Introduction

The Xilinx® 7 series FPGAs memory interface solutions cores provide high-performance connections to DDR3 SDRAM, QDRII+ SRAM, and RLDRAM II.

DDR3 SDRAM

This section discusses the features, applications, and functional description of Xilinx 7 series FPGAs memory interface solutions in DDR3 SDRAMs.

DDR3 SDRAM Features

- Component support for interface widths up to 72 bits
- Single rank UDIMM, RDIMM, and SODIMM support
- 1 and 2 Gb density device support
- 8-bank support
- x8 and x16 device support
- 8:1 DQ:DQS ratio support
- Configurable data bus widths (multiples of 8, up to 72 bits)
- 8-word burst support
- Support for 5 to 14 cycles of column-address strobe (CAS) latency (CL)
- On-die termination (ODT) support
- Support for 5 to 10 cycles of CAS write latency
- ZQ calibration – initial and periodic (configurable)
- Write leveling support for DDR3 (fly-by routing topology required for DDR3 component designs)
- JEDEC-compliant DDR3 initialization support
- Source code delivery in Verilog
- 4:1 and 2:1 memory to FPGA logic interface clock ratio
- ECC support
- Internal V_REF support
- Multicontroller support for up to eight controllers
- Two controller request processing modes:
 - Normal: reorder requests to optimize system throughput and latency
 - Strict: memory requests are processed in the order received
Applications

Typical applications for the Xilinx 7 series FPGAs memory interface solutions include DDR3 SDRAM interfaces.

Figure 1 shows a high-level block diagram of the 7 series FPGAs memory interface solution connecting a user design to a DDR3 SDRAM device. The physical layer (PHY) side of the design is connected to the DDR3 SDRAM device via FPGA I/O blocks (IOBs), and the user interface side is connected to the user design via FPGA logic. Refer to 7 Series FPGAs Memory Interface Solutions User Guide (UG586) for more details regarding the design.

Functional Description

As shown in Figure 1, the top-level functional blocks of the Xilinx 7 series FPGAs memory interface solution include:

- The User Interface block:
 - Presents the user interface to a user design
 - Provides a simple and user-friendly alternative to the native interface
 - Buffers read and write data
 - Reorders read return data to match the request order
 - Presents a flat address space and translates it to the addressing required by the SDRAM
- The Memory Controller block:
 - Receives requests from the user design
 - Reorders requests to minimize dead states for maximum SDRAM performance
 - Manages SDRAM row/bank configuration
 - Performs high-level SDRAM management such as refresh and activate/precharge
- The PHY block:
 - Interfaces with the Memory Controller block over a simple interface and translates the signals into the actual signals sent to the SDRAM, and vice versa
 - Translates and synchronizes control and data over various clock domains
 - Initializes the SDRAM
 - Performs write leveling for DDR3 (fly-by routing topology required for component designs)
 - Performs calibration to center align capture clocks with read data

Figure 1: DDR3 SDRAM Memory Interface Solution
Figure 1 also shows a user design connecting to the memory interface. An example user design is provided with the core. Refer to 7 Series FPGAs Memory Interface Solutions User Guide (UG586) for more details regarding the design.

AXI4 Slave Interface Features

These features are optional and selectable using the MIG GUI:

- AMBA® AXI4 slave-compliant memory-mapped interface
- AXI4-Lite interface support for ECC control and status registers
- 1:1 clock rate to the controller
- AXI4 interface data widths can be 64, 128, 256, or 512 bits to correspond with memory data widths of 8, 16, 32, 64, or 72 bits
- Support for memory data width of 72 bits with ECC enabled
- Parameterized address width support
- Support for incremental (INCR) burst up to 256 data beats
- WRAP burst support
- Multicontroller support for up to eight controllers

QDRII+ SRAM

This section discusses the features, applications, and functional description of Xilinx 7 series FPGAs memory interface solutions in QDRII+ SRAMs.

Features

- QDRII+ SRAM device support
- x18 and x36 memory width support
- Configurable data bus widths (x18, x36)
- 2-word and 4-word burst support
- Source code delivery in Verilog
- 2:1 memory to FPGA logic interface clock ratio
- 2.0-cycle and 2.5-cycle read latency support
- Fixed latency mode support
- Internal V_{REF} support
- Multicontroller support for up to eight controllers

Applications

QDRII+ SRAMs offer high-speed data transfers on separate read and write buses on the rising and falling edges of the clock. These memory devices are used in high-performance systems as temporary data storage, such as:

- Look-up tables in networking systems
- Packet buffers in network switches
- Cache memory in high-speed computing
- Data buffers in high-performance testers
Figure 2 shows a high-level block diagram of the 7 series FPGAs memory interface solution connecting a user design to a QDRII+ SRAM device.

