LogiCORE IP Virtex-6
FPGA GTH Transceiver
Wizard v1.7

User Guide
Disclaimer:
The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials, or to advise you of any corrections or update. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

Revision History
The following table shows the revision history for this document.

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/16/09</td>
<td>1.1</td>
<td>Initial Xilinx release.</td>
</tr>
<tr>
<td>12/02/09</td>
<td>1.2</td>
<td>Updates to tools and Wizard. Added GTH0 Settings in Chapter 3 and GTH1, GTH2, and GTH3 Settings in Chapter 3. Deleted “Using the ISE Simulator” section.</td>
</tr>
<tr>
<td>04/19/10</td>
<td>1.3</td>
<td>Updates to the tools and Wizard. Added Using the ISE Simulator in Chapter 4.</td>
</tr>
<tr>
<td>07/23/10</td>
<td>1.4</td>
<td>Updates to the tools and Wizard.</td>
</tr>
<tr>
<td>09/21/10</td>
<td>1.5</td>
<td>Wizard v1.5 release.</td>
</tr>
<tr>
<td>12/14/10</td>
<td>1.6</td>
<td>Updates to the tools and Wizard. Replaced 10GBASE-KR with 10GBASE-R. Incorporated references into Chapter 1, Introduction and deleted Appendix A: References. Reordered the sections in Chapter 4, Quick Start Example Design.</td>
</tr>
</tbody>
</table>

Revised the following chapters, mainly to incorporate the integration:

- Chapter 1, Introduction: Added Features, Supported Devices, Provided with the Wizard, and Ordering Information. Removed the Additional Wizard Resources section and moved its content to Related Xilinx Documents.
- Chapter 2, Installing the Wizard: Expanded Design Tools.
- Chapter 3, Running the Wizard: Added Functional Overview and Figure 3-1, Structure of the Example Design and Testbench and Figure 3-2, and Example Design - 10GBASE-R Configuration. Updated Figure 3-6, Figure 3-7, Figure 3-8, Figure 3-9, Figure 3-10, and Figure 3-11. Added RX Off and TX Off options to Table 3-3.
- Chapter 4, Quick Start Example Design: Expanded introductory description of Functional Simulation of the Example Design.
- Chapter 5, Detailed Example Design, modified name of Figure 5-1.

Minor typography edits.

Updated Legal disclaimer. Chapter 1, Introduction: Added Virtex-6 Silicon Revision Support for supported silicon revision CES (ES 2.0). Chapter 3, Running the Wizard: In GTH Placement and Clocking, clarified the description of Page 1 of the IP GUI and updated Figure 3-7.
Table of Contents

Revision History ... 2

Preface: About This Guide

Guide Contents .. 7
Additional Resources .. 7

Chapter 1: Introduction

About the Wizard ... 9
 Virtex-6 Silicon Revision Support 10
 Features .. 10
 Supported Devices ... 10
 Provided with the Wizard .. 10

Recommended Design Experience 10
Related Xilinx Documents .. 11
Technical Support .. 11
Ordering Information .. 11
Feedback .. 11
 GTH Transceiver Wizard ... 11
 Document .. 11

Chapter 2: Installing the Wizard

Tools and System Requirements 13
 Operating Systems .. 13
 Design Tools .. 13
Before You Begin ... 14
Installing the Wizard ... 14
Verifying Your Installation ... 14

Chapter 3: Running the Wizard

Overview .. 17
 Functional Overview ... 17
 Structure of the Example Design and Testbench 19
 Example Design - 10GBASE-R Configuration 20
Setting Up the Project .. 21
 Creating a Directory ... 21
 Setting the Project Options 22
Configuring and Generating the Wrapper 23
 GTH Placement and Clocking 23
 GTH0 Settings ... 26
 GTH1, GTH2, and GTH3 Settings 29
 Summary .. 30
Chapter 4: Quick Start Example Design

Overview .. 31
Functional Simulation of the Example Design ... 31
 Using ModelSim .. 31
 Using the ISE Simulator ... 32
Implementing the Example Design ... 32
Timing Simulation of the Example Design ... 33

Chapter 5: Detailed Example Design

Directory and File Structure ... 35
Directory and File Contents ... 36
 <project directory> .. 36
 <project directory>/<component name> ... 37
 <component name>/doc ... 37
 <component name>/example design .. 37
 <component name>/implement ... 38
 implement/results ... 38
 <component name>/simulation ... 38
 simulation/functional .. 39
Example Design Description ... 40
Example Design Hierarchy ... 41
Preface

About This Guide

This guide describes the function and operation of the GTH Transceiver Wizard for the Virtex®-6 HXT FPGA.

