
SDAccel Development
Environment
Methodology Guide

Performance Optimization

UG1207 (v2.0) August 31, 2016

Performance Optimization www.xilinx.com 2
UG1207 (v2.0) August 31, 2016

Revision History
The following table shows the revision history for this document.

Date Version Revision

08/31/2016 2.0 Added Compilation Flow chapter from SDAccel User Guide, UG1023.

02/16/2016 1.0 Initial Xilinx release.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=2

Table of Contents
Table of Contents

Chapter 1: Introduction
Overview . 5
Guide Organization . 6

Chapter 2: What is an FPGA?
Overview . 8
FPGA Architecture . 8
FPGA Parallelism Versus Processor Architectures . 14

Chapter 3: What is OpenCL?
Overview . 20
OpenCL Platform Model . 20
OpenCL Devices and FPGAs . 22
OpenCL Memory Model . 23
OpenCL Execution Model . 25
OpenCL Region . 29
OpenCL C Example . 30

Chapter 4: Application Profiling in SDAccel
Profiling Summary Report . 32
Timeline Trace . 40

Chapter 5: Data Path Optimizations
Overview . 45
Unoptimized Design. 46
Workgroup Pipelined. 47
Multiple Compute Units . 49

Chapter 6: Memory Access Optimizations
Overview . 52
Un-Optimized Design. 53
Performance Optimization www.xilinx.com 3
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=3

Optimized Design. 55

Chapter 7: Putting It All Together
Overview . 58
Un-Optimized Design. 60
Partially Optimized Design . 61
Fully Optimized Design . 65
Data Transfer Analysis . 66

Chapter 8: Performance Checklist
Overview . 69
Tool Flow Suggestions . 71

Appendix A: Improving Data Path Performance
Overview . 73
Vectorization . 73
Loop Unrolling . 76
Loop Pipelining. 78
Work Item Pipelining . 80

Appendix B: Improving Memory Efficiency
Overview . 83
On-Chip Global Memories . 83
On-Chip Pipes . 85
Multiple Memory Ports per Kernel. 86
Adjustable Memory Port Data Width. 87
Burst Transfers from Off-Chip Global Memory . 88

Appendix C: Additional Resources and Legal Notices
Xilinx Resources . 90
Solution Centers. 90
Documentation Navigator and Design Hubs . 90
References . 91
Please Read: Important Legal Notices . 91
Performance Optimization www.xilinx.com 4
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=4

Chapter 1

Introduction

Overview
To achieve the highest possible acceleration of a software application, recent advances have
included the development of multi-core and heterogeneous computing platforms. These
architectures enable the software engineer to more effectively trade-off performance and
power for different form factors and computational loads. The one challenge in using these
new computing architectures is the programming model of each platform. All multi-core
and heterogeneous computing platforms require the programmer to rethink the problem to
be solved in terms of explicit parallelism.

Recognizing the programming challenge of multi-core and heterogeneous compute
platforms, the Khronos™ Group industry consortium has developed the OpenCL™
programming standard [Ref 1]. The OpenCL specification for multi-core and heterogeneous
compute platforms defines a single consistent programming model and system-level
abstraction for all hardware platforms that support the standard. This means that a software
engineer learns a single programming model and directly uses it on devices from multiple
vendors.

Xilinx® is an active member of the Khronos Group, collaborating on the specification of
OpenCL, and supports the compilation of OpenCL programs for Xilinx FPGA devices.
SDAccel™ is the Xilinx® development environment for compiling OpenCL programs to
execute on Xilinx FPGA devices.

The OpenCL standard guarantees functional portability but not performance portability.
Therefore, even though the same code will run on every platform supporting OpenCL, the
performance achieved will vary depending on coding style and capabilities of the
underlying hardware. Optimizing for an FPGA using the SDAccel tool chain requires the
same effort as code optimization for a CPU/GPU. The one difference in optimization for
these platforms is that in a CPU/GPU, the programmer is trying to get the best mapping of
an application onto a fixed architecture. For an FPGA, the programmer is concerned with
guiding the compiler to generate optimized compute architecture for each accelerator
(referred to as a kernel) in the application.
Performance Optimization www.xilinx.com 5
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=5

Chapter 1: Introduction
As specified by the OpenCL standard, any code that complies with the OpenCL specification
is functionally portable and will execute on any computing platform that supports the
standard. Therefore, any code changes are for performance optimization. To aid the user in
these optimizations, SDAccel offers performance profiling capabilities integrated into the
run-time. This profiling helps the user analyze the achieved performance and pinpoint any
potential bottlenecks that need to be addressed.

Guide Organization
This User Guide employs the integrated profiling in SDAccel to analyze and understand the
implications of OpenCL constructs on FPGA performance. This guide uses a few key designs
as vehicles to illustrate performance characteristics and in turn, suggests design techniques
to write OpenCL accelerators using FPGAs. The chapters in this guide are organized as
follows:

Chapter 2: What is an FPGA?
This chapter introduces the computational elements available on an FPGA and how they
compare to a processor. It covers topics such as FPGA memory hierarchy, logic elements,
and how these elements interrelate.

Chapter 3: What is OpenCL?
This chapter introduces the basic concepts of the OpenCL programming standard. It
provides an overview of the standard, provides definitions of terminologies used in the
standard, and describes how FPGAs are uniquely suited for the parallel computational
aspects of the standard.

Chapter 4: Application Profiling in SDAccel
This chapter describes how to collect, display, and interpret profiling results in the SDAccel
development environment.

Chapter 5: Data Path Optimizations
This chapter describes a matrix adder kernel example and steps through the performance
optimizations applied to the design. These optimizations are primarily targeted to improve
data path performance, and their effects on the overall design performance are described in
detail.
Performance Optimization www.xilinx.com 6
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=6

Chapter 1: Introduction
Chapter 6: Memory Access Optimizations
This chapter steps through a second design example implementing the Smith-Waterman
algorithm. This algorithm performs local sequence alignment and is often applied to
protein or nucleic acid sequences. The optimizations applied to this design primarily
improve memory accesses, and their effects on the overall design performance are
described in detail.

Chapter 7: Putting It All Together
This chapter provides a third design example accelerating a 3x3 median filter. This
algorithm is applied to images and is excellent for removing certain types of noise. The
optimizations used to improve this design target both data path and memory accesses.
These optimizations are gradually applied to improve the kernel, and their effects are
described in detail.

Chapter 8: Performance Checklist
This chapter provides a starting checklist that can generally be applied to any OpenCL
kernels targeting FPGA devices. It contains a list of suggested items to consider when
improving the performance of your kernel. This chapter also provides a few tool flow
suggestions which leverage the many capabilities of SDAccel.

Appendix A: Improving Data Path Performance
This chapter highlights a few key techniques to improve the data path performance within
OpenCL kernels. These techniques take the form of Tcl parameters, data types, or attributes
in the OpenCL C kernel source code. This chapter describes their usage in SDAccel and
demonstrates their effects on performance.

Appendix B: Improving Memory Efficiency
This chapter highlights some key techniques to improve memory efficiency of OpenCL
kernels. These techniques take the form of Tcl parameters, usage of local memories, and
other architectural concepts for OpenCL C kernels. This chapter describes their usage in
SDAccel and demonstrates their effects on performance.
Performance Optimization www.xilinx.com 7
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=7

Chapter 2

What is an FPGA?

Overview
An FPGA is an integrated circuit (IC) that can be programmed for different algorithms after
fabrication. Modern FPGA devices consist of up to two million logic cells that can be
configured to implement a variety of software algorithms. Although the traditional FPGA
design flow is more similar to a regular IC than a processor, an FPGA provides significant
cost advantages in comparison to an IC development effort and offers the same level of
performance in most cases. Another advantage of the FPGA when compared to the IC is its
ability to be dynamically reconfigured. This process, which is the same as loading a program
in a processor, can affect part or all of the resources available in the FPGA fabric.

When using SDAccel, it is important to have a basic understanding of the available
resources in the FPGA fabric and how they interact to execute a target application. This
chapter presents fundamental information about FPGAs, which is required to guide SDAccel
to the best computational architecture for any algorithm.

FPGA Architecture
Xilinx FPGAs are heterogeneous compute platforms that include Block RAMs, DSP Slices,
PCI Express support, and programmable fabric. They enable parallelism and pipelining of
applications across the entire platform as all of these compute resources can be used
simultaneously. SDAccel is the tool provided by Xilinx to target and enable these compute
resources for OpenCL programs.

The basic structure of an FPGA is composed of the following elements:

• Look-up table (LUT) - This element performs logic operations.

• Flip-Flop (FF) - This register element stores the result of the LUT.

• Wires - These elements connect elements to one another.

• Input/Output (I/O) pads - These physical ports get data in and out of the FPGA.
Performance Optimization www.xilinx.com 8
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=8

Chapter 2: What is an FPGA?
The combination of these elements results in the basic FPGA architecture shown in
Figure 2-1. Although this structure is sufficient for the implementation of any algorithm,
the efficiency of the resulting implementation is limited in terms of computational
throughput, required resources, and achievable clock frequency.

Contemporary FPGA architectures incorporate the basic elements along with additional
computational and data storage blocks that increase the computational density and
efficiency of the device. These additional elements, which are discussed in the following
sections, include:

• Embedded memories for distributed data storage

• Phase-locked loops (PLLs) for driving the FPGA fabric at different clock rates

• High-speed serial transceivers

• Off-chip memory controllers

• Multiply-accumulate blocks

X-Ref Target - Figure 2-1

Figure 2-1: Basic FPGA Architecture
Performance Optimization www.xilinx.com 9
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=9

Chapter 2: What is an FPGA?
Figure 2-2 shows the combination of these elements on a contemporary FPGA architecture.
This provides the FPGA with the flexibility to implement any software algorithm running on
a processor. Note that all of these elements across the entire FPGA device can be used
concurrently, creating a unique compute platform for OpenCL applications.

LUT
The LUT is the basic building block of an FPGA and is capable of implementing any logic
function of N Boolean variables. Essentially, this element is a truth table in which different
combinations of the inputs implement different functions to yield output values. The limit
on the size of the truth table is N, where N represents the number of inputs to the LUT. For
the general N-input LUT, the number of memory locations accessed by the table is 2N. This
allows the table to implement 2N^N functions. Note that a typical value for N in Xilinx FPGA
devices is 6.

X-Ref Target - Figure 2-2

Figure 2-2: Contemporary FPGA Architecture
Performance Optimization www.xilinx.com 10
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=10

Chapter 2: What is an FPGA?
The hardware implementation of a LUT can be thought of as a collection of memory cells
connected to a set of multiplexers. Figure 2-3 shows this functional representation of the
LUT. The inputs to the LUT act as selector bits on the multiplexer to select the result at a
given point in time. It is important to keep this representation in mind, because a LUT can
be used as both a function compute engine and a data storage element.

Flip Flop

X-Ref Target - Figure 2-3

Figure 2-3: Functional Representation of a LUT as a Collection of Memory Cells

X-Ref Target - Figure 2-4

Figure 2-4: Structure of a Flip-Flop
Performance Optimization www.xilinx.com 11
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=11

Chapter 2: What is an FPGA?
The flip-flop is the basic storage unit within the FPGA fabric. This element is always paired
with a LUT to assist in logic pipelining and data storage. As shown in Figure 2-4, page 11,
the basic structure of a flip-flop includes a data input, clock input, clock enable, reset, and
data output. During normal operation, any value at the data input port is latched and
passed to the output on every pulse of the clock. The purpose of the clock enable pin is to
allow the flip-flop to hold a specific value for more than one clock pulse. New data inputs
are only latched and passed to the data output port when both clock and clock enable are
equal to one.

DSP48 Block

The most complex computational block available in a Xilinx FPGA is the DSP48 block, which
is shown in Figure 2-5. The DSP48 block is an arithmetic logic unit (ALU) embedded into the
fabric of the FPGA and is composed of a chain of three different blocks. The computational
chain in the DSP48 contains an add/subtract unit connected to a multiplier connected to a
final add/subtract/accumulate engine. This chain allows a single DSP48 unit to implement
functions of the form:

P=B×(A+D)+C

Or

P +=B×(A+D)

X-Ref Target - Figure 2-5

Figure 2-5: Structure of a DSP48 Block
Performance Optimization www.xilinx.com 12
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=12

Chapter 2: What is an FPGA?
The DSP48 block can be utilized by SDAccel to perform a lot of the computational load
within OpenCL kernels. The synthesis flow inside the SDAccel tool targets this block
automatically.

BRAM and Other Memories
The FPGA fabric includes embedded memory elements that can be used as random-access
memory (RAM), read-only memory (ROM), or shift registers. These elements are block
RAMs (BRAMs), LUTs, and shift registers.

The BRAM is a dual-port RAM module instantiated into the FPGA fabric to provide on-chip
storage for a relatively large set of data. The two types of BRAM memories available in a
device can hold either 18k or 36k bits, and the available amount of these memories is device
specific. The dual-port nature of these memories allows for parallel, same-clock-cycle
access to different locations.

In OpenCL code, BRAMs can implement either a RAM or a ROM, covering on-chip global,
local, and private memory types. In a RAM configuration, the data can be read and written
at any time during the runtime of the circuit. In contrast, in a ROM configuration, data can
only be read during the runtime of the circuit. The data of the ROM is written as part of the
FPGA configuration and cannot be modified in any way.

As previously discussed, the LUT is a small memory in which the contents of a truth table are
written during device configuration. Due to the flexibility of the LUT structure in Xilinx
FPGAs, these blocks can be used as 64-bit memories and are commonly referred to as
distributed memories. This is the fastest kind of memory available on the FPGA device,
because it can be instantiated in any part of the fabric that improves the performance of the
implemented circuit.

