilding the project, ensure that the licenses for the SMPTE 2022-1/2 Video Over IP Transmitter and Receiver cores and the Tri-Mode Ethernet MAC are installed.

Note: To ensure that no compilation errors occur due to long file paths, unzip the project files as close as possible to the root directory. For example, with a typical Windows installation, unzip the files at C:\.

Generating the Programming File with Vivado Design Suite 2013.4

1. At the Tcl Console, change to the workspace directory by typing:

 VoIP_TX:
   ```
   cd <unzip dir>/KC705_SMPTE2022_12_4Ch/kc705_smpte2022_12_4ch_tx
   ```

 VoIP_RX:
   ```
   cd <unzip dir>/KC705_SMPTE2022_12_4Ch/kc705_smpte2022_12_4ch_rx
   ```

2. To create, compile and generate the project bitstream, run the `all.tcl` script by typing at the Tcl Console:
   ```
   source all.tcl
   ```

Compiling the Software with SDK

1. After the bitstream generation (`all.tcl` script) is complete, open the implemented design by clicking **Open Implemented Design** under the Implementation tab on the right.

2. Click **Open Block Design** under the IP integrator tab on the right, then click **system_basic.bd**.

3. At the Sources tab, expand the hierarchy of the project, right-click **i_system_basic** and select **Export Hardware for SDK**.

4. A window appears. Set the workspace and export path to:

 VoIP_TX:
   ```
   <unzip dir>\KC705_SMPTE2022_12_4Ch\kc705_smpte2022_12_4ch_tx\SW\SDK_workspace
   ```

 VoIP_RX:
   ```
   <unzip dir>\KC705_SMPTE2022_12_4Ch\kc705_smpte2022_12_4ch_rx\SW\SDK_workspace
   ```

5. Ensure that all check boxes are selected and Click **OK**.

6. Import the board support package (BSP) and software applications into the workspace by selecting **File > Import > General > Existing Projects**.

7. Click **Next**, then browse to:

 VoIP_TX:
   ```
   <unzip dir>\KC705_SMPTE2022_12_4Ch\kc705_smpte2022_12_4ch_tx\SW\SDK_workspace
   ```

 VoIP_RX:
   ```
   <unzip dir>\KC705_SMPTE2022_12_4Ch\kc705_smpte2022_12_4ch_rx\SW\SDK_workspace
   ```
8. Click OK
9. Ensure that all check boxes are selected.
10. Click Finish.

The BSP and software applications compile at this step. The process takes 2 to 5 minutes. The existing software applications can now be modified and new software applications can be created in the SDK.

Running the Hardware and Software through the SDK
1. Open the JTAG configuration by selecting Xilinx Tools > Configure JTAG Settings (Figure 17).

![Figure 17: JTAG Configuration Settings](image)

2. Select the Digilent USB Cable in Type field
3. Click Automatically Discover Devices on JTAG Chain.
 Note: Two workstations are needed when running from the SDK, one for the transmitter and another for the receiver, because the debugger can only connect to one Digilent USB Cable at a time.
4. Click OK.
5. Select Xilinx Tools > Program FPGA.
 Note: Ensure bootloop is used for microblaze_0.
6. Click Program.
7. In the Project Explorer window, right-click and select:
 VoIP_TX:
 voip_rx_main > Run As > Launch on Hardware
 VoIP_RX:
 voip_tx_main > Run As > Launch on Hardware
Note: The choice is provided whether to run the software application either from MIG or block RAM by editing the linker script. The default setting in the linker script is to execute the software application from block RAM.

Debug

Upon completion of the reference design setup, check these items to ensure proper operation:

Transmitter

- Ensure that the two LEDs on the two RJ45 ports of the Inrevium TB-FMCL-GLAN-B board are ON indicating transmission from the board for two links (primary and secondary):
 - **LED Right:** 1GBASE-TX link/speed
 - **LED Left:** Transmit activity
- Ensure that the LEDs (D2, D4, D8 and D9) on the Inrevium TB-FMCH-3GSDI2A board are OFF indicating there are streams present at the board.
- Ensure that the user-defined LEDs (GPIO LEDs, item 14, Figure 8, page 14) for port 0, 6 and 7 of the KC705 evaluation kit board are ON:
 - **GPIO LED 0:** DDR initialization complete
 - **GPIO LED 6:** 100 MHz Locked
 - **GPIO LED 7:** 200 MHz Locked

Receiver

- Ensure that the LED (right) on the two RJ45 ports of the Inrevium TB-FMCL-GLAN-B board are ON indicating 1GBASE-TX link/speed for the two links (primary and secondary).
- Ensure that the RX and Duplex LEDs on the TB-FMCL-GLAN-B board are ON indicating packets are present. See the *TB-FMCL-GLAN-B Hardware User Manual* [Ref 7].
- Ensure that the user-defined LEDs (GPIO LEDs, item 14, Figure 8, page 14) for port 0, 6 and 7 of the KC705 evaluation kit board are ON:
 - **GPIO LED 0:** DDR initialization complete
 - **GPIO LED 6:** 100 MHz Locked
 - **GPIO LED 7:** 200 MHz Locked