Guide Contents

This guide contains the following chapters:

- Preface, “About this Guide” introduces the organization and purpose of this guide, a list of additional resources, and the conventions used in this document.
- Chapter 1, Introduction describes the Wizard and related information, including additional resources, technical support, and submitting feedback to Xilinx.
- Chapter 2, Installing the Wizard provides information about installing the Virtex-6 FPGA GTH Transceiver Wizard.
- Chapter 3, Running the Wizard provides an overview of the Virtex-6 FPGA GTH Transceiver Wizard, and a step-by-step tutorial to generate a sample GTH transceiver wrapper with the Xilinx® CORE Generator™ tool.
- Chapter 4, Quick Start Example Design introduces the example design that is included with the GTH transceiver wrappers. The example design demonstrates how to use the wrappers and demonstrates some of the key features of the GTH transceiver.
- Chapter 5, Detailed Example Design provides detailed information about the example design, including a description of files and the directory structure generated by the Xilinx CORE Generator tool, the purpose and contents of the provided scripts, the contents of the example HDL wrappers, and the operation of the demonstration testbench.

Additional Resources

To find additional documentation, see the Xilinx website at:

To search the Answer Database of silicon, software, and IP questions and answers, or to create a technical support WebCase, see the Xilinx website at:

Chapter 1

Introduction

This chapter introduces the Virtex®-6 FPGA GTH Transceiver Wizard and provides related information, including additional resources, technical support, and submitting feedback to Xilinx.

About the Wizard

The Virtex-6 FPGA GTH Transceiver Wizard is a Xilinx® CORE Generator™ tool designed to support both Verilog and VHDL design environments. In addition, the example design delivered with the Wizard is provided in Verilog or VHDL.

The Wizard produces a wrapper that instantiates one or more properly configured GTH transceivers for custom applications (Figure 1-1).

![GTH Transceiver Wizard Wrapper](image)

Figure 1-1: GTH Transceiver Wizard Wrapper

The Virtex-6 FPGA GTH Transceiver Wizard is a Xilinx CORE Generator tool, available at the Xilinx IP Center. For information about system requirements, installation, and licensing options, see Chapter 2, Installing the Wizard.
Chapter 1: Introduction

Virtex-6 Silicon Revision Support

Version 1.7 rev 1 of this Wizard supports CES (ES 2.0) Virtex-6 HXT silicon only. Please use version 1.8 or later versions of the Wizard to configure GTH transceiver settings for Production devices.

Features

- Creates customized HDL wrappers to configure Virtex-6 FPGA GTH transceivers
- Virtex-6 FPGA GTH transceivers can be configured to conform to industry standard protocols using predefined templates, or tailor the templates for custom protocols
- Templates include support for the following specifications: 10G Base-R, CAUI, OC-48, OC-192, OTU-1, OTU-2, OTU-4, XLAUI, and Aurora 64B/66B
- Automatically configures analog settings for the GTH transceivers
- Each custom wrapper includes the example design, testbench, and both implementation and simulation scripts

Supported Devices

The Wizard supports the Virtex®-6 HXT FPGA.

For a complete listing of supported devices, see the Release Notes for this Wizard. The <project directory>/<component name>, page 37 in which the user generates the core contains the release notes file provided with the Wizard, which may include last-minute changes and updates.

For more information on the Virtex-6, see the Virtex-6 Family Overview.

Provided with the Wizard

The following are provided with the Wizard:

- Documentation: This user guide
- Design Files: Verilog and VHDL
- Example Design: Verilog and VHDL
- Testbench: Verilog and VHDL
- Constraints File: User Constraints File (.ucf)
- Simulation Model: Verilog and VHDL

Recommended Design Experience

Although the Virtex-6 FPGA GTH Transceiver Wizard is a fully verified solution, the challenge associated with implementing a complete design varies depending on the configuration and functionality of the application. For best results, previous experience building high performance, pipelined FPGA designs using Xilinx implementation software and user constraints files (UCF) is recommended.

Contact your local Xilinx representative for a closer review and estimation for your specific requirements.
Related Xilinx Documents

For detailed information and updates about the Virtex-6 FPGA GTH Transceiver Wizard, see the following documents located at the Architecture Wizards page.

- Virtex-6 FPGA GTH Transceiver Wizard Release Notes

Prior to generating the Virtex-6 FPGA GTH Transceiver Wizard, users should be familiar with the following:

- DS150: Virtex-6 Family Overview
- UG371: Virtex-6 FPGA GTH Transceivers User Guide
- ISE® software documentation: www.xilinx.com/ise

Technical Support

For technical support, go to www.xilinx.com/support. Questions are routed to a team of engineers with expertise using the Virtex-6 FPGA GTH Transceiver Wizard.

Xilinx provides technical support for use of this product as described in the LogiCORE IP Virtex-6 FPGA GTH Transceiver Wizard User Guide. Xilinx cannot guarantee timing, functionality, or support of this product for designs that do not follow these guidelines.

Ordering Information

The Virtex-6 FPGA GTH Transceiver Wizard is provided free of charge under the terms of the Xilinx End User License Agreement. The Wizard can be generated by the Xilinx ISE CORE Generator software, which is a standard component of the Xilinx ISE Design Suite. This version of the Wizard can be generated using the ISE CORE Generator system v13.1. For more information, please visit the Architecture Wizards web page. Information about additional Xilinx LogiCORE modules is available at the Xilinx IP Center. For pricing and availability of other Xilinx LogiCORE modules and software, please contact your local Xilinx sales representative.

Feedback

Xilinx welcomes comments and suggestions about the Virtex-6 FPGA GTH Transceiver Wizard and the accompanying documentation.