The shift register is a chain of registers connected to each other, as shown in Figure 2-6. The
purpose of this structure is to provide data reuse along a computational path, such as with
a filter. For example, a basic filter is composed of a chain of multipliers that multiply a data
sample against a set of coefficients. By using a shift register to store the input data, a
built-in data transport structure moves the data sample to the next multiplier in the chain
on every clock cycle.

X-Ref Target - Figure 2-6

Figure 2-6: Structure of an Addressable Shift Register
Performance Optimization www.xilinx.com 13
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=13

Chapter 2: What is an FPGA?
FPGA Parallelism Versus Processor Architectures
When compared with processor architectures, the structures that comprise the FPGA fabric
enable a high degree of parallelism in application execution. The custom processing
architecture generated by SDAccel for an OpenCL kernel presents a different execution
paradigm. This must be taken into account when deciding to port an application from a
processor to an FPGA. To examine the benefits of the FPGA execution paradigm, this section
provides a brief review of processor program execution.

Program Execution on a Processor
A processor, regardless of its type, executes a program as a sequence of instructions that
translate into useful computations for the software application. This sequence of
instructions is generated by processor compiler tools, such as the GNU Compiler Collection
(GCC), which transform an algorithm expressed in C/C++ into assembly language
constructs that are native to the processor. The job of a processor compiler is to take a C
function of the form:

z=a+b;

and transform it into assembly code as follows:

ADD $R1,$R2,$R3

The assembly code above defines the addition operation to compute the value of z in terms
of the internal registers of a processor. The input values for the computation are stored in
registers R1 and R2, and the result of the computation is stored in register R3. The assembly
code above is simplified as it does not express all the instructions needed to compute the
value of z. This code only handles the computation after the data has arrived at the
processor. Therefore, the compiler must create additional assembly language instructions
to load the registers of the processor with data from a central memory and to write back the
result to memory. The complete assembly program to compute the value of z is as follows:

LD a,$R1
LD b,$R2
ADD R1,$R2,$R3
ST $R3,c
Performance Optimization www.xilinx.com 14
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=14

Chapter 2: What is an FPGA?
This code shows that even a simple operation, such as the addition of two values, results in
multiple assembly instructions. The computational latency of each instruction is not equal
across instruction types. For example, depending on the location of a and b, the LD
operations take a different number of clock cycles to complete. If the values are in the
processor cache, these load operations complete within a few tens of clock cycles. If the
values are in the main, double data rate (DDR) memory, these operations take hundreds of
clock cycles to complete. If the values are on a hard drive, the load operations take even
longer to complete. This is why software engineers with cache hit traces spend so much
time restructuring their algorithms to increase the spatial locality of data in memory to
increase the cache hit rate and decrease the processor time spent per instruction [2].

Program Execution on an FPGA
The FPGA is an inherently parallel processing fabric capable of implementing any logical
and arithmetic function that can run on a processor. The main difference is that the
Vivado® High-Level Synthesis (HLS) compiler [3], which is used by SDAccel to transform
OpenCL software descriptions into RTL, is not hindered by the restrictions of a cache and a
unified memory space.

The computation of z is compiled by HLS into several LUTs required to achieve the size of
the output operand. For example, assume that in the original software program the variable
a, b, and z are defined with the short data type. This type, which defines a 16-bit data
container, gets implemented as 16 LUTs by HLS. As a general rule, 1 LUT is equivalent to 1
bit of computation.

The LUTs used for the computation of z are exclusive to this operation only. Unlike a
processor, where all computations share the same ALU, an FPGA implementation
instantiates independent sets of LUTs for each computation in the software algorithm.

In addition to assigning unique LUT resources per computation, the FPGA differs from a
processor in both memory architecture and the cost of memory accesses. In an FPGA
implementation, the HLS compiler arranges memories into multiple storage banks as close
as possible to the point of use in the operation. This results in an instantaneous memory
bandwidth, which far exceeds the capabilities of a processor. For example, the Xilinx
Kintex®-7 410T device has a total of 1,590 18k-bit BRAMs available. In terms of memory
bandwidth, the memory layout of this device provides the software engineer with the
capacity of 0.5M-bits per second at the register level and 23T-bits per second at the BRAM
level.

With regard to computational throughput and memory bandwidth, the HLS compiler
exercises the capabilities of the FPGA fabric through the processes of scheduling,
pipelining, and dataflow. Although transparent to the user, these processes are integral
stages of the software compilation process that extract the best possible circuit-level
implementation of the software application.
Performance Optimization www.xilinx.com 15
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=15

Chapter 2: What is an FPGA?
Scheduling
Scheduling is the process of identifying the data and control dependencies between
different operations to determine when each will execute. In traditional FPGA design, this is
a manual process also referred to as parallelizing the software algorithm for a hardware
implementation.

HLS analyzes dependencies between adjacent operations as well as across time. This allows
the compiler to group operations to execute in the same clock cycle and to set up the
hardware to allow the overlap of function calls. The overlap of function call executions
removes the processor restriction that requires the current function call to fully complete
before the next function call to the same set of operations can begin. This process is called
pipelining and is covered in detail in the following section and remaining chapters.

Pipelining
Pipelining is a digital design technique that allows the designer to avoid data dependencies
and increase the level of parallelism in an algorithm hardware implementation. The data
dependence in the original software implementation is preserved for functional
equivalence, but the required circuit is divided into a chain of independent stages. All
stages in the chain run in parallel on the same clock cycle. The only difference is the source
of data for each stage. Each stage in the computation receives its data values from the result
computed by the preceding stage during the previous clock cycle. For example, consider
the following function:

y=(a*x)+b+c

The HLS compiler instantiates one multiplier and two adder blocks to implement this
function.
Performance Optimization www.xilinx.com 16
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=16

Chapter 2: What is an FPGA?
Figure 2-7 shows this compute structure and the effects of pipelining. It shows two
implementations of the example function. The top implementation is the data path required
to compute the result y without pipelining. This implementation behaves similarly to the
corresponding software function in that all input values must be known at the start of the
computation, and only one result y can be computed at a time. The bottom implementation
shows the pipelined version of the same circuit.

The boxes in the data path in the above figure represent registers that are implemented by
flip-flop blocks in the FPGA fabric. Each box can be counted as a single clock cycle.
Therefore, in the pipelined version, the computation of each result y takes three clock
cycles. By adding the register, each block is isolated into separate compute sections in time.

This means that the section with the multiplier and the section with the two adders can run
in parallel and reduce the overall computational latency of the function. By running both
sections of the data path in parallel, the block is essentially computing the values y and y'
in parallel, where y' is the result of the next execution of the equation for y above. The initial
computation of y, which is also referred to as the pipeline fill time, takes three clock cycles.
However, after this initial computation, a new value of y is available at the output on every
clock cycle. The computation pipeline contains overlapped data sets for the current and
subsequent y computations.

X-Ref Target - Figure 2-7

Figure 2-7: FPGA Implementation of a Compute Function
Performance Optimization www.xilinx.com 17
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=17

Chapter 2: What is an FPGA?
Figure 2-8 shows a pipelined architecture in which raw data (dark gray), semi-computed
data (white), and final data (light gray) exist simultaneously, and each stage result is
captured in its own set of registers. Thus, although the latency for such computation is in
multiple cycles, a new result can be produced on every cycle.

Dataflow
Dataflow is another digital design technique, which is similar in concept to pipelining. The
goal of dataflow is to express parallelism at a coarse-grain level. In terms of software
execution, this transformation applies to parallel execution of functions within a single
program.

SDAccel extracts this level of parallelism by evaluating the interactions between different
functions of a program based on their inputs and outputs. The simplest case of parallelism
is when functions work on different data sets and do not communicate with each other. In
this case, SDAccel allocates FPGA logic resources for each function and then runs the blocks
independently. The more complex case, which is typical in software programs, is when one
function provides results for another function. This case is referred to as the
consumer-producer scenario.

X-Ref Target - Figure 2-8

Figure 2-8: Pipelined Architecture
Performance Optimization www.xilinx.com 18
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=18

Chapter 2: What is an FPGA?
Figure 2-9 shows a conceptual view of dataflow pipelining. After synthesis, the default
behavior is to execute and complete func_A, then func_B, and finally func_C. However,
you can use the Vivado HLS DATAFLOW directive to schedule each function to execute as
soon as data is available. In this example, the original function has a latency and interval of
8 clock cycles. When you use dataflow optimization, the interval is reduced to only 3 clock
cycles. The tasks shown in this example are functions, but you can perform dataflow
optimization between functions, between functions and loops, and between loops.

SDAccel supports two use models for the consumer-producer scenario. In the first use
model, the producer creates a complete data set before the consumer can start its
operation. Parallelism is achieved by instantiating a pair of BRAM memories arranged as
memory banks ping and pong. Each function can access only one memory bank, ping or
pong, for the duration of a function call. When a new function call begins, the
HLS-generated circuit switches the memory connections for both the producer and the
consumer. This approach guarantees functional correctness but limits the level of
achievable parallelism to across function calls.

In the second use model, the consumer can start working with partial results from the
producer, and the achievable level of parallelism is extended to include execution within a
function call. The HLS-generated modules for both functions are connected through the use
of a first in, first out (FIFO) memory circuit. This memory circuit, which acts as a queue in
software programming, provides data-level synchronization between the modules. At any
point during a function call, both hardware modules are executing their programming. The
only exception is that the consumer module waits for some data to be available from the
producer before beginning computation. In HLS terminology, the wait time of the consumer
module is referred to as the interval or initiation interval (II).

X-Ref Target - Figure 2-9

Figure 2-9: Dataflow Optimization
Performance Optimization www.xilinx.com 19
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=19

Chapter 3

What is OpenCL?

Overview
The OpenCL standard for parallel programming has been developed by the Khronos Group
industry consortium to address the challenges of programming multi-core and
heterogeneous compute platforms [Ref 1]. The OpenCL specification defines a single
programming model and a set of system-level abstractions that are supported by all
hardware platforms conforming to the standard. This means that a software engineer can
learn a single programming model and use it directly on devices from multiple vendors.

OpenCL provides a programming language and runtime API to support the development of
close-to-the-metal software which is both efficient and portable. Additionally, OpenCL
provides low-level hardware abstractions that allow OpenCL implementations to expose
many details of underlying hardware. These low-level abstractions are the platform,
memory, and executions models described in the OpenCL specification. Understanding how
these concepts translate into physical implementations on an FPGA is necessary for
application optimization.

This chapter provides a review of the OpenCL platform model and its extensions to FPGA
devices. It explains the mapping of the OpenCL platform and memory model into an
SDAccel generated implementation. This chapter will also mention how contemporary
FPGAs can be leveraged to achieve high levels of performance using the Xilinx SDAccel tool.

OpenCL Platform Model
The OpenCL platform model defines the logical representation of all hardware capable of
executing an OpenCL program. OpenCL platforms are defined by the grouping of a host
processor and one or more OpenCL compute devices. The host processor, which runs the
OS for the system, is also responsible for the general bookkeeping and task launch duties
associated with the execution of OpenCL applications. The device is the hardware element
in the system on which the compute kernels of an OpenCL application are executed. Each
device is further divided into a set of compute units. The number of compute units depends
on the target hardware. A compute unit is further subdivided into processing elements. A
processing element is the fundamental computation engine in the compute unit, which is
responsible for executing the operations of one work item.
Performance Optimization www.xilinx.com 20
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=20

Chapter 3: What is OpenCL?
A conceptual view of the OpenCL platform model is shown in Figure 3-1. An OpenCL
platform always starts with a host processor. For platforms created with Xilinx® devices, the
host processor is an x86 based processor communicating to the devices using PCIe®. The
host processor has the following responsibilities:

• Manage the operating system and enable drivers for all devices.

• Execute the application host program.

• Set up all global memory buffers and manage data transfer between the host and the
device.

• Monitor the status of all compute units in the system.

In all OpenCL platforms, the host processor tasks are executed using a common set of
OpenCL API. The implementation of the OpenCL API functions is provided by the hardware
vendor and is referred to as the OpenCL runtime library. The OpenCL runtime library is
responsible for translating user commands described by the OpenCL API into hardware
specific commands for a given device. For example, when the application programmer
allocates a memory buffer using the clCreateBuffer API, it is the responsibility of the
runtime library to keep track of where the allocated buffer physically resides in the system,
and of the mechanism required for buffer access. It is important for the application
programmer to keep in mind that the OpenCL API is portable across vendors, but the
runtime library provided by a vendor is not. Therefore, OpenCL applications have to be
linked at compile time with the runtime library that is paired with the target execution
device.

The other component of a platform is the device. A device in the context of OpenCL is the
physical collection of hardware resources onto which the application kernels are executed.

X-Ref Target - Figure 3-1

Figure 3-1: OpenCL Platform Model
Performance Optimization www.xilinx.com 21
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=21

Chapter 3: What is OpenCL?
A platform must have at least one device available for the execution of kernels. Also, per the
OpenCL platform model, all devices in a platform do not have to be of identical type.

OpenCL Devices and FPGAs
In the context of CPU and GPU hardware, the attributes of an OpenCL device are fixed and
the programmer has very little influence on what the device looks like. An advantage of this
characteristic of CPU/GPU systems makes it relatively easy to obtain and use off-the-shelf
hardware. This advantage is also a major limitation when compared to FPGA based OpenCL
devices. CPU and GPU based systems typically have fixed data paths, memory systems, and
I/O architectures. It is not possible, for example, to directly attach high-speed I/O to an
OpenCL compute kernel. Similarly, efficient data movement is only performed using bulk
memory based transfers.