Functional Description

As shown in Figure 2, the top-level functional block is composed of a PHY that interfaces to the user and to the QDRII+ SRAM device. The PHY block:

- Translates simple user read and write commands to conform to QDRII+ SRAM protocol
- Enables the user to provide up to one read and one write transaction per clock cycle for maximum throughput
- Performs calibration to center align clocks with data
- Returns data to the user with a corresponding valid signal
- Translates and synchronizes over various clock domains
- Implements an optimized half-frequency design that eliminates the need for a memory controller

For more details regarding the design, refer to 7 Series FPGAs Memory Interface Solutions User Guide (UG586) provided with the core.

RLDRAM II

This section discusses the features, applications, and functional description of Xilinx 7 series FPGAs memory interface solutions in RLDRAM II devices.

Features

- RLDRAM II common I/O (CIO) memory device support
- x18 and x36 memory width support
- Configurable data bus widths (x18, x36, x72)
- 4-word and 8-word burst support
- Configuration 1, 2, 3 support
- Address Multiplexing Mode support
- ODT support
- Source code delivery in Verilog
- 2:1 memory to FPGA logic interface clock ratio
• Internal V\textsubscript{REF} support
• Multicontroller support for up to eight controllers

Applications

RLDRAM II devices are used in high-performance systems as temporary data storage, such as:
• Look-up tables in networking systems
• Packet buffers in network switches
• Cache memory in high-speed computing
• Data buffers in high-performance testers

Figure 3 shows a high-level block diagram of the 7 series FPGAs memory interface solution connecting a user design to an RLDRAM II device. The physical layer is connected to the RLDRAM II device via FPGA IOBs, and the user interface is connected to the user design via FPGA logic.

![Figure 3: RLDRAM II Memory Interface Core](image)

Functional Description

As shown in Figure 3, the top-level functional blocks of the RLDRAM II memory interface solution include:

• The User Interface block:
 • Presents the user interface to a user design
 • Buffers commands and write data

• The Memory Controller block:
 • Receives requests from the user design
 • Processes commands in order and adheres to memory specifications
 • Performs high-level SDRAM management, such as refresh, and controls bank access

• The Physical Layer (PHY) block:
 • Interfaces with the Memory Controller block over a simple interface and translates the signals into the actual signals sent to the RLDRAM II, and vice versa.
 • Performs memory initialization sequence.
 • Performs calibration to center align clocks with data
 • Returns data to the user with a corresponding valid signal

For more details regarding the design, refer to 7 Series FPGAs Memory Interface Solutions User Guide (UG586) provided with the core.
General Specifications
Refer to the 7 Series FPGAs Memory Interface Solutions User Guide for more details regarding specific banking, pin location, and internal clock resource requirements for all cores.

Verification
Xilinx 7 series FPGAs memory interface solutions cores have been verified in simulation. Verification tests include:
- Initialization sequence
- Read calibration
- Memory read operation
- Memory write operation
- Row/bank management
- Write leveling

Additional Resources
This material provides additional information related to this data sheet:
- JEDEC Standard JESD79-3E: DDR3 SDRAM, JEDEC Solid State Technology Association
 http://www.jedec.org

This Xilinx document can be located on the MIG Solution Center Documentation page:
- UG586, 7 Series FPGAs Memory Interface Solutions User Guide

The data sheets for the Xilinx 7 series FPGAs can be located at www.xilinx.com/support/documentation/7_series.htm:
- DS183, Virtex-7 FPGAs Data Sheet: DC and Switching Characteristics
- DS182, Kintex-7 FPGAs Data Sheet: DC and Switching Characteristics

Ordering Information
The Memory Interface Generator (MIG) is included at no additional charge with the Xilinx ISE® Design Suite software and is provided under the terms of the Xilinx Core License Agreement. The memory cores are generated using the Xilinx CORE Generator™ software, which is a standard component of the Xilinx ISE software. For more information, visit the MIG product page.

Revision History
The following table shows the revision history for this document:

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Description of Revisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/01/11</td>
<td>1.0</td>
<td>Initial Xilinx release.</td>
</tr>
<tr>
<td>06/22/11</td>
<td>1.1</td>
<td>ISE 13.2 software release. Added RLDRA II support throughout document. Added single rank UDIMM support bullet to DDR3 SDRAM Features, page 1. Added internal Vref support.</td>
</tr>
</tbody>
</table>
Notice of Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Description of Revisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/19/11</td>
<td>1.2</td>
<td>ISE 13.3 software release for MIG v1.3.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added Resources to the IP Facts table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For DDR3 SDRAM, added support for up to eight controllers, added 2:1 as an interface clock ratio, added AXI4-Lite interface support, and added 72 as a memory data width option.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For QDRII+ SRAM, added support for 2-word bursts and support for up to eight controllers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For RLDRAM II, added support for Address Multiplexing Mode and support for up to eight controllers.</td>
</tr>
</tbody>
</table>