GTH Transceiver Wizard

For comments or suggestions about the Virtex-6 FPGA GTH Transceiver Wizard, please submit a WebCase from www.xilinx.com/support. (Registration is required to log in to WebCase.) Be sure to include the following information:

- Product name
- Wizard version number
- List of parameter settings
- Explanation of your comments, including whether the case is requesting an enhancement (you believe something could be improved) or reporting a defect (you believe something isn’t working correctly).
Document

For comments or suggestions about this document, please submit a WebCase from www.xilinx.com/support. (Registration is required to log in to WebCase.) Be sure to include the following information:

- Document title
- Document number
- Page number(s) to which your comments refer
- Explanation of your comments, including whether the case is requesting an enhancement (you believe something could be improved) or reporting a defect (you believe something isn’t documented correctly).
Chapter 2

Installing the Wizard

This chapter provides instructions for installing the Virtex®-6 FPGA GTH Transceiver Wizard in the Xilinx® CORE Generator™ tool.

Tools and System Requirements

Operating Systems

Windows

- Windows XP Professional 32-bit/64-bit
- Windows Vista Business 32-bit/64-bit

Linux

- Red Hat Enterprise Linux WS v4.0 32-bit/64-bit
- Red Hat Enterprise Desktop v5.0 32-bit/64-bit (with Workstation Option)
- SUSE Linux Enterprise (SLE) v10.1 32-bit/64-bit

Design Tools

Design Entry

- ISE® 13.1 software
- Mentor Graphics ModelSim 6.6d

Simulation

- Cadence Incisive Enterprise Simulator (IES) 10.2
- Synopsys VCS and VCS MX 2010.06

Check the release notes for the required Service Pack; ISE Service Packs can be downloaded from www.xilinx.com/support/download.htm.

Synthesis

XST 13.1

Check the release notes for the required Service Pack; ISE Service Packs can be downloaded from www.xilinx.com/support/download.htm.
Chapter 2: Installing the Wizard

Before You Begin

Before installing the Wizard, you must have a MySupport account and the ISE 13.1 software installed on your system. If you already have an account and have the software installed, go to Installing the Wizard, otherwise do the following:

1. Click Login at the top of the Xilinx home page then follow the onscreen instructions to create a MySupport account.
2. Install the ISE 13.1 software.
 For the software installation instructions, see the ISE Design Suite Release Notes and Installation Guide available in ISE Software Documentation.

Installing the Wizard

The Virtex-6 FPGA GTH Transceiver Wizard is included with the ISE 13.1 software. See ISE CORE Generator IP Updates - Installation Instructions for details about installing ISE 13.1.

Verifying Your Installation

Use the following procedure to verify that you have successfully installed the Virtex-6 FPGA GTH Transceiver Wizard in the CORE Generator tool.

1. Start the CORE Generator tool.
2. The IP core functional categories appear at the left side of the window, as shown in Figure 2-1.

![Figure 2-1: CORE Generator Window](image)

3. Click to expand or collapse the view of individual functional categories, or click the View by Name tab at the top of the list to see an alphabetical list of all cores in all categories.
4. Determine if the installation was successful by verifying that Virtex-6 FPGA GTH Transceiver Wizard 1.7 appears at the following location in the Functional Categories list: `/FPGA Features and Design/IO Interfaces`
Chapter 3

Running the Wizard

Overview

This chapter provides a step-by-step procedure for generating a Virtex®-6 FPGA GTH transceiver wrapper, implementing the wrapper in hardware using the accompanying example design, and simulating the wrapper with the provided example testbench.

Note: The screen captures in this chapter are conceptual representatives of their subjects and provide general information only. For the latest information, see the Xilinx® CORE Generator™ tool.

Functional Overview

Figure 3-1, page 18 shows the steps required to configure GTH transceivers using the Wizard. Start the CORE Generator software and select the Virtex-6 FPGA GTX Transceiver Wizard, then follow the chart to configure the transceivers and generate a wrapper that includes an accompanying example design.

- If you use an existing template with no changes, click Generate.
- If you are modifying a standard template or starting from scratch, proceed through the Wizard and adjust the settings as needed.

See Configuring and Generating the Wrapper, page 23 for details on the various transceiver features and parameters available.
Chapter 3: Running the Wizard

Figure 3-1: GTH Wizard Configuration Steps

1. Determine Quad Placement
2. Select Reference Clock Source
3. Select Transceiver(s) in a Quad
4. Select Protocol (If all transceivers are to be configured identically)
 - Standard
 - Custom
 - Select Protocol (for individual transceivers)
 - Standard
 - Custom
 - Adjust Parameters as Needed

Click Generate
Structure of the Example Design and Testbench

Figure 3-2 illustrates the structure of the example design and testbench generated with the GTH wrapper. For details, see Example Design Description, page 40.