An OpenCL device for an FPGA is not limited by the constraints of a CPU/GPU device. By
taking advantage of the fact that the FPGA starts off as a blank computational canvas, the
user can decide the level of device customization that is appropriate to support a single
application or a class of applications. In determining the level of customization in a device,
the programmer can take advantage of the fact that kernel compute units are not placed in
isolation within the FPGA fabric.

FPGA devices capable of supporting OpenCL programs can include, but are not limited to,
the following components:

• DMA engines

• I/O peripherals such as PCIe and Ethernet

• Memory controllers

• Custom interconnects

• OpenCL compute units

• RTL-based accelerators

The creation of Xilinx FPGA based OpenCL devices requires FPGA design expertise and is
beyond the scope of SDAccel itself. Devices for SDAccel are created using the Xilinx
Vivado® design suite for FPGA designers. SDAccel provides pre-defined devices as well as
allows users to augment the tool with third party created devices. A methodology guide
describing how to create a device for SDAccel is available upon request from Xilinx.

The devices available in SDAccel are for Virtex®-7, Kintex®-7, and Kintex-UltraScale®
devices from Xilinx. These devices are available in a PCIe form factor. The PCIe form factor
assumes that the host processor is an x86 based processor and that the FPGA is used for the
implementation of compute units.
Performance Optimization www.xilinx.com 22
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=22

Chapter 3: What is OpenCL?
OpenCL Memory Model

The OpenCL memory model defines the behavior and hierarchy of memory that can be
used by OpenCL applications, as shown in Figure 3-2. This hierarchical representation of
memory is common across all OpenCL implementations, but it is up to individual vendors to
define how the OpenCL memory model maps to specific hardware. This section defines the
mapping used by SDAccel.

Host Memory
The host memory is defined as the region of system memory that is directly accessible from
the host processor. Any data needed by compute kernels must be transferred to and from
OpenCL device global memory using the OpenCL API.

Global Memory
The global memory is defined as the region of device memory that is accessible to both the
OpenCL host and device. Global memory permits read/write access to the host processor as
well to all compute units in the device. As shown above, Xilinx OpenCL platforms may
further divide the global memory space between on-chip and off-chip memories. The host
is responsible for the allocation and de-allocation of buffers in this memory space. There is
a handshake between host and device over control of the data stored in this memory. The
host processor transfers data from the host memory space into the global memory space.
Then, once a kernel is launched to process the data, the host loses access rights to the
buffer in global memory. The device takes over and is capable of reading and writing from

X-Ref Target - Figure 3-2

Figure 3-2: OpenCL Memory Model
Performance Optimization www.xilinx.com 23
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=23

Chapter 3: What is OpenCL?
the global memory until the kernel execution is complete. Upon completion of the
operations associated with a kernel, the device turns control of the global memory buffer
back to the host processor. Once it has regained control of a buffer, the host processor can
read and write data to the buffer, transfer data back to the host memory, and de-allocate
the buffer.

Constant Global Memory
Constant global memory is defined as the region of system memory that is accessible with
read and write access for the OpenCL host and with read only access for the OpenCL device.
As the name implies, the typical use for this memory is to transfer constant data needed by
kernel computation from the host to the device.

Local Memory
Local memory is a region of memory that is local to a single compute unit. The host
processor has no visibility and no control on the operations that occur in this memory
space. This memory space allows read and write operations by all the processing elements
with a compute units. This level of memory is typically used to store data that must be
shared by multiple work-items. Operations on local memory are un-ordered between
work-items but synchronization and consistency can be achieved using barrier and fence
operations. In SDAccel, the structure of local memory can be customized to meet the
requirements of an algorithm or application.

Private Memory
Private memory is the region of memory that is private to an individual work-item executing
within an OpenCL processing element. As with local memory, the host processor has no
visiblilty into this memory region. This memory space can be read from and written to by
all work-items, but variables defined in one work-item's private memory are not visible to
another work-item. In SDAccel, the structure of private memory can be customized to meet
the requirements of an algorithm or application.

For devices using an FPGA device, the physical mapping of the OpenCL memory model is
the following:

• Host memory is any memory connected to the host processor only.

• Global and constant memories are any memory that is connected to the FPGA device.
These are usually memory chips (e.g. SDRAM) that are physically connected to the
FPGA device, but might also include distributed memories (e.g. BlockRAM) within the
FPGA fabric. The host processor has access to these memory banks through
infrastructure provided by the FPGA platform.

• Local memory is memory inside of the FPGA device. This memory is typically
implemented using registers or BlockRAMs in the FPGA fabric.
Performance Optimization www.xilinx.com 24
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=24

Chapter 3: What is OpenCL?
• Private memory is memory inside of the FPGA device. This memory is typically
implemented using registers or BlockRAMs in the FPGA fabric.

OpenCL Execution Model
The OpenCL execution model defines how kernels execute. The most important concept to
understand is NDRange execution. When OpenCL kernels are submitted for execution on an
OpenCL device, they execute within the computer science concept of an index space. An
example of an index space which is easy to understand is a for loop in C/C++. In the for
loop defined by the statement "for(int i=0; i<10; i++)", any statements within this loop will
execute ten times, with i=0,1,2…,9. In this case the index space of the loop is [0,1,2,…,9]. In
OpenCL, index spaces are called NDRanges, and can have 1, 2, or 3-dimensions.

OpenCL kernel functions are executed exactly one time for each point in the NDRange index
space. This unit of work for each point in the NDRange is called a work-item. Unlike for
loops in C, where loop iterations are executed sequentially and in-order, an OpenCL runtime
and device is free to execute work-items in parallel and in any order. It is this characteristic
of OpenCL execution model that allows the programmer to take advantage of parallel
compute resources.

Work-items are not scheduled for execution individually onto OpenCL devices. Instead,
work-items are organized into work-groups, which are the unit of work scheduled onto
compute units. Because of this, work-groups also define the set of work-items that may
share data using local memory.

When a user submits a kernel for execution, they also provide the NDRange. This is called
the global size in the OpenCL API. The user may also set the work-group size at runtime.
This is called the local size in the OpenCL API. The user may also let the runtime select the
local size based on the properties of the kernel and selected device. Once the work-group
size (local size) has been determined, the NDRange (global size) is divided automatically
into work-groups, and the work-groups are scheduled for execution on the device.

Optionally, a kernel programmer can set the work-group size at kernel compile time.

IMPORTANT: In the case of an FPGA implementation, the specification of the work-group size is highly
recommended as it can be used for performance optimization during the generation of the custom
logic for a kernel.

The work-group size of a kernel can be specified using the following OpenCL C attribute:

__kernel __attribute__ ((reqd_work_group_size(256, 1, 1)))

In this example, the only work-group size supported by the kernel is the tuple (256, 1, 1).
SDAccel will therefore generate a specialized compute unit supporting only this size
work-group.
Performance Optimization www.xilinx.com 25
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=25

Chapter 3: What is OpenCL?
OpenCL supports one-dimensional, two-dimensional, and three-dimensional NDRanges
and work-groups.

One-Dimensional NDRange

Figure 3-3 illustrates an example of one-dimensional NDRange with global size = (4096, 1,
1) and local size = (512, 1, 1). This allows the computation to be broken down into eight
work-groups, each with 512 work-items.

Now consider a simple vector adder kernel written with a work size of (1, 1, 1):

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vadd(__global const int* a, __global const int* b, __global int* c) {
int i;
for (i=0; i < 4096; i++) {
c[i] = a[i] + b[i];

}
}

In this example, the kernel is written in sequential C style. The length of the data is 4096,
and the function iterates over the data using an explicit loop. In OpenCL C, however, it is
better to write the kernel as shown below:

__kernel __attribute__ ((reqd_work_group_size(512, 1, 1)))
void vadd(__global const int* a, __global const int* b, __global int* c) {
int i = get_global_id(0);
c[i] = a[i] + b[i];

}

This produces the NDRange and work group sizes shown above. Because this example
allows the OpenCL compiler and runtime to control the iteration over the 4096 data items,
it allows a simpler coding style and enables the compiler to make better optimization
decisions to parallelize the operations. The call to get_global_id(0) provides the current

X-Ref Target - Figure 3-3

Figure 3-3: One-Dimensional Work Size
Performance Optimization www.xilinx.com 26
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=26

Chapter 3: What is OpenCL?
location in the NDRange and is analogous to the index of a for loop. This is a simple
example but is extensible to other larger work sizes. When using SDAccel, it is sometimes
useful to think of the above code as transformed into the following form by the SDAccel
compiler:

__kernel void vadd(global const int* a, global const int* b, global int* c) {
localid_t id;
for (id[0] = 0; id[0] < 512; id[0]++) {
for (id[1] = 0; id[1] < 1; id[1]++) {
for (id[2] = 0; id[2] < 1; id[2]++) {
c[id[0]] = a[id[0]] + b[id[0]];

}
}

}
}

Note that the code written within the kernel is surrounded by three nested loops to traverse
the entire work-group size. These three for loops are conceptually introduced by SDAccel
into the kernel to handle the three-dimensional space of the NDRange. The SDAccel
compiler exploits NDRange parallelism by pipelining and vectorizing these conceptual
loops.

The conceptual loop nest introduced by SDAccel can have either variable or fixed loop
bounds. By setting the reqd_work_group_size attribute, the programmer is setting the loop
boundaries on this loop nest. Fixed boundaries allow the kernel compiler to optimize the
size of local memory in the compute unit and to provide latency estimates. If the work size
is not specified, SDAccel might assume a large size for private memory, which can hinder
the number of compute units that can be instantiated in the FPGA fabric.

Two-Dimensional NDRange
These concepts can be extended to a two-dimensional NDRanges. This type of NDRange
works well with two-dimensional data such as matrices. Consider the following matrix adder
kernel:

__kernel __attribute__ ((reqd_work_group_size(2, 2, 1)))
void madd(__global int* a, __global int* b, __global int* output) {
int index = get_global_id(1)*get_global_size(0) + get_global_id(0);

output[index] = a[index] + b[index];
}

This kernel defines a local work size of 2x2, specified as a required size of (2, 2, 1). The calls
to get_global_id() provide the index in the global work size, while get_global_size() provides
the total range value (e.g., 64 for a 64x64 matrix). Alternatively, the kernel could also index
the local work indices and sizes using get_local_id() and get_local_size().
Performance Optimization www.xilinx.com 27
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=27

Chapter 3: What is OpenCL?
Figure 3-4 illustrates how this two-dimensional space is defined and indexed. While the ND
range is 64x64x1, the local work size is 2x2x1. Similar to the one-dimensional work size, this
enables simpler coding as well as concurrent implementation across the vast resources of
the FPGA.

Three-Dimensional NDRange

The concept of work size can be extended to a three-dimensional space. Figure 3-5
illustrates this work size as a three-dimensional cube of size 16x16x16. While the total
number of work items is again 4096, the work space is now defined across three different

X-Ref Target - Figure 3-4

Figure 3-4: Two-Dimensional NDRange

X-Ref Target - Figure 3-5

Figure 3-5: Three-Dimensional Work Size
Performance Optimization www.xilinx.com 28
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=28

Chapter 3: What is OpenCL?
dimensions. This works well for applications that can be defined across three dimensions
such as 3D computer graphics and data mining algorithms. Similar to the one- and
two-dimensional cases, three dimensional work-items can be implemented to operate in a
concurrent fashion on the FPGA device.

OpenCL Region
An SDAccel device contains a customization area called the OpenCL region (OCL Region).
Although not defined in the OpenCL standard, the OCL Region is an important concept in
SDAccel. The compute units generated from user kernel functions are placed in this region.
These compute units are highly specialized to execute a single kernel function and
internally contain parallel execution resources to exploit work-group level parallelism. By
placing multiple compute units of the same type in the OCL Region, developers can easily
scale the performance of single kernels across larger NDRange sizes. By placing multiple
compute units of different types in the OCL Region, developers can leverage task
parallelism between disparate kernels. In this way, the massive amounts of parallelism
available in the FPGA device can be customized and harnessed by the SDAccel developer.
This is different from CPU and GPU implementations of OpenCL which contain a fixed set of
general purpose resources.

X-Ref Target - Figure 3-6

Figure 3-6: Block Diagram of Example Xilinx SDAccel Platform
Performance Optimization www.xilinx.com 29
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=29

Chapter 3: What is OpenCL?
Figure 3-6 shows how an OCL region fits into an example Xilinx SDAccel platform. The OCL
region contains the customized compute units which implement the user-defined
accelerator kernels. SDAccel automatically adds the necessary interconnects for these
compute units to communicate with the rest of the platform. Also contained on the FPGA
device is a static region containing all the necessary circuitry for communication between
host, compute units, and off-chip global memory. This static region is a pre-defined base
platform which can be flashed onto an EPROM on the board. The FPGA would then be
configured with this base platform upon power-up and is always there and accessible for
the user. As shown in the above figure, communication to the host is performed over PCIe,
a fast, standard interface used to connect and link with boards.

OpenCL C Example
To understand the benefits of FPGAs for OpenCL, consider the following OpenCL C kernel
code:

#define LENGTH 64

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vmult(__global const int* a, __global const int* b, __global int* c) {
local int bufa[LENGTH];
local int bufb[LENGTH];
local int bufc[LENGTH];

event_t evt[3];
evt[0] = async_work_group_copy(bufa, a, LENGTH, 0);
evt[1] = async_work_group_copy(bufb, b, LENGTH, 0);
wait_group_events(2, evt);

for (int i=0; i < LENGTH; i++) {
bufc[i] = bufa[i] * bufb[i];

}

barrier(CLK_LOCAL_MEM_FENCE);
event_t e = async_work_group_copy(c, bufc, LENGTH, 0);
wait_group_events(1, &e);

}

Performance Optimization www.xilinx.com 30
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=30

Chapter 3: What is OpenCL?
There are a number of FPGA resources leveraged by SDAccel to perform the functionality in
this kernel. This includes the following:

• Loops - These are common elements in kernel functionality and are implemented using
a variety of FPGA resources including LUTs and flip-flops. These loops can be unrolled
and pipelined based on resource and performance requirements (refer to Loop
Unrolling and Loop Pipelining in Appendix A for more information). How loops are
implemented can have a major impact on overall kernel performance.