Reference Design

The reference design files for this application note can be downloaded from:

Table 8 shows the reference design checklist.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>Developer name</td>
<td>Muhammad Ilias, Gilbert Magnaye, Myo Tun Aung, Josh Poh, Tom Sun</td>
</tr>
<tr>
<td>Target devices (stepping level, ES, production, speed grades)</td>
<td>Kintex-7 XC7K325T-2FFG900</td>
</tr>
<tr>
<td>Source code provided</td>
<td>Yes</td>
</tr>
<tr>
<td>Source code format</td>
<td>VHDL (some sources are encrypted)</td>
</tr>
<tr>
<td>Design uses code/IP from existing Xilinx application note/reference designs, CORE Generator™ software, or third party</td>
<td>Yes, core generated from Vivado IP catalog</td>
</tr>
</tbody>
</table>
Notes

Table 8: Reference Design Checklist (Cont’d)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation</td>
<td></td>
</tr>
<tr>
<td>Functional simulation performed</td>
<td>N/A</td>
</tr>
<tr>
<td>Timing simulation performed</td>
<td>N/A</td>
</tr>
<tr>
<td>Test bench used for functional and timing simulations</td>
<td>N/A</td>
</tr>
<tr>
<td>Test bench format</td>
<td>N/A</td>
</tr>
<tr>
<td>Simulator software/version used</td>
<td>N/A</td>
</tr>
<tr>
<td>SPICE/IBIS simulations</td>
<td>N/A</td>
</tr>
<tr>
<td>Implementation</td>
<td></td>
</tr>
<tr>
<td>Synthesis software tools/version used</td>
<td>Vivado 2013.4</td>
</tr>
<tr>
<td>Implementation software tools/versions used</td>
<td>Vivado 2013.4</td>
</tr>
<tr>
<td>Static timing analysis performed</td>
<td>Yes (passing the implementation stage)</td>
</tr>
<tr>
<td>Hardware Verification</td>
<td></td>
</tr>
<tr>
<td>Hardware verified</td>
<td>Yes</td>
</tr>
<tr>
<td>Hardware platform used for verification</td>
<td>Kintex-7 FPGA KC705 evaluation kit Rev 1.0 and 1.1</td>
</tr>
</tbody>
</table>

Notes

Software Application

The software application can be set to run from either DDR (mig_1) or block RAM (lmb_subsys_ilmb_bram_if_cntlr_lmb_subsys_dlmb_bram_if_cntlr) by properly setting values in the linker script (lscript.ld).

Video Over IP Receiver

The tready control generator module (tready_ctrl.vhd) is instantiated in the design to regulate the data ready signal by ensuring that the buffered packets level in the SMPTE 2022-1/2 Video Over IP receiver core is greater or equal to that set in the playout delay register.

Conclusion

This application note describes a video over IP network system using various Xilinx IP cores. The reference design demonstrates the ability of the SMPTE 2022-1/2 Video Over IP cores to encapsulate and de-encapsulate multiple transport streams into a TS per IP configuration (user-configured values) and transport them through a 1 Gb/s Ethernet pipe. The utilization of the Ethernet bandwidth is over 90% with 125 Mb/s TS Video Streams for each of four channels, with an FEC size of 4 x 4 with TS per IP of 1 and TS size of 188 bytes. The Reference Design can perform recovery of a limited number of Ethernet packets when impairment is introduced into the network with the forward error correction engine turned on.
References

This application note uses these references:

1. SMPTE 2022-1/2 Video Over IP Core product page
2. Tri-Mode Ethernet MAC Core product page
3. Kintex-7 FPGA KC705 Evaluation Kit product page
4. 7 Series FPGAs Configuration User Guide (UG470)
5. Inrevium TB-FMCH-3GSDI2A 3G/HD/SD 3GSDI FMC Connectivity mezzanine card product page
6. Inrevium TB-FMCL-GLAN-B 1000 Base-T Ethernet FMC Connectivity mezzanine card product page
7. TB-FMCL-GLAN-B Hardware User Manual
10. AXI Reference Guide (UG761)
11. 7 Series FPGAs Memory Interface Solutions v2.0 User Guide (UG586)
12. LogiCORE IP Tri-Mode Ethernet MAC Product Guide (PG051)

Revision History

The following table shows the revision history for this document.

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Description of Revisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/30/2015</td>
<td>1.1</td>
<td>Updated for Table 4 and VOIP_TX Main Menu Hyperterminal Output option.</td>
</tr>
<tr>
<td>12/18/2013</td>
<td>1.0</td>
<td>Initial Xilinx release.</td>
</tr>
</tbody>
</table>

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.
Automotive Applications Disclaimer

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.