The following files are provided to demonstrate how to simulate the configured transceiver:

1. GTH Wrapper, which includes:
 - The specific gigabit transceiver configuration parameters set using the Wizard.
 - GTHE1 Transceiver Quad(s) selected using the Wizard.
2. Example Design illustrating modules required to simulate the wrapper. The components are:
 - FRAME_GEN Module: Generates a user-definable data stream for simulation analysis.
 - FRAME_CHECK Module: Tests for correct transmission of data stream for simulation analysis.
3. Testbench: Top-level testbench demonstrating how to stimulate the design.
Example Design - 10GBASE-R Configuration

The example design covered in this section is a wrapper that configures a group of GTH transceivers for use in a 10GBASE-R application. Guidelines are also given for incorporating the wrapper in a design and for the expected behavior in operation.

The 10GBASE-R example consists of the following components:

- A single GTH transceiver wrapper implementing a one-lane 10GBASE-R port using one GTH transceiver
- A demonstration testbench to drive the example design in simulation
- An example design providing clock signals and connecting an instance of the 10GBASE-R wrapper with modules to drive and monitor the wrapper in hardware
- Scripts to synthesize and simulate the example design

The Virtex-6 FPGA GTH Transceiver Wizard example design has been tested with ModelSim 6.6d for simulation.

Figure 3-3 shows a block diagram of the default 10GBASE-R example design.

![Diagram of 10GBASE-R Transceiver Configuration Example Design and Testbench](UG691_c3_03_121510)
Setting Up the Project

Before generating the example design, set up the project as described in Creating a Directory and Setting the Project Options of this guide.

Creating a Directory

To set up the example project, first create a directory using the following steps:

1. Change directory to the desired location. This example uses the following location and directory name:
 /Projects/10gbaser_example
2. Start the Xilinx CORE Generator™ software.
 For help starting and using the CORE Generator software, see CORE Generator Help, available in ISE® software documentation.
3. Choose File > New Project (Figure 3-4).
4. Change the name of the .cgp file (optional).
5. Click Save.

![Figure 3-4: Starting a New Project](image)
Chapter 3: Running the Wizard

Setting the Project Options

Set the project options using the following steps:

1. Click Part in the option tree.
2. Select Virtex6 from the Family list.
3. Select a device from the Device list that supports GTH transceivers.
4. Select an appropriate package from the Package list. This example uses the XC6VHX380T device (see Figure 3-5).

Note: If an unsupported silicon family is selected, the Virtex-6 FPGA GTH Transceiver Wizard remains light grey in the taxonomy tree and cannot be customized. Only devices containing Virtex-6 GTH transceivers are supported by the Wizard. See the Virtex-6 Family Overview for a list of devices containing GTH transceivers.

5. Click Generation in the option tree and select either Verilog or VHDL as the output language.
6. Click OK.

![Figure 3-5: Target Architecture Setting](image-url)
Configuring and Generating the Wrapper

This section provides instructions for generating an example GTH transceiver wrapper using the default values. The example design and its supporting files are generated in the project directory. For additional details about the example design files and directories see Chapter 5, Detailed Example Design.

1. Locate Virtex-6 FPGA GTH Transceiver Wizard 1.7 in the taxonomy tree under:
 /FPGA Features & Design/IO Interfaces. (See Figure 3-6)
2. Double-click Virtex-6 FPGA GTH Transceiver Wizard 1.7 to launch the Wizard.

GTH Placement and Clocking

Page 1 of the Wizard (Figure 3-7, page 24) allows you to specify the component name, placement of the GTHE1_QUAD, reference clock source, target line rate, reference clock frequency, and DRP clock frequency. In addition, a drop-down menu on this page also allows you to specify a pre-configured a protocol template instead of stepping through the entire GUI and programming each transceiver setting individually.

1. In the Component Name filed, enter a name for the wrapper instance. This example uses the name tengbaser_wrapper.
2. Select the GTHE1_QUAD and reference clock source required for the target design. This example uses GTHE1_QUAD_X0Y0 and enables only one GTH transceiver (GTH0).
3. From the Protocol Template list, select the desired protocol template. The 10GBASE-R example uses the 10GBASE-R protocol template.
4. After reviewing the settings, click Generate to generate the wrapper or click Next to configure an individual transceiver.

The number of available GTHE1_QUAD appearing on this page depends on the selected target device and package. The 10GBASE-R example design uses one GTH transceiver from one GTHE1_QUAD. Table 3-1, page 25 describes the GTHE1_QUAD selection and reference clock options, Table 3-2, page 25 describes the reference clock source options, and Table 3-3, page 25 describes the shared settings options.

![GTH Transceiver Wizard Page 1 of 2](image)

Figure 3-7: GTH Transceiver Wizard Page 1 of 2
Table 3-1: Select Quad and Reference Clock

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTH Column</td>
<td>Toggles between displaying the GTHE1_QUAD on the Left Column (X0) and Right Column (X1).</td>
</tr>
<tr>
<td>GTHE1_QUAD</td>
<td>Select the individual number of GTHE1_QUAD by location to be used in the target design.</td>
</tr>
<tr>
<td>REFCLK Source</td>
<td>Determines the source for the reference clock signal provided to each selected GTHE1_QUAD. The 10GBASE-R example uses the reference clock from the differential input pins of GTHE1_QUAD_X0Y0 (CLK Y0).</td>
</tr>
<tr>
<td>GTH Transceivers</td>
<td>Select the individual GTH transceivers by location to be used in the target design. Each GTHE1_QUAD contains four GTH transceivers.</td>
</tr>
<tr>
<td>Configure all four lanes into single x4</td>
<td>Select this option if lanes 0, 1, 2, and 3 need to be configured into a single x4 link.</td>
</tr>
<tr>
<td>Configure all Selected GTH Transceivers Identically</td>
<td>Check this box to configure selected GTH transceivers identically. Page 3, 4, and 5 of the GUI will not appear if this box is checked.</td>
</tr>
</tbody>
</table>