• Arrays - The arrays bufa, bufb, and bufc are typically implemented in BRAMs, utilizing
the distributed local storage on the FPGA.

• Operators - The multiplication of each element in the vectors can be performed by
either LUTs or DSP48 Blocks. The same is true for other common operators such as
addition, subtraction, comparators, etc.

° If desired to improve performance, the loop could be partially or fully unrolled. A
high number of multiplications would then be performed concurrently.

• Communication - The high-speed communication between this kernel and the rest of
the device would be implemented using LUTs and flip-flops. This includes the
interconnect and memory controller to handle the calls to async_work_group_copy
using high-bandwidth burst data transfers.
Performance Optimization www.xilinx.com 31
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=31

Chapter 4

Application Profiling in SDAccel
The SDAccel™ runtime collects profiling data for host code execution on the CPU, as well as
kernel execution on the FPGA. The profiling data include a number of useful statistics for
your OpenCL™ application. This can provide you with information on performance
bottlenecks in the application and optimization techniques that can be utilized to improve
the performance. This chapter describes how to collect, display, and interpret profiling
results in the SDAccel development environment.

Profiling Summary Report
The SDAccel™ runtime automatically collects profiling data on host applications. After the
application finishes execution, the profile summary is saved in HTML,.csv, and Google
Protocol Buffer formats in the solution report directory or working directory. These reports
can be reviewed in a web browser, spreadsheet viewer, or the integrated Profile Summary
Viewer in SDAccel. The profile reports are generated in all three compilation and execution
flows: SDAccel GUI, Tcl, and XOCC/Makefile.

If you use the Profile Summary Viewer, Profile Rule Checks (PRC) are also provided to help
interpret profiling results and suggest areas for performance improvements. These PRCs
operate on the results in the profile summary .csv file and are reported in the Google
Protocol Buffer file.
Performance Optimization www.xilinx.com 32
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=32

Chapter 4: Application Profiling in SDAccel
GUI Flow
When you compile and execute an application from SDAccel GUI, the profile summary is
automatically generated and placed in the Solution Explorer. Simply double-click the report
to open it in the Profile Summary Viewer. You can also right-click and select Open.

Tcl Flow
Below are the profiling reports generated by the runtime depending on emulation or
system run modes:

• When running CPU emulation using the run_emulation command in the SDAccel
environment, the profile summary reports are as follows:

<solution_name>/rpt/profile_summary_cpu_em.html
<solution_name>/rpt/profile_summary_cpu_em.csv
<solution_name>/rpt/profile_summary_cpu_em.xprf

• When running hardware emulation using the run_emulation command in the
SDAccel environment, the profile summary reports are as follows:

<solution_name>/rpt/profile_summary_hw_em.html
<solution_name>/rpt/profile_summary_hw_em.csv
<solution_name>/rpt/profile_summary_hw_em.xprf

• When running an application on hardware the using the run_system command in the
SDAccel environment, the profile summary reports are as follows:

<solution_name>/rpt/profile_summary_hw.html
<solution_name>/rpt/profile_summary_hw.csv
<solution_name>/rpt/profile_summary_hw.xprf

X-Ref Target - Figure 4-1

Figure 4-1: Profiling in SDAccel GUI Flow
Performance Optimization www.xilinx.com 33
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=33

Chapter 4: Application Profiling in SDAccel
XOCC/Makefile Flow
XOCC/Makefile users execute applications standalone outside the SDAccel environment.
The following profile summary reports are generated in the directory where the application
is executed:

<working_directory>/sdaccel_profile_summary.html
<working_directory>/sdaccel_profile_summary.csv

The .csv file needs to be manually converted to Google Protocol Buffer format (.xprf)
before the profiling result can be viewed in the integrated “Profile Summary Viewer”. The
following is a command line example that generates an .xprf file from the .csv input
file:

$sda2protobuf sdaccel_profile_summary.csv

Displaying Profile Summary
Use the following methods to display the profile summary.

• Web Browser
Performance Optimization www.xilinx.com 34
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=34

Chapter 4: Application Profiling in SDAccel
The HTML profile summary can be displayed in a Web Browser. The following figure
shows the profiling result from a system run on the FPGA.

X-Ref Target - Figure 4-2

Figure 4-2: SDAccel Profile Summary - Part 1
Performance Optimization www.xilinx.com 35
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=35

Chapter 4: Application Profiling in SDAccel
• Profile Summary Viewer

Use the integrated “Profile Summary Viewer” to display profile summary generated
from the SDAccel GUI, Tcl flow or XOCC/Makefile flow.

° SDAccel GUI Flow

For SDAccel GUI users, double click Profile Summary in the Solution Explorer window
to open the Application Timeline window.

° TCL and XOCC/Makefile Flow

For Tcl or XOCC/Makefile users, follow the steps below to open the profile summary
onto the Profile Summary Viewer:

1. Start SDAccel GUI by running “sdaccel” command:

X-Ref Target - Figure 4-3

Figure 4-3: SDAccel Profile Summary - Part 2
Performance Optimization www.xilinx.com 36
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=36

Chapter 4: Application Profiling in SDAccel
$sdaccel

2. Choose the default workspace when prompted.

3. Select File > Open File…, browse to and then open the .xprf file generated
during an emulation or system run.

• Profile Summary Window

Below is a snapshot of the Profile Summary window that displays OpenCL API calls,
kernel executions, data transfers, and profile rule checks (PRCs).

Profile Summary Descriptions
The profile summary includes a number of useful statistics for your OpenCL™ application.
This can provide you with a general idea of the functional bottlenecks in your application.
The profile summary consists of the following tables:

• OpenCL API Calls - This table displays the profile data for all OpenCL host API function
calls executed in the host application.

• Kernel Execution - This table displays the profile data for all kernel functions
scheduled and executed.

• Compute Unit Utilization - This table displays the profile data for all compute units on
the FPGA device.

X-Ref Target - Figure 4-4
Performance Optimization www.xilinx.com 37
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=37

Chapter 4: Application Profiling in SDAccel
• Data Transfer: Host and Global Memory - This table displays the profile data for all
read and write transfers between the host and device memory via PCIe® link.

° Number of Transfers: Number of host data transfers (Note: May contain printf
transfers)

° Transfer Rate (MB/s): (Total Bytes Sent)/(Total Time in uSec)

° Average Bandwidth Utilization (%): Transfer Rate / (Max. Transfer Rate) where Max.
Transfer Rate = 5.0 GBps

° Average Size (KB): (Total KB sent) / (number of transfers)

° Total Time (ms): Total Time (ms)

° Average Time (ms): (Total Time) / (number of transfers)

• Data Transfer: Kernels and Global Memory - This table displays the profile data for
all read and write transfers between the FPGA and device memory.

° Number of Transfers: Number of transactions monitored on device (Note: May
contain printf transfers)

° Transfer Rate (MB/s): (Total Bytes Sent) / (Device Execution Time)

where Total Bytes Sent is sum of bytes across all transactions,

° Device Execution Time = End of last kernel execution - Start of first kernel execution

° Average Bandwidth Utilization (%): (Transfer Rate) / (Max. Transfer Rate)

where Max. Transfer Rate = 0.6 * 10.7 GBps = 6.4 GBps

° Average Size (KB): (Total KB sent) / (number of transactions)

° Average Time (ms): (Total latency of all transaction) / (number of transactions)

• Top Data Transfer: Kernels and Global Memory - This table displays the profile data
for top data transfers between FPGA and device memory.

° Average Bytes per Transfer: (Total Read Bytes + Total Write Bytes) /(Total Read
Transactions + Total Write Transactions)

° Transfer Efficiency (%): (Average Bytes per Transfer) / min(4K, (Memory Bit Width/8
* 256))

AXI4 specification limits the max burst length to 256 and max burst size to 4K bytes.

° Transfer Rate (MB/s): (Total Data Transfer) / (Device Execution Time)

° Average Bandwidth Utilization (%): (Transfer Rate) / (0.6 * Max. Theoretical Rate)
Performance Optimization www.xilinx.com 38
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=38

Chapter 4: Application Profiling in SDAccel
Profile Rule Checks
Profile Rule Checks (PRCs) are integrated with the Profile Summary Viewer and interpret
profiling results so users know exactly where to focus on to improve the performance of a
kernel. PRCs highlight certain profile results, inform users known issues, and provide
improvement recommendations. PRCs work for both hardware emulation and system runs
on the FPGA.

The PRC analyses are displayed in a tabular format with the following columns:

Rule

The Rule column displays the rule name. The following are the current rule set:

• Kernel Data Transfer

° Average Read Size (KB)

° Average Write Size (KB)

° Read Bandwidth (%)

° Write Bandwidth (%)

° Read Amount - Minimum (MB)

° Read Amount - Maximum (MB)

• Host Data Transfer

° Average Read Size (KB)

° Average Write Size (KB)

• Resource Usage

° Compute Unit Calls - Minimum

° Compute Unit Calls - Maximum

° Compute Unit Utilization (%)

° Kernel Utilization (%)

° Device Utilization (ms)

Threshold Value

The Threshold Value column displays the values used by the PRCs to determine whether or
not a rule is met. The threshold values are collected from many applications that follow
good design and coding practices in the SDAccel development environment.
Performance Optimization www.xilinx.com 39
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=39

Chapter 4: Application Profiling in SDAccel
Actual Value

The Actual Value column displays the values in the profiling report from the hardware
emulation or system run. This value is compared against the threshold value to see if the
rule is met.

Conclusion

The Conclusion column displays the current status of the rule check: Met or Not Met.

Details

The Details column provides additional explanation on the current rule.

Guidance

The Guidance column provides recommendations on ways to improve the kernel in order to
meet the current rule. Clicking the text brings up a popup window with tips and code
snippets that you can apply to your kernel.

Timeline Trace
Timeline trace collects and displays host and device events on a common timeline to help
you understand and visualize the overall health and performance of your systems. These
events include:

• OpenCL API calls from the host code.

• Device trace data including AXI transaction start/stop, kernel start/stop, etc.

Collecting Timeline and Device Trace Data
Timeline and device trace data are not collected by default because the runtime needs to
periodically unload the trace data from the FPGA device, which can add additional time to
the overall application execution. However, the device data are collected with dedicated
hardware inside the FPGA device, so the data collection will not affect kernel functionality
on the FPGA. The following sections describe setups required to enable time and device
data collection.

Note: Turning on device profiling is intrusive and can negatively affect overall performance. This
feature should be used for system performance debugging only.
Performance Optimization www.xilinx.com 40
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=40

Chapter 4: Application Profiling in SDAccel
GUI Flow

Timeline and device trace data collection is part of run configuration for an SDAccel project
created from the SDAccel integrated environment. Follow the steps below to enable it:

Click the down arrow next to the debug or run button and then select Run Configurations
to open the Run Configurations window.

On the Run Configurations window, go to Profile tab and check both Generate Timeline
Report and Collect Device Data checkboxes.

Note: You can have multiple run configurations for the same project and the profile settings need
to be changed for each run configuration.

X-Ref Target - Figure 4-5

X-Ref Target - Figure 4-6
Performance Optimization www.xilinx.com 41
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=41

Chapter 4: Application Profiling in SDAccel
Tcl and XOCC/Makefile Flow

Follow the instructions below to enable timeline and device trace data collection in the Tcl
and XOCC/Makefile flow:

1. Set up the environment variables below to turn on timeline report and device trace data
generations.

Bash:

export SDACCEL_TIMELINE_REPORT=true

export SDACCEL_DEVICE_PROFILE=true

Csh:

setenv SDACCEL_TIMELINE_REPORT true

setenv SDACCEL_DEVICE_PROFILE true

Note: To turn off timeline report and device trace data generation, these two environment
variables need to be unset.

Bash:

unset SDACCEL_TIMELINE_REPORT

unset SDACCEL_DEVICE_PROFILE

Csh:

unsetenv SDACCEL_TIMELINE_REPORT

unsetenv SDACCEL_DEVICE_PROFILE

2. Execute hardware emulation or system run as normal. The timeline reports are
generated after the application completes.

3. In the Tcl flow, the timeline reports are generated in the <solution>/rpt directory. Below
are the reports from the hardware emulation of the median filter example. These reports
can be directly opened and viewed in the SDAccel GUI as discussed in the Displaying
Timeline Trace section.

timeline_trace_hw_em.csv

timeline_trace_hw_em.wcfg

timeline_trace_hw_em.wdb

4. In XOCC/Makefile flow, the timeline reports are generated in the current working
directory. Below are the reports from the hardware emulation of the median filter
example.

sdaccel_timeline_trace.csv

sdaccel_timeline_trace.html

The CSV report needs to be converted to the timeline trace format using “sda2wdb”
utility before it can be opened and displayed on SDAccel GUI.
Performance Optimization www.xilinx.com 42
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=42

Chapter 4: Application Profiling in SDAccel
$ sda2wdb sdaccel_timeline_trace.csv

This command creates the following two files in the current working directory:

sdaccel_timeline_trace.wcfg

sdaccel_timeline_trace.wdb

Displaying Timeline and Device Trace Data

SDAccel GUI Flow

For SDAccel GUI users, double click Application Timeline in the Solution Explorer window
to open the Application Timeline window. You can also right-click and select Open.

TCL and XOCC/Makefile Flow

For Tcl or XOCC/Makefile users, follow the steps below to open the timeline report to
visualize host and device events during application execution.

1. Start SDAccel GUI by running “sdaccel” command:

$sdaccel

2. Choose the default workspace when prompted.

3. Select File>Open File…, browse to the .wdb file generated during hardware emulation
or system run, and open it.

X-Ref Target - Figure 4-7
Performance Optimization www.xilinx.com 43
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=43

Chapter 4: Application Profiling in SDAccel
Application Timeline Window

Below is a snapshot of the Application Timeline window that displays host and device
events on a common Timeline. This information helps you to understand details of
application execution and identify potential areas for improvements.
X-Ref Target - Figure 4-8
Performance Optimization www.xilinx.com 44
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=44

Chapter 5

Data Path Optimizations

Overview
Now that you have an understanding of the acceleration capabilities of FPGA devices and
the OpenCL programming environment that enables them, it would be helpful to step
through a few design examples. The hope is that these designs are complex enough to
provide example characteristics yet simple enough to be easily understood. These designs
take advantage of various attributes and architectural techniques, and step through their
usage and impact. The profiling capabilities integrated into SDAccel are used to visually
demonstrate these performance impacts.

This chapter focuses on a matrix adder kernel which computes the addition of two 64x64
matrices. While these are relatively small matrices, the techniques described herein are
applicable to much larger matrices.

Three different architectures for a 64x64 matrix adder were created and compared.
Table 5-1 lists the kernel execution times as reported by the profiling summary. As you can
see, the different architectures and settings had a significant impact on the overall
performance of the system as the run-time to compute one matrix was considerably
reduced. Below are details on how these kernels were created including the attributes and
architectures for each.

Table 5-1: Comparison of Kernel Execution Times for 64x64 Matrix Adder

Design Kernel Execution Time (msec)

Un-Optimized 4.16

Workgroup Pipelined 1.64

Multiple Compute Units 1.26
Performance Optimization www.xilinx.com 45
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=45

Chapter 5: Data Path Optimizations
Unoptimized Design
#define RANK 64

__kernel __attribute__ ((reqd_work_group_size(RANK, RANK, 1)))
void madd(__global int* a, __global int* b, __global int* output) {
int index = get_local_id(1)*get_local_size(0) + get_local_id(0);

 output[index] = a[index] + b[index];
}

Above is the kernel source code for the un-optimized adder. No attributes were specified
for this design other than the work size equal to the size of the matrices (i.e., 64x64). That
is, iterating over an entire workgroup will fully add the input matrices a and b and output
the result to output. All three are global integer pointers, which means each value in the
matrices is four bytes and is stored in off-chip DDR global memory.

This local work size of (64, 64, 1) is the same as the global work size. It should be noted that
this setting creates a total work size of 4096.

IMPORTANT: This is the largest work size that SDAccel supports with the standard OpenCL attribute
reqd_work_group_size. SDAccel supports work size larger than 4096 with the Xilinx attribute
xcl_max_work_group_size.

Any matrix larger than 64x64 would need to only use one dimension to define the work size.
That is, a 128x128 matrix could be operated on by a kernel with a work size of (128, 1, 1),
where each invocation operates on an entire row or column of data.

Figure 5-1 shows the kernel data transfer summary table for the un-optimized matrix adder
kernel. This table is shown in the profile summary in the SDAccel user interface (UI). There
are 8K read transfers, each with a size of 64 bytes. This is a single 512-bit memory word.
Since read transfers do not use byte enables, we can deduce from our code that this is one
32-bit word per transfer. The kernel reads two matrices, each containing 4K integer values.
Writing the output matrix involves 4K transfers, each with a size of 4 bytes. This is one
integer value per transfer.

X-Ref Target - Figure 5-1

Figure 5-1: Kernel Data Transfer Summary of Un-optimized Matrix Adder Kernel
Performance Optimization www.xilinx.com 46
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=46

Chapter 5: Data Path Optimizations
Figure 5-2 shows a timeline trace of the un-optimized matrix adder. As expected from the
profile summary in Figure 5-1, page 46, the timeline shows a high number of data transfers
initiated by the kernel. The kernel is clearly spending a lot of time on data transfers.

Figure 5-3 displays the details of this timeline trace. The data transfers are performed as
two reads, followed by time to add the two values, then a single write. The read transfers are
then initiated for the next work item, and the process repeats again until all work items have
been processed.

However, since the sizes of these data transfers is so small, this leads to a very inefficient
kernel execution. This fact is also reflected in the high kernel execution time, as shown in
Table 5-1, page 45, and low bandwidth utilization, as shown in Figure 5-1, page 46. This can
be improved in a number of ways, including burst data transfers and improvements in the
kernel data path. For this chapter, we are going to focus on the data path improvements.

Workgroup Pipelined
We can take advantage of the fact that the matrix adder kernel uses multiple workgroups.
Across multiple invocations in the workgroup, we can expose a number of optimizations to
the Vivado HLS compiler. One important one is workgroup pipelining. This involves
pipelining the activity across all of the work items.

X-Ref Target - Figure 5-2

Figure 5-2: Timeline Trace of Un-Optimized Matrix Adder Kernel

X-Ref Target - Figure 5-3

Figure 5-3: Details of Timeline Trace for Un-optimized Matrix Adder Kernel
Performance Optimization www.xilinx.com 47
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=47

Chapter 5: Data Path Optimizations
As described in NDRange Kernels, it is best to think of workgroups as nested for loops to
cover the entire range of (x,y,z) values. Pipelining the activity across the entire range keeps
as much of the kernel implementation as busy as possible throughout the execution. For
more information, see Work Item Pipelining, page 80.

#define RANK 64

__kernel __attribute__ ((reqd_work_group_size(RANK, RANK, 1)))
void madd(__global int* a, __global int* b, __global int* output) {
 __local unsigned int bufa[RANK*RANK];
 __local unsigned int bufb[RANK*RANK];

 // Global
 int width = get_global_size(0);
 int xg = get_global_id(0);
 int yg = get_global_id(1);
 // Local
 int xl = get_local_id(0);
 int yl = get_local_id(1);
 // Indeces
 int index1 = yl*RANK + xl;
 int index2 = yg*width + xg;

 __attribute__((xcl_pipeline_workitems)) {
 bufa[index1] = a[index2];
 bufb[index1] = b[index2];
 }
 barrier(CLK_LOCAL_MEM_FENCE);

 __attribute__((xcl_pipeline_workitems)) {
 output[index2] = bufa[index1] + bufb[index1];
 }
 barrier(CLK_LOCAL_MEM_FENCE);
}

The above code shows an initial improvement to the matrix adder kernel. The attribute
xcl_pipeline_workitems was added twice to wrap the data transfers and pipeline the
read and write requests. As shown in Figure 5-3, page 47, the read transfers are requested
in pairs in order to obtain one value of each input matrix. The next read pair does not
happen until the other pair has completed. This can be improved by pipelining these read
requests. The same can be done to improve the integer addition and write transfers.

To accommodate the local storage of these pipelined read requests, we added local
memories bufa and bufb. These memories as well as the global pointers are accessed
accordingly using global and local indeces. We also added calls to
barrier(CLK_LOCAL_MEM_FENCE) to ensure all values have been read before we begin the
next stage. For a matrix adder kernel where each value can be computed independently, this
is not absolutely necessary. However, it provides good design practice as a method of
isolating read and write data transfers.
Performance Optimization www.xilinx.com 48
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=48

Chapter 5: Data Path Optimizations
Figure 5-4 shows the timeline trace of the pipelined matrix adder kernel. Rather than the
kernel performing two read transfers then a single write, it now first performs all read
transfers. Once all are completed, then the kernel performs the addition and subsequent
write transfers to DDR memory.

While this is a more efficient kernel design with a lower execution time, we can further take
advantage of the workgroups. Since the matrix addition involved separate operations for
each work item, we can do a lot more in parallel and take advantage of the resources on the
FPGA. To do this, we can include multiple compute units on the device.

Multiple Compute Units
If we take a closer look at the matrix addition computation, we see that it can be broken
down into smaller chunks which can be performed independently. This allows us to perform
them concurrently. Using OpenCL, the mechanism to do this is called workgroups. We can
enqueue the madd kernel using a local work size which is different from the global work
size.

The global work size is still 64x64, which is the size of the matrices. However, we now specify
a required local work size of 16x16 for the kernel. For the matrix adder, we essentially use
the same source code above in Workgroup Pipelined, page 47; however, we modify the
value of RANK to be 16 (i.e., #define RANK 16). That informs the SDAccel compiler to
break down the computation into groups of 16x16 for each call to a compute unit. If
multiple compute units are on the device, then this computation can be done
simultaneously.

X-Ref Target - Figure 5-4

Figure 5-4: Timeline Trace of Pipelined Matrix Adder Kernel
Performance Optimization www.xilinx.com 49
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=49

Chapter 5: Data Path Optimizations
We take advantage of this parallelization by including eight compute units on our device.
This exploits the multitude of resources available on an FPGA. An SDAccel Tcl script in order
to request eight compute units would include the following:

create_opencl_binary bin_madd
set_property region "OCL_REGION_0" [get_opencl_binary bin_madd]
create_compute_unit -opencl_binary [get_opencl_binary bin_madd] -kernel [get_kernels
madd] -name madd0
create_compute_unit -opencl_binary [get_opencl_binary bin_madd] -kernel [get_kernels
madd] -name madd1
create_compute_unit -opencl_binary [get_opencl_binary bin_madd] -kernel [get_kernels
madd] -name madd2
create_compute_unit -opencl_binary [get_opencl_binary bin_madd] -kernel [get_kernels
madd] -name madd3
create_compute_unit -opencl_binary [get_opencl_binary bin_madd] -kernel [get_kernels
madd] -name madd4
create_compute_unit -opencl_binary [get_opencl_binary bin_madd] -kernel [get_kernels
madd] -name madd5
create_compute_unit -opencl_binary [get_opencl_binary bin_madd] -kernel [get_kernels
madd] -name madd6
create_compute_unit -opencl_binary [get_opencl_binary bin_madd] -kernel [get_kernels
madd] -name madd7

With a global size of 64x64 and a local size of 16x16, there will be (64/16) x (64/16) = 16
invocations to these compute units. We chose eight units since that would ideally allow
each compute unit to be used twice. Note that SDAccel supports up to ten compute units
on one device.

In the host code, we still only enqueue the kernel once. Only a slight modification is
required to specify different global and local sizes. The host code would look like the
following:

global[0] = 64;
global[1] = 64;
local[0] = 16;
local[1] = 16;
err = clEnqueueNDRangeKernel(commands, kernel, 2, NULL,
 (size_t*)&global, (size_t*)&local, 0, NULL, NULL);
Performance Optimization www.xilinx.com 50
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=50

Chapter 5: Data Path Optimizations
Figure 5-5 shows the compute unit utilization table as displayed in the SDAccel profile
summary. As expected, each compute unit is called twice. With eight compute units, this
involves 16 total calls. While the global work size is confirmed as 64:64:1 for each compute
unit, the local work size is now 16:16:1 as specified. Since we have broken down the
computation into smaller local work sizes, the call times for each compute unit is much
smaller than the kernel execution time of the single workgroup pipelined kernel. This is
entirely because the work size is smaller.

The timeline trace confirms this operation. Figure 5-6 shows the timeline trace of the matrix
adder with eight compute units. The calls to the compute units are run simultaneously thus
providing an improved execution time of the kernel, as shown in Table 5-1, page 45. Their
calls are also staggered to accommodate for the overhead of starting and stopping each
unit.

X-Ref Target - Figure 5-5

Figure 5-5: Compute Unit Utilization Table for Matrix Adder Kernel with Eight Compute Units

X-Ref Target - Figure 5-6

Figure 5-6: Timeline Trace for Matrix Adder Kernel with Eight Compute IUnits
Performance Optimization www.xilinx.com 51
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=51

Chapter 6

Memory Access Optimizations

Overview
Improving memory accesses is a second category of optimizations that can be made to a
kernel. Efficient memory accesses are critical to the performance of OpenCL kernels running
on an FPGA since there is an inherent latency overhead to read and write data from off-chip
DDR DRAM. A well-designed kernel will minimize this latency impact. A few suggested
techniques include the following:

• On-Chip Memories - These memories utilize the BlockRAMs on the FPGAs and are
physically located near the kernel computation. In the OpenCL memory architecture,
these can either be on-chip global, local, or private memories. They allow one-cycle
reads and writes, thus drastically improving memory access performance. Copying the
data from DDR to these memories can be done very quickly using burst transactions
(see below).

• On-Chip Pipes - These memories are implemented in BlockRAMs similarly to on-chip
global memories. They provide efficient communication channels in between kernels.

• Multiple Memory Ports per Kernel - This setting informs the SDAccel tool to maximize
the number of memory ports per kernel. This provides a much more efficient method
to read and write data instead of sharing a memory port across multiple interfaces.

• Adjustable Bit Width for Memory Ports - This setting takes advantage of the wider
memory path on the device. For example, the Alpha Data board [Ref 7] uses a 512-bit
memory path, which can enable access to sixteen 32-bit integers in a single memory
word.

• Burst Transfers from Off-Chip Global Memory - This architectural technique utilizes
large bursts of data between the kernel and the off-chip global memory. The benefit is
much more efficient memory accesses as the overhead of the access is shared across a
large amount of data being transferred.

All of the memory access optimizations listed above are described in more detail in
Appendix B, Improving Memory Efficiency.
Performance Optimization www.xilinx.com 52
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=52

Chapter 6: Memory Access Optimizations
This chapter steps though an implementation of the Smith-Waterman algorithm [Ref 5].
This is a database search algorithm that performs local sequence alignment. It determines
similar regions between two strings and is often used to compare protein or nucleic
sequences. The algorithm compares segments of all possible lengths and optimizes a
similarity measurement. Two version of the design, one un-optimized and the other
optimized, were created and their profile results were compared and contrasted.