Table 3-2: Reference Clock Source Options

<table>
<thead>
<tr>
<th>REFCLK Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK Y0</td>
<td>Dedicated GTH transceiver reference clock for GTHE1_QUAD_X[m]Y0 1</td>
</tr>
<tr>
<td>CLK Y1</td>
<td>Dedicated GTH transceiver reference clock for GTHE1_QUAD_X[m]Y1</td>
</tr>
<tr>
<td>CLK Y2</td>
<td>Dedicated GTH transceiver reference clock for GTHE1_QUAD_X[m]Y2</td>
</tr>
</tbody>
</table>

1. [m] = 0 if GTH column is set to Left Column and [m] = 1 if GTH column is set to Right Column.

Table 3-3: Shared Settings

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Line Rate</td>
<td>Line rate in Gb/s desired for the target design. The 10GBASE-R example uses 10.3125 Gb/s.</td>
</tr>
<tr>
<td>Reference Clock</td>
<td>Select from the list the optimal reference clock frequency to be provided by the application. The 10GBASE-R example uses 156.25 MHz.</td>
</tr>
<tr>
<td>DRP Clock</td>
<td>DRP clock frequency in MHz desired for target design. The 10GBASE-R example uses 60 MHz.</td>
</tr>
<tr>
<td>TX off</td>
<td>To use only Receiver of the transceiver.</td>
</tr>
<tr>
<td>RX off</td>
<td>To use only Transmitter of the transceiver.</td>
</tr>
</tbody>
</table>
GTH0 Settings

Page 2 of the Wizard sets the line rate, encoding, and fabric data width for GTH0 along with TX and RX driver settings. Optional port selection is also provided.

Figure 3-8: GTH0 Settings - Wizard Page 2 of 2

Table 3-4: TX and RX Setting

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTH0 Line Rate</td>
<td>Line rate in Gb/s for GTH0 in the targeted design. Value can be Target Line Rate, 1/2 of Target Line Rate, 1/4th of Target Line Rate or 1/8th of Target Line Rate selected on page 1. 10GBASE-R example uses 10.3125 Gb/s.</td>
</tr>
<tr>
<td>GTH0 Encoding</td>
<td>Encoding standard to be used for GTH0 transceiver. Value can be None, 8B/10B or 10GbE_64B/66B. The 10GBASE-R example uses 10GbE_64B/66B encoding.</td>
</tr>
<tr>
<td>GTH0 Datapath Width</td>
<td>Fabric data path width in bits. Value depends on encoding and line rate. 10GBASE-R example uses 64-bit data path.</td>
</tr>
</tbody>
</table>
Table 3-5: GTH0 Optional Ports

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXBUFRESET</td>
<td>Active High reset signal for TX buffer inside the TX data converter.</td>
</tr>
<tr>
<td>RXBUFRESET</td>
<td>Active High reset signal for RX buffer inside the RX data converter.</td>
</tr>
<tr>
<td>RXENCOMMADET</td>
<td>Active High comma detection enable signal. Available if 8B/10B encoding.</td>
</tr>
<tr>
<td>RXDISPERR</td>
<td>Disparity error indicator in 8B/10B mode.</td>
</tr>
<tr>
<td>RXCODEERR</td>
<td>Error indicator in 8B/10B mode.</td>
</tr>
<tr>
<td>RXPOLARITY</td>
<td>Polarity inversion of RX data.</td>
</tr>
<tr>
<td>RXVALID</td>
<td>RX data validity status.</td>
</tr>
<tr>
<td>RXCTRL</td>
<td>RX data control.</td>
</tr>
<tr>
<td>POWERDOWN</td>
<td>Lane power down control.</td>
</tr>
<tr>
<td>TXPOWERDOWN</td>
<td>Transmitter power state.</td>
</tr>
<tr>
<td>RXPOWERDOWN</td>
<td>Receiver power state.</td>
</tr>
</tbody>
</table>

- **TXPOWERDOWN**:
 - 00: Normal operation
 - 10: Power off transmitter logic

 This port must be set to `2'b10` during initialization and when GTHRESET is asserted. When the lanes within a Quad are configured as multi-lane links, the port from the lowest numbered lane of the link is valid.

- **RXPOWERDOWN**:
 - 00: Normal operation
 - 10: Power off receiver logic

 This port must be set to `2'b10` during initialization and when GTHRESET is asserted. When the lanes within a Quad are configured as multi-lane links, the port from the lowest numbered lane of the link is valid.
Table 3-6: GTH0 TX Configurable Driver

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX_SWING</td>
<td>Decimal value that controls the differential voltage swing.</td>
</tr>
<tr>
<td>POSTCURSOR_EMPHASIS</td>
<td>Post-cursor emphasis value in dB.</td>
</tr>
<tr>
<td>PRECURSOR_EMPHASIS</td>
<td>Pre-cursor emphasis value in dB.</td>
</tr>
</tbody>
</table>

Table 3-7: GTH0 RX Equalization

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXEQMIX</td>
<td>4-bit value that controls receive equalization.</td>
</tr>
</tbody>
</table>
GTH1, GTH2, and GTH3 Settings

Figure 3-9, Figure 3-10, and Figure 3-11, page 30 are visible based on the GTH1, GTH2 and GTH3 selections on Page 1 (Figure 3-7, page 24). For the description of the options, see GTH0 Settings, page 26.
Chapter 3: Running the Wizard

Summary

Not applicable for the Virtex-6 FPGA GTH Transceiver Wizard.

Figure 3-11: GTH3 Settings - Wizard Page 5 of 5
Chapter 4

Quick Start Example Design

Overview

This chapter introduces the example design that is included with the GTH transceiver wrappers. The example design demonstrates how to use the wrappers and demonstrates some of the key features of the GTH transceiver. For detailed information about the example design, see Chapter 5, Detailed Example Design.

Functional Simulation of the Example Design

The Virtex®-6 FPGA GTH Transceiver Wizard provides a quick way to simulate and observe the behavior of the wrapper using the provided example design and script files.

To simulate simplex designs, the SIMPLEX_PARTNER environment variable should be set to the path of the complementary core generated to test the simplex design. For example, if a design is generated with "RX OFF", a simplex partner design with RX enabled is needed to simulate the DUT. The SIMPLEX_PARTNER environment variable should be set to the path of the RX enabled design. The name of the simplex partner should be the same as the name of the DUT with a prefix of "tx" or "rx" as applicable. In the current example, the name of the simplex partner design would be prefixed with "rx".

Using ModelSim

Prior to simulating the wrapper with ModelSim, the functional (gate-level) simulation models must be generated. All source files in the following directories must be compiled to a single library as shown in Table 4-1. See the Synthesis and Simulation Design Guide for ISE® 13.1, available in the ISE Software Documentation, for instructions on how to compile ISE simulation libraries.

<table>
<thead>
<tr>
<th>HDL</th>
<th>Library</th>
<th>Source Directories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verilog</td>
<td>UNISIMS_VER</td>
<td><code><Xilinx dir>/virtex6/verilog/src/unisims</code>
<code><Xilinx dir>/virtex6/secureip/mti</code></td>
</tr>
<tr>
<td>VHDL</td>
<td>UNISIM</td>
<td><code><Xilinx dir>/virtex6/vhdl/src/unisims/primitive</code>
<code><Xilinx dir>/virtex6/secureip/mti</code></td>
</tr>
</tbody>
</table>

The Wizard provides a command line script for use within ModelSim. To run a VHDL or Verilog ModelSim simulation of the wrapper, use the following instructions:

1. Launch the Modelsim simulator and set the current directory to
 `<project_directory>/component_name/simulation/functional`
2. Set the MTI_LIBS variable:
 `modelsim> setenv MTI_LIBS <path to compiled libraries>`

3. Launch the simulation script:
 `modelsim> do simulate_mti.do`

The ModelSim script compiles the example design and testbench, and adds the relevant signals to the wave window.

Using the ISE Simulator

When using the ISE Simulator (ISim), the required Xilinx simulation device libraries are precompiled, and are updated automatically when service packs and IP updates are installed. There is no need to run CompXlib to compile libraries, or to manually download updated libraries.

<table>
<thead>
<tr>
<th>HDL</th>
<th>Library</th>
<th>Source Directories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verilog</td>
<td>UNISIMS_VER</td>
<td><code><Xilinx dir>/verilog/hdp/<OS>/unisims_ver</code></td>
</tr>
<tr>
<td>VHDL</td>
<td>UNISIM</td>
<td><code><Xilinx dir>/vhdl/hdp/<OS>/unisim</code></td>
</tr>
</tbody>
</table>

Note: OS refers to the following operating systems: lin, lin64, nt, nt64.

The wizard also generates a perl script for use with ISim. To run a VHDL or Verilog simulation of the wrapper, use the following instructions:

1. Set the current directory to
 `<project_directory>/<component_name>/simulation/functional`

2. Launch the simulation script:
 `prompt> simulate_isim.sh`

The ISim script compiles the example design and testbench, and adds the relevant signals to the wave window.

Implementing the Example Design

When all of the parameters are set as desired, clicking Generate creates a directory structure under the provided Component Name. Wrapper generation proceeds and the generated output populates the appropriate subdirectories.

The directory structure for the 10GBASE-R example is provided in Chapter 5, Detailed Example Design.

After wrapper generation is complete, the results can be tested in hardware. The provided example design incorporates the wrapper and additional blocks allowing the wrapper to be driven and monitored in hardware. The generated output also includes several scripts to assist in running the Xilinx software.

From the command prompt, navigate to the project directory and type the following:

For Windows

```
> cd tengbaser_wrapper\implement
> implement.bat
```
Timing Simulation of the Example Design

For Linux

% cd tengbaser_wrapper/implement
% implement.sh

Note: Substitute Component Name string for "tengbaser_wrapper".