Un-Optimized Design
An un-optimized Smith-Waterman kernel, shown in the code snippet below, was created
and profiled. It was designed for functionality only and no attempt was made to optimize
any parts of the design. This can be considered an "off the shelf" design created by an FPGA
novice. It also provides a good starting point to understand the profiling capabilities in
SDAccel.

#include "constants.h"

__attribute__ ((reqd_work_group_size(1, 1, 1)))
kernel void smithwaterman (global int *matrix, global int *maxIndex, global const
char *s1, global const char *s2) {
 short north = 0;
 short west = 0;
 short northwest = 0;
 int maxValue = 0;

 for (short index = N; index < N * N; index++) {
 short dir = CENTER;
 short val = 0;
 short j = index % N;
 if (j == 0) { // Skip the first column
 west = 0;
 northwest = 0;
 continue;
 }
 short i = index / N;
 short2 temp = matrix[index - N];
 north = temp.x;
 const short match = (s1[j] == s2[i]) ? MATCH : MISMATCH;
 short val1 = northwest + match;

 if (val1 > val) {
 val = val1;
 dir = NORTHWEST;
 }
 val1 = north + GAP;
 if (val1 > val) {
 val = val1;
 dir = NORTH;
 }
Performance Optimization www.xilinx.com 53
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=53

Chapter 6: Memory Access Optimizations
 val1 = west + GAP;
 if (val1 > val) {
 val = val1;
 dir = WEST;
 }
 temp.x = val;
 temp.y = dir;
 matrix[index] = as_int(temp);
 west = val;
 northwest = north;
 if (val > maxValue) {
 *maxIndex = index;
 maxValue = val;
 }
 }
}

Note that this design compares two strings located at the s1 and s2 global constant
pointers. This kernel assumes that the two string sequences have already been written to
that location in shared global memory by the host processor. As we compare these two
sequences and replace values according to the algorithm, the results are stored in global
memory specified by the matrix pointer. The pointer maxIndex is used to store the index
of the maximum value in the sequence.

This design was compiled with N=85 and run on an Alpha Data Virtex-7 board. Figure 6-1
shows the kernel data transfer summary table reported by the integrated profiling in
SDAccel. The inefficiency of this design is expressed in a few different values in this table.
First, the number of read and write transfers is much more than it needs to be. For example,
consider the fact that there are only 2*85 = 170 unique values in the two sequences, s1 and
s2. However, there are 21,168 read transfers, or 124.5x more than there are unique values.

Second, one reason for the large number of transfers is expressed in the small average size
of 64 bytes per transfer (listed in the table as 0.064 KB). This corresponds to a single 512-bit
value. This is a very inefficient way of accessing this data since each read data transfer to
DDR can take 50-70 clock cycles.

X-Ref Target - Figure 6-1

Figure 6-1: Kernel Data Transfer Summary Table of Un-Optimized Smith-Waterman Kernel
Performance Optimization www.xilinx.com 54
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=54

Chapter 6: Memory Access Optimizations
The high number of data transfers is confirmed in the timeline trace. Figure 6-2 shows a
partial view of the timeline trace for this un-optimized kernel. While this kernel is busy with
many data transfers, each transfer only involves a burst length of one. Since these values are
stored in sequential addresses in global memory, this is a poor method of reading this data.

Optimized Design
__attribute__ ((reqd_work_group_size(1, 1, 1))
kernel void smithwaterman (global int *matrix, global int *maxIndex, global const
char *s1, global const char *s2) {

short north = 0;
short west = 0;
short northwest = 0;
int maxValue = 0;
int localMaxIndex = 0;
int gid = get_global_id(0);

// Local memories using BlockRAMs
local char localS1[N];
local char localS2[N];
local int localMatrix[N*N];

async_work_group_copy(localS1, s1, N, 0);
async_work_group_copy(localS2, s2, N, 0);
async_work_group_copy(localMatrix, matrix, N*N, 0);

__attribute__((xcl_pipeline_loop)
for (short index = N; index < N * N; index++) {
short dir = CENTER;
short val = 0;
short j = index % N;
if (j == 0) { // Skip the first column
west = 0;
northwest = 0;
continue;

}
short i = index / N;
short2 temp = localMatrix[index - N];
north = temp.x;
const short match = (localS1[j] == localS2[i]) ? MATCH : MISMATCH;

X-Ref Target - Figure 6-2

Figure 6-2: Timeline Trace of Un-optimized Smith-Waterman Kernel
Performance Optimization www.xilinx.com 55
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=55

Chapter 6: Memory Access Optimizations
short val1 = northwest + match;

if (val1 > val) {
val = val1;
dir = NORTHWEST;

}
val1 = north + GAP;
if (val1 > val) {
val = val1;
dir = NORTH;

}
val1 = west + GAP;
if (val1 > val) {
val = val1;
dir = WEST;

}0 temp.x = val;
temp.y = dir;
localMatrix[index] = as_int(temp);
west = val;
northwest = north;
if (val > maxValue) {
localMaxIndex = index;
maxValue = val;

}
}

*maxIndex = localMaxIndex;
async_work_group_copy(matrix, localMatrix, N*N, 0);

}

The source code above shows the optimized Smith-Waterman kernel. Key changes are
highlighted in red. To increase the efficiency of the memory accesses, burst reads and writes
were added using calls to the async_work_group_copy() function. This enables large
amounts of data to be transferred between the kernel and global memory. To temporarily
store the data locally, three local memories were added: localS1, localS2, and
localMatrix. These memories involve local storage with fast single-cycle accesses and
provide buffer interfaces between global memory and the data processing in the kernel.

Figure 6-3 shows the kernel data transfer summary table of the optimized Smith-Waterman
kernel. All of the data can be transferred between kernel and global memory in three burst
transfers: two read and one write. The transfers of s1 and s2 are completed in a single
transfer, while the values of matrix are read in the second read transfer. The new values of
matrix are written to global memory in the single write transfer. The Transfer Rate is
low, however, which is expected because of the small number of transfers. This is typical of
a compute-intensive algorithm such as Smith-Waterman.

X-Ref Target - Figure 6-3

Figure 6-3: Kernel Data Transfer Summary Table of Optimized Smith-Waterman Kernel
Performance Optimization www.xilinx.com 56
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=56

Chapter 6: Memory Access Optimizations
The timing of the small number of data transfers is confirmed using trace. Figure 6-4 shows
the timeline trace of the optimized Smith-Waterman kernel. Two read transfers are
executed, then processing is performed on the data according to the algorithm. Once this
computation is completed, then the write transfer is executed.

Note that the performance of the processing portion of the kernel was also improved by
applying a xcl_pipeline_loop attribute to the kernel source code, as shown above. See
Loop Pipelining, page 78 for more details on this attribute.

In summary, we used the SDAccel profiling to deduce that the poor performance of our
Smith-Waterman kernel was the inefficient memory transfers. To improve on this, we took
advantage of bursts to transfer large amounts of data from the off-chip global memory. In
order to accommodate this data, we added local memories to store the data in the kernel.
This enabled the kernel to perform much faster reads and writes during processing. With
the optimizations discussed above, the kernel execution rate improved 41.0x to 0.19 msec.

X-Ref Target - Figure 6-4

Figure 6-4: Timeline Trace of Optimized Smith-Waterman Kernel
Performance Optimization www.xilinx.com 57
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=57

Chapter 7

Putting It All Together

Overview
This chapter describes a median filter kernel which applies a 3x3 filter window to an image.
This application is typically used in noise reduction and removal [Ref 6]. Three different
versions of the design are described: one un-optimized, one partially optimized, and one
fully optimized. The optimizations applied to this kernel include both data path and
memory access optimizations, typical of a more complex design. The profiling results of
each design will be analyzed and the process to interpret these results and improve the
kernel will be discussed.

A median filter is a popular image and video processing design used for noise removal.
Figure 7-1 shows how the filter uses a two-dimensional aperture or window surrounding a
pixel in the image or frame and then calculates the median value within that aperture. The
pixel is then replaced by this median value. Using the example values shown in the above
figure, this new median value would be 122. This value is calculated after comparing and
sorting the pixel values within the filter window. For a color image that contains three
components (i.e., red, green, and blue), this median value is calculated separately for all
three components.

X-Ref Target - Figure 7-1

Figure 7-1: 3x3 Median Filter Example
Performance Optimization www.xilinx.com 58
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=58

Chapter 7: Putting It All Together
Figure 7-2 shows how the median filter is applied to an image as well as its effects on noise
removal. On the left is the example Bookcase image with white noise added. After the 3x3
median filter is applied to this image, the actual resulting image read from hardware is
shown on the right of the above figure. While this filter performs a smoothing of the values,
you can see how it is also excellent at removing the high and low values typical of noise.

Table 7-1 lists the three median filter designs that will be described and compared in this
chapter. The kernel execution times were taken from the profile summary report as run on
an Alpha Data Virtex-7 board [Ref 7]. As shown in the above table, the optimizations about
to be described had a high impact on the performance of the median filter kernel. This
chapter will describe the series of analyses and subsequent optimizations applied to this
kernel.

X-Ref Target - Figure 7-2

Figure 7-2: Original and Filtered Images To Demonstrate the Effects of the Median Filter

Table 7-1: Comparison of Kernel Execution Times for Median Filter Designs Using
512x512 Images

Median Filter Design Kernel Execution Time (msec)

Un-optimized 445.9

Partially Optimized (Line buffers only) 167.6

Fully Optimized 6.0
Performance Optimization www.xilinx.com 59
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=59

Chapter 7: Putting It All Together
Un-Optimized Design
The code snippet below displays the first implementation, which is a capture of the median
filter algorithm directly into kernel code:

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void median(__global const uint* input, __global uint* output, int width, int height)
{
for (int y=0; y < height; y++) {
int offset = y * width;
int prev = offset - width;
int next = offset + width;

for (int x=0; x < width; x++) {
// Get pixels within 3x3 aperture
uint rgb[SIZE];
rgb[0] = input[prev + x - 1];
rgb[1] = input[prev + x];
rgb[2] = input[prev + x + 1];

rgb[3] = input[offset + x - 1];
rgb[4] = input[offset + x];
rgb[5] = input[offset + x + 1];

rgb[6] = input[next + x - 1];
rgb[7] = input[next + x];
rgb[8] = input[next + x + 1];

uint result = 0;

// Iterate over all color channels
for (int channel = 0; channel < CHANNELS; channel++) {
result |= getMedian(channel, rgb);

}

// Store result into memory
output[offset + x] = result;

}
}

}

It was designed for functional correctness but not optimized in any way. There are two for
loops to traverse the entire 2-D frame. For every pixel in the image, a 3x3 aperture of pixel
values is read and copied locally. Each pixel is 24 bits (e.g., 8 bits for red, green, blue).
Another for loop then computes the median value of the aperture for each of the three
color channels.
Performance Optimization www.xilinx.com 60
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=60

Chapter 7: Putting It All Together
Figure 7-3 shows the kernel data transfer summary table as taken from the SDAccel profile
summary. Note the large amount of read transfers, each only involving 64 bytes. Each
transfer actually involves reading a single 4-byte value representing one pixel. The total
number of read transfers is exactly as expected for a 512x512 image using a 9-pixel
aperture (512 * 512 * 9 = 2359296). That is, the kernel reads the 3x3 aperture before
computing the median values for every pixel in the image. This is the equivalent of reading
the entire image nine times. Clearly, this is an inefficient design.

Figure 7-4 shows a portion of the timeline trace for the un-optimized median filter design.
Focusing on the Kernel Data Transfer - Read, this timeline confirms the lack of
efficiency in the DDR memory reads. The creation of the aperture (i.e., the 9 values in the
local rgb array) involves nine individual reads from off-chip global memory since that is
where the global input pointer references. While reading these values is necessary to create
this aperture, there are two problems with this kernel design approach:

1. Reads One Value at a Time - Only one value is read on each data transfer. The
transaction, therefore, has a burst size of 1. This is very inefficient since nearby values in
memory will also be used in the same as well as subsequent apertures.

2. Reads Values Multiple Times - Each pixel value is read from the DDR nine different times
for each of the apertures it is a part of. This is also inefficient as the data values are not
stored and re-used in subsequent apertures.

Partially Optimized Design
One popular technique in video design is to use line buffers to store all pixel values from an
entire line of the image or frame. These buffers are loaded once per line (e.g., 512 pixel

X-Ref Target - Figure 7-3

Figure 7-3: Kernel Data Transfer Summary for Un-Optimized Median Filter Kernel

X-Ref Target - Figure 7-4

Figure 7-4: Timeline Trace of Un-Optimized Median Filter Kernel
Performance Optimization www.xilinx.com 61
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=61

Chapter 7: Putting It All Together
values for a 512x512 image) and can also be traversed using common, incremental
addressing to create the apertures.

Figure 7-5 shows how line buffers were added to the median filter kernel. This modification
addressed the two above mentioned concerns and provided the following benefits for the
median filter design:

1. Reads Bursts of Data - Calls to async_work_group_copy() were used to fill up the
line buffers with a row of image data. This uses burst access to the data stored in DDR
memory and thus, provides the best performance.

2. Reads Every Value Only Once - After the line buffer is filled, the data is continually used
as we sweep across its contents to provide different apertures. We also re-use that line
buffer and only re-fill it once its current contents are no longer needed. This enables the
kernel to read every pixel value only once.

Note that the usage of these line buffers in the median filter is a bit different than typical
line buffers as pixel values do not shift across the buffer on every clock cycle. However, they
do store an entire row, and accessing their values is done using simple incremental
addressing.

X-Ref Target - Figure 7-5

Figure 7-5: Block Diagram of Partially Optimized Median Filter Kernel
Performance Optimization www.xilinx.com 62
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=62

Chapter 7: Putting It All Together
Below is a code snippet of a partially optimized median filter kernel:

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void median(__global const uint* input, __global uint* output, int width, int height)
{
local uint linebuf0[MAX_WIDTH];
local uint linebuf1[MAX_WIDTH];
local uint linebuf2[MAX_WIDTH];
local uint lineres[MAX_WIDTH];

for (int line = 0; line < height; line++) {
if (line == 0) {
async_work_group_copy(linebuf0, input, width, 0);
async_work_group_copy(linebuf1, input, width, 0);
async_work_group_copy(linebuf2, input + width, width, 0);

}
else if (line < height-1) {
if (line % 3 == 0)
async_work_group_copy(linebuf0, input + (line+1)*width, width, 0);

else if (line % 3 == 1)
async_work_group_copy(linebuf1, input + (line+1)*width, width, 0);

else if (line % 3 == 2)
async_work_group_copy(linebuf2, input + (line+1)*width, width, 0);

}
barrier(CLK_LOCAL_MEM_FENCE);

for (int x=0; x < width; x++) {
uint rgb[SIZE];
rgb[0] = (x == 0) ? linebuf0[x] : linebuf0[x - 1];
rgb[1] = linebuf0[x];
rgb[2] = (x == width-1) ? linebuf0[x] : linebuf0[x + 1];

rgb[3] = (x == 0) ? linebuf1[x] : linebuf1[x - 1];
rgb[4] = linebuf1[x];
rgb[5] = (x == width-1) ? linebuf1[x] : linebuf1[x + 1];

rgb[6] = (x == 0) ? linebuf2[x] : linebuf2[x - 1];
rgb[7] = linebuf2[x];
rgb[8] = (x == width-1) ? linebuf2[x] : linebuf2[x + 1];

uint result = 0;
for (int channel = 0; channel < CHANNELS; channel++) {
result |= getMedian(channel, rgb);

}
lineres[x] = result;

}

async_work_group_copy(output + line*width, lineres, width, 0);
barrier(CLK_LOCAL_MEM_FENCE);

}
}

Four line buffers were added to the kernel: three for pre-filtered input and one for the
filtered result. Calls to async_work_group_copy() were also added to perform write
and read transfers between these buffers and DDR memory.
Performance Optimization www.xilinx.com 63
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=63

Chapter 7: Putting It All Together
Figure 7-6 shows the data transfer summary table between DDR global memory and the
partially optimized median filter kernel. Again, the image size is 512x512. The number of
read transfers was drastically reduced to 2052. This was partly due to the burst transfers,
where the average size was increased to 512 bytes. Also, since the kernel re-used values in
the line buffers, there was a 9x reduction in the total amount of data that the kernel read.

While the memory accesses have clearly been optimized, the transfer rate and bandwidth
utilization are still very low. To decipher why this is the case, utilize the timeline trace to
show details of the kernel activity.

Figure 7-7 shows the timeline trace for this partially optimized median filter kernel. The
reads and writes using async_work_group_copy() are very efficient as a line of 512
pixels is transferred in two transactions, each with a burst size of 16. Each line of pixels is
512 pixels * 32 bits = 16,384 bits per line. The DDR memory controller burst transfers 512
bits * 16 beats for a total of 8,192 bits per burst. Therefore, two burst transactions are
required to completely transfer one line of 512 pixels.

While the data transfer issues were optimized, the inefficiency is in the computation or
processing time. The design uses 372.6 usec to process a row of pixels, as measured from
the end of the second read transfer to the beginning of the first write transfer. This is an
unacceptably long period to process the data. The next section addresses how this can be
optimized.

X-Ref Target - Figure 7-6

Figure 7-6: Kernel Data Transfer Summary for Partially Optimized Median Filter Kernel

X-Ref Target - Figure 7-7

Figure 7-7: Timeline Trace of Partially Optimized Median Filter Kernel
Performance Optimization www.xilinx.com 64
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=64

Chapter 7: Putting It All Together
Fully Optimized Design
There are two data path optimizations that can be performed on the median filter kernel:

1. Local memory reads and processing can be pipelined - The kernel operation involves
reads, computation, and writes. It reads from the line buffers and creates the aperture by
storing it in an array of size 9 called rgb. It then calculates the median value of this
aperture for each of the color channels and writes the results to another line buffer. All
of these operations were pipelined by including the xcl_pipeline_loop attribute
before the x for loop. This informs the compiler to keep the implementation of reads,
computation, and writes to be as busy as possible.

2. Color channels can be processed in parallel - We have a for loop that computes the
median value for all three color channels. Since there are no dependencies across color
channels, we can compute these three, separate median values in parallel. We added an
opencl_unroll_hint attribute before the channel for loop. This informs the
compiler to fully unroll this loop and add hardware such that all three median values are
calculated concurrently. Since this loop is only of size three, a considerable speedup can
be achieved with only a slight increase in FPGA resources.

Below is a code snippet of a fully optimized median filter kernel:

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void median(__global const uint* input, __global uint* output, int width, int height)
{
:
for (int line = 0; line < height; line++) {
:
__attribute__((xcl_pipeline_loop))
for (int x=0; x < width; x++) {
:
__attribute__((opencl_unroll_hint))
for (int channel = 0; channel < CHANNELS; channel++) {
result |= getMedian(channel, rgb);

}
lineres[x] = result;

}

async_work_group_copy(output + line*width, lineres, width, 0);
barrier(CLK_LOCAL_MEM_FENCE);

}
}

This kernel uses the same source code as the partially optimized kernel except for two
additions: the x for loop was pipelined; and the channel for loop was unrolled. These two
lines of code inform HLS to perform the two data path optimizations listed above.
Performance Optimization www.xilinx.com 65
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=65

Chapter 7: Putting It All Together
Figure 7-8 shows the data transfer summary table for the fully optimized median filter
kernel. Note the number of read transfers was again 2052 and the average size was still 512
bytes. This informs you that the memory access optimizations were still in place and did not
change. However, transfer rate and bandwidth utilization values are much higher. This tells
you the kernel execution time was full of efficient memory transfers.

The timeline trace confirms this efficiency. Figure 7-9 shows the timeline trace of the fully
optimized median filter design. Note that the continuous write data transfers demonstrates
that the hardware is constantly kept busy throughout the processing. Table 7-1, page 59
shows that the run-time of this fully optimized median filter design is 6.0 msec to process
a 512x512 image. This performance is 74.3 times faster than the un-optimized kernel and
27.9 times faster than the partially optimized kernel.

Data Transfer Analysis
Looking back on the progressive optimizations of the median filter design, an interesting
question arises: what is the maximum throughput of this design? A related question would
be: when do you stop optimizing? These are good question and get to the heart of the
optimizations performed. To arrive at answers, understanding how to optimize both the
data transfers and the computation in your design is critical.

X-Ref Target - Figure 7-8

Figure 7-8: Kernel Transfer Summary for Fully Optimized Median Filter Kernel

X-Ref Target - Figure 7-9

Figure 7-9: Timeline Trace of Fully Optimized Median Filter Kernel
Performance Optimization www.xilinx.com 66
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=66

Chapter 7: Putting It All Together
To that end, one method to accomplish this would be to create various test kernels that
separate out the data transfer from the computation. This actually teaches you a few things
about both. Specific to the median filter, consider the test kernel below:

void test(__global const int* input, __global int* output) {
local int linebuf0[WIDTH];
local int linebuf1[WIDTH];
local int linebuf2[WIDTH];
local int result[WIDTH];

for (int line = 0; line < HEIGHT; line++) {
// Fetch Lines
if (line == 0) {
async_work_group_copy(linebuf0, input, WIDTH, 0);
async_work_group_copy(linebuf1, input, WIDTH, 0);
async_work_group_copy(linebuf2, input + WIDTH, WIDTH, 0);

}
else if (line < HEIGHT-1) {
if (line % 3 == 0)
async_work_group_copy(linebuf0, input + (line+1)*WIDTH, WIDTH, 0);

else if (line % 3 == 1)
async_work_group_copy(linebuf1, input + (line+1)*WIDTH, WIDTH, 0);

else if (line % 3 == 2)
async_work_group_copy(linebuf2, input + (line+1)*WIDTH, WIDTH, 0);

}
barrier(CLK_LOCAL_MEM_FENCE);

async_work_group_copy(output + line*WIDTH, result, WIDTH, 0);
barrier(CLK_LOCAL_MEM_FENCE);

} // for line
}

This test kernel contains the same data transfers as the median filter kernel. However, it
contains no computation of median values. The contents of the result buffer is simply
copied to the output pointer without any processing or computation. While clearly this
kernel is not functionally correct, this type of test kernel addresses the two questions
mentioned above:

1. What is the maximum throughput of this design? Creating a test kernel that only
contains the data transfers allows us to isolate the reading and writing of data to/from
the kernel.

a. Since data transfers are typically bottlenecks in a kernel, emulating this kernel or
running it on a board will tell you the maximum performance expected given the
selected data transfers.

b. If this test kernel does not meet your performance requirements, then you need to
improve on either the amount of data or the method that you read and write the
data.
Performance Optimization www.xilinx.com 67
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=67

Chapter 7: Putting It All Together
2. When do you stop optimizing? Once you have achieved the desired throughput and
performance with this test kernel, you can compare it to the performance of the actual
kernel.

a. If the actual kernel has much lower performance than the test kernel, then
optimizations need to be performed to improve on the computation time. For the
median filter, this involved pipelining or unrolling two of the loops.

b. Once the test kernel and actual kernel have similar performance, then the
computation time of the kernel has been optimized.

The execution time for the test kernel shown above is approximately 6.0 msec to operate on
a 512x512 image. Almost exactly the same execution time of the fully optimized design.
That means that the computation time of the kernel was fully optimized. Any further
improvements to the kernel would need to come from optimizing the memory accesses.

Figure 7-10 shows a flow diagram for one suggested method of optimizing the
performance of kernels. This follows the procedure taken to optimize the median filter. The
memory accesses for the original, un-optimized kernel were extracted and a test kernel was
created. The memory accesses were then optimized using line buffers and burst transfers
with async_work_group_copy. If this extraction is not possible, then the memory access
optimizations can certainly be performed on the original kernel.

Once the desired performance was met, then if needed, these new data transfers were
incorporated back into the median filter kernel and a partially optimized kernel was created.
The computation or data path was then optimized using pipelining and unrolling until the
desired performance goal was met. The result was a fully optimized kernel. Note that the
same host code was used throughout the process, including using the test kernel and all
variations of the median filter kernel.

X-Ref Target - Figure 7-10

Figure 7-10: Flow Diagram of One Methodology to Optimize Kernels
Performance Optimization www.xilinx.com 68
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=68

Chapter 8

Performance Checklist

Overview
The goal of this chapter is to create a checklist of items to consider when evaluating the
performance of your SDAccel design. This should by no means be considered an exhaustive
list, but instead a starting point for ideas to consider or investigate further.

• Verify functional correctness: First and foremost before you begin performance
optimizations, be certain that you have correctly captured the desired functionality of
your algorithm. In SDAccel, this can be verified using CPU emulation. You can create a
"testbench" by running a corresponding function in host software and comparing the
results with the kernel.

• Use profiling summary: This is a great starting point to tell you the overall
performance health of your system. The summary tables can tell you whether or not
performance goals have been met as well as clues on where to begin making
improvements.

° For continued functional correctness, first make sure the total data transferred for
both write and read is correct by viewing the results in the Top Data Transfer:
Kernels and Global Memory table. Some applications have very specific data
transfer amounts (e.g., an HD video frame).

° Next, view other important metrics such as number of transfers, average size or
bytes, transfer rate, and bandwidth utilization. These metrics can be used to analyze
the proficiency of the memory accesses and the data paths in the system.

• Use timeline trace: Trace tells you details of the timeline progression of your
emulation or run on a board. The timestamped events provide insight into potential
bottlenecks or dependencies that may have executed your system in an un-optimized
manner. While the profiling summary provides useful aggregated results, trace shows
you the relative timing of important events in the system. In SDAccel, host and device
level events are plotted on the same timeline.

• Use burst data transfers: This enables a kernel to transfer as much data as is required
and allows kernels to read data before it is needed by the computation. Large bursts
also optimize the performance of the memory controller. Burst transfers can be defined
using async_work_group_copy in OpenCL C, memcpy in HLS C/C++, or inferred from
successive requests of data from consecutive address locations. Both the optimized
Performance Optimization www.xilinx.com 69
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=69

Chapter 8: Performance Checklist
Smith-Waterman kernel (described in Optimized Design, page 55) and the partially and
fully optimized median filter kernels (described in Partially Optimized Design, page 61
and Fully Optimized Design, page 65) used this method to optimize their performance.

• Isolate data transfer or computation: Take advantage of the fact that FPGAs are
re-programmable and iterate to verify the performance of multiple test kernels. One
methodology to better understand the performance of your kernels is to isolate either
the data transfers or the computation. Separating out the two will help you to better
understand where to begin your optimizations. See Data Transfer Analysis, page 66 for
more details.

• Use local and private memories: This complements the burst data transfer concept.
Local and private memories can be used repetitively as scratch pads, and both reads
and writes can be accomplished in a single clock cycle. FPGAs provide a wealth of
BlockRAMs distributed throughout the chip. Use them as much as possible.

• Use on-chip global memories: This also complements the burst data transfer concept
by allowing data to be shared between multiple kernels and compute units. See
On-Chip Global Memories, page 83 for more details.

• Use on-chip pipes: This allows data to be streamed between multiple kernels and
compute units. See On-Chip Pipes, page 85 for more details.