These commands execute a script that synthesizes, builds, maps, places, and routes the example design and produces a bitmap file. The resulting files are placed in the implement/results directory.

Timing Simulation of the Example Design

Not applicable for the Virtex-6 FPGA GTH Transceiver Wizard.
Chapter 5

Detailed Example Design

This chapter provides detailed information about the example design, including a description of files and the directory structure generated by the Xilinx® CORE Generator™ tool, the purpose and contents of the provided scripts, the contents of the example HDL wrappers, and the operation of the demonstration testbench.

Directory and File Structure

- `<project directory>`
 Top-level project directory; name is user-defined

- `<project directory>/`<component name>``
 Wizard release notes file

- `<component name>/doc`
 Product documentation

- `<component name>/example design`
 Verilog and VHDL design files

- `<component name>/implement`
 Implementation script files

 - `implement/results`
 Results directory, created after implementation scripts are run, and contains implement script results

- `<component name>/simulation`
 Simulation scripts

 - `simulation/functional`
 Functional simulation files
Directory and File Contents

The Virtex®-6 FPGA GTH Transceiver Wizard directories and their associated files are defined in the following sections.

<project directory>

The <project directory> contains all the CORE Generator tool’s project files.

Table 5-1: Project Directory

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><component_name>.v[hd]</td>
<td>Main GTH transceiver wrapper. Instantiates individual GTHE1_QUAD wrappers. For use in the target design.</td>
</tr>
<tr>
<td><component_name>.[veo</td>
<td>vho]</td>
</tr>
<tr>
<td><component_name>.xco</td>
<td>Log file from CORE Generator tool describing which options were used to generate the GTH wrapper. An XCO file is generated by CORE Generator tool for each Wizard that it creates in the current project directory. An XCO file can also be used as an input to the CORE Generator tool.</td>
</tr>
<tr>
<td><component_name>_quad.v[hd]</td>
<td>Individual GTHE1_QUAD wrapper to be instantiated in the main GTH transceiver wrapper. Instantiates GTHE1_QUAD with settings for the selected protocol.</td>
</tr>
<tr>
<td><component_name>_gth_init.v[hd]</td>
<td>GTH transceiver initialization module to be instantiated in the GTHE1_QUAD wrapper.</td>
</tr>
<tr>
<td><component_name>_gth_reset.v[hd]</td>
<td>GTH transceiver reset module to be instantiated in the GTHE1_QUAD wrapper.</td>
</tr>
<tr>
<td><component_name>_gth_rx_pcs_cdr_reset.v[hd]</td>
<td>GTH transceiver receive PCS and CDR reset module to instantiated in GTHE1_QUAD wrapper.</td>
</tr>
<tr>
<td><component_name>_gth_tx_pcs_reset.v[hd]</td>
<td>GTH transceiver transmit PCS reset module to instantiated in GTHE1_QUAD wrapper.</td>
</tr>
</tbody>
</table>

Back to Top
<project directory>/<component name>

The <component name> directory contains the release notes file provided with the Wizard, which may include last-minute changes and updates.

Table 5-2: GTH Wrapper Component Name

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><project_dir>/<component_name></td>
<td></td>
</tr>
<tr>
<td>v6_gthwizard_readme.txt</td>
<td>Release notes for the GTH Wizard.</td>
</tr>
<tr>
<td><component_name>.pf</td>
<td>Protocol description for the selected protocol from the GTH Wizard.</td>
</tr>
</tbody>
</table>

<component name>/doc

The doc directory contains the PDF documentation provided with the Wizard.

Table 5-3: Doc Directory

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><project_dir>/<component_name>/doc</td>
<td></td>
</tr>
<tr>
<td>ug691_v6_gthwizard.pdf</td>
<td>LogiCORE IP Virtex-6 FPGA GTH Transceiver Wizard User Guide</td>
</tr>
</tbody>
</table>

<component name>/example design

The example design directory contains the example design files provided with the Wizard wrapper.

Table 5-4: Example Design Directory

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><project_dir>/<component_name>/example_design</td>
<td></td>
</tr>
<tr>
<td>gth<n>_frame_check.v[hd]</td>
<td>Frame-check logic to be instantiated in the example design. <n> ranges from 0 to 3 and corresponds to GTH transceivers 0 to 3 in a quad.</td>
</tr>
<tr>
<td>gth<n>_frame_gen.v[hd]</td>
<td>Frame-generator logic to be instantiated in the example design. <n> ranges from 0 to 3 and corresponds to GTH transceivers 0 to 3 in a quad.</td>
</tr>
<tr>
<td>gth_attributes.ucf</td>
<td>Constraints file containing the GTH attributes generated by the GTH Wizard GUI settings.</td>
</tr>
<tr>
<td><component_name>_top.ucf</td>
<td>Constraint file for mapping the GTH wrapper example design onto a Virtex-6 HXT FPGA.</td>
</tr>
<tr>
<td><component_name>_top.v[hd]</td>
<td>Top-level example design. Contains GTH transceiver wrapper, reset logic, and instantiations for frame generator and frame-checker.</td>
</tr>
</tbody>
</table>
Chapter 5: Detailed Example Design

<component name>/implement

The implement directory contains the implementation script files provided with the Wizard wrapper.

Table 5-5: Implement Directory

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><project_dir>/<component_name>/implement</td>
<td></td>
</tr>
<tr>
<td>implement.bat</td>
<td>A Windows batch file that processes the example design through the Xilinx tool flow.</td>
</tr>
<tr>
<td>implement.sh</td>
<td>A Linux shell script that processes the example design through the Xilinx tool flow.</td>
</tr>
<tr>
<td>xst.prj</td>
<td>The XST project file for the example design. The file lists all of the source files to be synthesized.</td>
</tr>
<tr>
<td>xst.scr</td>
<td>The XST script file for the example design that is used to synthesize the Wizard. It is called from the implement script described above.</td>
</tr>
</tbody>
</table>

implement/results

The results directory is created by the implement script, after which the implement script results are placed in the results directory.

Table 5-6: UCF Directory

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><project_dir>/<component_name>/implement/results</td>
<td>Implement script result files.</td>
</tr>
</tbody>
</table>

<component name>/simulation

The simulation directory contains the simulation scripts provided with the Wizard wrapper.

Table 5-7: Simulation Directory

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><project_dir>/<component_name>/simulation</td>
<td></td>
</tr>
<tr>
<td>demo_tb.v</td>
<td>Testbench to simulate the provided example design. See Functional Simulation of the Example Design, page 31.</td>
</tr>
</tbody>
</table>
The functional directory contains functional simulation scripts provided with the Wizard wrapper.

Table 5-8: Functional Directory

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>simulate_mti.do</td>
<td>ModelSim simulation script.</td>
</tr>
<tr>
<td>wave_mti.do</td>
<td>Script for adding GTH wrapper signals to the ModelSim wave viewer.</td>
</tr>
<tr>
<td>gth<n>_rom_init_tx</td>
<td>Data file containing the data pattern for the frame generator. <n> ranges from 0 to 3 and corresponds to GTH transceivers 0 to 3 in a quad.</td>
</tr>
<tr>
<td>gth<n>_rom_init_rx</td>
<td>Data file containing the data pattern for the frame checker. <n> ranges from 0 to 3 and corresponds to GTH transceivers 0 to 3 in a quad.</td>
</tr>
<tr>
<td>simulate_ncsim.sh</td>
<td>Linux script for running simulation using Cadence Incisive Enterprise Simulator (IES).</td>
</tr>
<tr>
<td>simulate_vcs.sh</td>
<td>Linux script for running simulation using Synopsys VCS.</td>
</tr>
<tr>
<td>ucli_command.key</td>
<td>Command file for VCS simulator.</td>
</tr>
<tr>
<td>vcs_session.tcl</td>
<td>Script for adding GTX wrapper signals to VCS wave window.</td>
</tr>
<tr>
<td>wave_isim.tcl</td>
<td>Script for adding GTX wrapper signals to the ISim wave viewer.</td>
</tr>
<tr>
<td>wave_mti.do</td>
<td>Script for adding GTX wrapper signals to the ModelSim wave viewer.</td>
</tr>
<tr>
<td>wave_ncsim.sv</td>
<td>Script for adding GTX wrapper signals to the Cadence IES wave viewer.</td>
</tr>
</tbody>
</table>
Example Design Description

The example design that is delivered with the wrappers helps Wizard designers understand how to use the wrappers and GTH transceivers in a design. The example design is shown in Figure 5-1.

The example design connects a frame generator and a frame checker to the wrapper. The frame generator transmits an incrementing counting pattern while the frame checker monitors the received data for correctness. The frame generator counting pattern is stored in BRAM. This pattern can be easily modified by altering the parameters in the gth<n>_rom_init_tx.dat file. The frame checker contains the same pattern in BRAM and compares it with the received data. An error counter in the frame checker keeps a track of how many errors have occurred.

The frame check works by first scanning the received data for the START_OF_PACKET_CHAR. Once the START_OF_PACKET_CHAR has been found, the received data will continuously be compared to the counting pattern stored in the BRAM at each RXUSERCLKIN cycle. Once comparison has begun, if the received data ever fails to match the data in the BRAM, checking of receive data will immediately stop, an error counter will be incremented and the frame checker will return to searching for the START_OF_PACKET_CHAR.

The example design also demonstrates how to properly connect clocks to GTH transceiver ports TXUSERCLKIN and RXUSERCLKIN.
Example Design Hierarchy

The hierarchy for the design used in this example is shown below.

```
DEMO_TB
 |___TENGBASE_TOP
 |   |___TENGBASE_WRAPPER
 |   |   |___TENGBASE_WRAPPER_QUAD (1 per GTHE1_QUAD)
 |___GTH<n>_FRAME_GEN (1 per transceiver, n ranges from 0 to 3 and corresponds to GTH transceivers 0 to 3 in a quad)
 |___GTH<n>_FRAME_CHECK (1 per transceiver, n ranges from 0 to 3 and corresponds to GTH transceivers 0 to 3 in a quad)
```