• Use workgroups: This is a concept exclusive to OpenCL and should be exploited.
Workgroups allow the system to schedule tasks in parallel and thus, can enable better
overall performance. See Multiple Compute Units, page 49 for how this was used to
improve the performance of the matrix adder.

• Use multiple memory ports: This setting increases the memory bandwidth available
to a kernel by increasing the number of connections to memory attached to a kernel.
See Multiple Memory Ports per Kernel, page 86 for more information.

• Use the entire port width: Take advantage of the entire 512-bit memory controller
interface. This can be accomplished using a combination of vectors and Tcl settings.
See Vectorization, page 73 and Adjustable Memory Port Data Width, page 87 for more
information.

• Unroll loops: Loops that are unrolled are performed simultaneously rather than in an
iterative, sequential fashion. This is appropriate for small to medium sized loops such
as the color channel loop described in Chapter 7, Putting It All Together. See Loop
Unrolling, page 76 for further details.

• Use pipelining: This can be either loop or work item pipelining and exposes pipelining
capabilities to Vivado HLS. This is appropriate for larger loops such as the x for loop
described in Chapter 7, Putting It All Together. See Loop Pipelining, page 78 and Work
Item Pipelining, page 80 for more information.
Performance Optimization www.xilinx.com 70
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=70

Chapter 8: Performance Checklist
Tool Flow Suggestions

Figure 8-1 shows a possible flow diagram using all three compilation flows in SDAccel to
analyze and optimize kernel performance. First, verify functional correctness using CPU
emulation. This is the fastest flow and can enable fast verification of functionality. One
method of doing this is to add a 'testbench' in your host code. A testbench provides a
corresponding software function that performs the exact same functionality as the kernel,
runs both, and compares the results.

Next, use hardware (HW) emulation to evaluate performance. Check the profile summary
for an overview of the run, then view the timeline trace for details. A few items should be
noted when running HW emulation. First, consider using a smaller, representative data set
size to minimize emulation runtime. Second, note that the profile results are estimates of
actual performance. Profiling results for HW emulation are very good at providing
comparative results across multiple kernel revisions and solutions.

Finally, the same performance evaluation can then be done for a system run on a board.
Again, check the profile summary for overview metrics of your run. If needed, then view the
timeline trace for details of timing and performance.

X-Ref Target - Figure 8-1

Figure 8-1: Flow Diagram Using All Three Flows To Optimize Kernel Performance
Performance Optimization www.xilinx.com 71
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=71

Chapter 8: Performance Checklist
Once you start running on a board, Figure 8-2 shows a simplified flow diagram to achieve
kernel performance optimizations. At the highest level, iterations are accomplished until
performance goal(s) have been met. Within each iteration, profiling results are analyzed to
verify amounts and efficiencies of both memory accesses and data paths. These different
results are listed on the left-hand side of the above figure and can all be found in the
SDAccel profile summary and timeline trace.

First, memory accesses are analyzed. If the amount of data (in MB) is correct, then the
efficiency is analyzed. This efficiency is reported as such values as number of transfers and
average size. Second, the efficiency of the kernel data paths or computation is evaluated
using such metrics as transfer rate and average bandwidth utilization. Finally, the details of
the timeline trace are viewed to see if further information can be extracted from the run.
After subsequent updates are made to the kernel(s), these steps are repeated until the
previously stated goals have been met.

X-Ref Target - Figure 8-2

Figure 8-2: Flow Diagram of Kernel Performance Optimizations Within System Runs
Performance Optimization www.xilinx.com 72
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=72

Appendix A

Improving Data Path Performance

Overview
There are a number of different methods to improve the performance of an OpenCL kernel.
This appendix introduces an important subset of these methods which specifically address
data path performance. To achieve this, there are a number of key constructs and attributes
for the OpenCL kernel language. This appendix describes a few of these, demonstrates how
they are used, and shows their effects on performance using the integrated profiling
capabilities in SDAccel.

Vectorization
Vectorization creates a wide computation data path inside the kernel. Vectorization is
created by changing the data type of the data to be processed. For example, the following
"unvectorized" code performs 256 loop iterations and reads each element of a and b
separately.

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vadd(__global int* a, __global int* b, __global int* c) {
int i;
for (i=0; i< 256; i++) {
c[i] = a[i] + b[i];

}
}

Performance Optimization www.xilinx.com 73
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=73

Appendix A: Improving Data Path Performance
Figure A-1 shows the timeline trace of the unvectorized vector adder. There are 256 loop
iterations that are completed separately. Each transaction only obtains one 32-bit integer
value, and there are 512 total read transactions. While the implementation of the kernel is
able to group the write into a single transaction containing all 256 integers, the timeline
above is not ideal performance for this design.

The following vectorized code reads 16 words from global buffer a and b at a time:

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vadd(__global int16* a, __global int16* b, __global int16* c) {
int i;
for (i=0; i< 256/16; i++){
c[i] = a[i] + b[i];

}
}

The vector is signified by the int16 pointer type for both inputs as well as the output c.
This results in 16 integer values being read or written at a time. This value of 16 was chosen
for a reason: 16 x 32bits = 512 bits, the width of the memory word on the Alpha Data
Virtex-7 board. Also, because 16 additions are performed in parallel, the loop iterates only
16 times, as opposed to 256.

Figure A-2 shows the timeline trace of the vectorized vector adder design. There are now
only 16 loop iterations since each iteration computes 16 output values. This results in a total
of 32 read transactions and a single write transaction performed at the end to write the
entire vector to DDR. Since the memory interface is 512 bits, a burst size of one can read or
write 16 32-bit values in one word.

X-Ref Target - Figure A-1

Figure A-1: Timeline Trace of Unvectorized Vector Adder with 256 Loop Iterations

X-Ref Target - Figure A-2

Figure A-2: Timeline Trace of Vectorized Vector Adder with 16 Loop Iterations
Performance Optimization www.xilinx.com 74
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=74

Appendix A: Improving Data Path Performance
The profiling summary confirmed that the performance significantly improved: the kernel
execution time went from 8.33 msec for the un-vectorized version to 0.08 msec for the
vectorized kernel. This is an improvement of 104x.

Note that vectorization on the host is not necessary. In other words, the host code does not
have to be re-written if vectors are used in the compute units on the device. The host
creates and buffers a and b as regular 256 element integer arrays. The benefits of
vectorization can only be determined by either running hardware emulation or running on
a board and viewing the profiling results.

Table A-1 lists all of the vector types supported by SDAccel. These are all defined in the
OpenCL 2.0 specification [Ref 1], and SDAccel support is verified using conformance testing
[Ref 4]. The data types are the same used by traditional software programming, while the
value of N is the number of values in the vector.

Table A-1: Vector Types Supported by SDAccel

Data Type N=2 N=3 N=4 N=8 N=16

Character char2 char3 char4 char8 char16

Unsigned Character uchar2 uchar3 uchar4 uchar8 uchar16

Short short2 short3 short4 short8 short16

Unsigned Short ushort2 ushort3 ushort4 ushort8 ushort16

Integer int2 int3 int4 int8 int16

Unsigned Integer uint2 uint3 uint4 uint8 uint16

Half half2 half3 half4 half8 half16

Float float2 float3 float4 float8 float16
Performance Optimization www.xilinx.com 75
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=75

Appendix A: Improving Data Path Performance
Loop Unrolling
Loop unrolling is an important optimization technique available in SDAccel. The purpose of
the loop unroll optimization is to expose concurrency to the compiler and take advantage
of the parallelism inherent to an FPGA. This is an official attribute in the OpenCL 2.0
specification. For example, consider the following vector multiplier kernel:

#define LENGTH 64

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vmult(__global const int* a, __global const int* b, __global int* c) {
local int bufa[LENGTH];
local int bufb[LENGTH];
local int bufc[LENGTH];
int tid = get_global_id(0);

async_work_group_copy(bufa, a, LENGTH, 0);
async_work_group_copy(bufb, b, LENGTH, 0);

for (int i=0; i < LENGTH; i++) {
int idx = tid*LENGTH + i;
bufc[idx] = bufa[idx] * bufb[idx];

}

async_work_group_copy(c, bufc, LENGTH, 0);
}

This kernel multiplies two integer vectors, a and b. The length of the vectors is 64. Since we
want to isolate the performance of the for loop, we first read the two vectors into local
memories using calls to async_work_group_copy. Also, a third local memory is used to
store the output vector, c, so all data in the for loop uses local memories. Once the loop is
completed, the entire output vector is written back to DDR.

Figure A-3 shows the timeline trace for the sequential vector multiplier. The two read and
one write data transfers are evident in the timeline. To demonstrate loop unrolling, the
metric of concern is the time in between the second read and the write transfer. This is the
processing time of the for loop.

X-Ref Target - Figure A-3u

Figure A-3: Timeline Trace for Sequential Vector Multiplier
Performance Optimization www.xilinx.com 76
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=76

Appendix A: Improving Data Path Performance
The performance of the vector multiplier can be improved by using the
opencl_unroll_hint attribute with an unroll factor of 2:

__attribute__((opencl_unroll_hint(2)))
for (int i=0; i < LENGTH; i++) {
 int idx = tid*LENGTH + i;
 bufc[idx] = bufa[idx] * bufb[idx];
}

The code above tells SDAccel to unroll the loop by a factor of two. This results in LENGTH/2
or 32 loop iterations for the compute unit to complete the operation. By enabling SDAccel
to reduce the loop iteration count, the programmer has exposed more concurrency to the
compiler. This newly exposed concurrency reduces latency and improves performance, but
also consumes more FPGA fabric resources.

Another variety of this attribute is to unroll the loop completely. The syntax for the fully
unrolled version of the vector multiplier example is as shown below:

__attribute__((opencl_unroll_hint))
for (int i=0; i < LENGTH; i++) {
 int idx = tid*LENGTH + i;
 bufc[idx] = bufa[idx] * bufb[idx];
}

In this fully unrolled design, all of the possible concurrency in the loop nest is exposed to
the compiler. SDAccel analyzes the data and control dependencies of the unrolled loop nest
and automatically parallelizes all operations that can be executed concurrently.

Due to resource constraints, note that full unrolling is appropriate for for loops of small or
medium length. Large for loops may require too many resources to implement on the
FPGA device. For larger loops, it is recommended to use loop pipeline (see the next section).

In general, it is recommended to use the report_estimate command and understand
how Vivado HLS compiles the kernel code before building a complex system.

Table A-2 summarizes results showing the impact of loop unrolling on the performance of
the vector multiplier kernel. The total loop time (in usec) is measured using the timeline
trace panel in SDAccel and is the time between the completion of the last read data transfer
to the start of the write data transfer. This metric was chosen since the data transfers are the
same for all three versions of the kernel. These values show how the loop unrolling can
impact the overall performance of a kernel execution.

Table A-2: Summary of Performance Results Comparing Different Vector Multiplier Kernels

Vector Multiplier Kernel Total Loop Time (usec)

Sequential 3.96

Partially Unrolled 2.68

Fully Unrolled 1.27
Performance Optimization www.xilinx.com 77
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=77

Appendix A: Improving Data Path Performance
Loop Pipelining
Although loop unrolling exposes concurrency, it does not address the issue of keeping all
elements in a kernel data path busy at all times. This is necessary for maximizing kernel
throughput and performance. Even in an unrolled case, loop control dependencies can lead
to sequential behavior. The sequential behavior of operations results in idle hardware and a
loss of performance.

Xilinx addresses this issue by introducing a vendor extension on top of the OpenCL 2.0
specification for loop pipelining. The Xilinx attribute for loop pipelining is
xcl_pipeline_loop.

In order to understand the effect of loop pipelining on performance, consider the following
code example:

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vaccum(__global const int* a, __global const int* b, __global int* result) {
int tmp = 0;

for (int i=0; i < 32; i++) {
tmp += a[i] * b[i];

}
result[0] = tmp;

}

This kernel code has no attributes and is executed sequentially per the order of operations
stated in the kernel code. Although the execution is functionally correct, the
implementation is not maximizing performance because the read, multiply, add, and store
operations are not always busy. The pipeline attribute serves as a command to the SDAccel
compiler to maximize performance and minimize the idle time of any stage in the
generated logic.

Figure A-4 shows the timeline trace for the sequential vector accumulator. The read data
transfers are performed two at a time, one to read the next value of a and another for b.
There is also approximately 100 nsec in between each read to perform the multiplication
and addition. Since all of these operations can be pipelined, this is clearly an inefficient
kernel design. Most of the design is idle at any point in time.

X-Ref Target - Figure A-4

Figure A-4: Timeline Trace of Sequential Vector Accumulator
Performance Optimization www.xilinx.com 78
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=78

Appendix A: Improving Data Path Performance
We can address these concerns by adding pipelining. Example code with an added loop
pipeline attribute looks like the following:

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vaccum(__global const int* a, __global const int* b, __global int* result) {
int tmp = 0;

__attribute__((xcl_pipeline_loop))
for (int i=0; i < 32; i++) {
tmp += a[i] * b[i];

}
result[0] = tmp;

}

Adding this attribute exposes the pipeline nature of the design to the compiler. In turn, the
compiler then adds appropriate pipelining to improve the performance of the design.

Figure A-5 shows a timing diagram of the vector accumulator before and after exposing
loop pipelining. The diagram on top is sequential in nature and was confirmed with the
timeline trace for the un-pipelined kernel. The diagram below shows the improved timing of
the pipelined version. Notice how the different operations are kept busy throughout the
loop iterations. Similar to loop unrolling, this exploits the vast hardware resources available
on an FPGA.

X-Ref Target - Figure A-5

Figure A-5: Timing Diagram of Loop Pipelining
Performance Optimization www.xilinx.com 79
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=79

Appendix A: Improving Data Path Performance
Figure A-6 shows the timeline trace of the pipelined vector accumulator kernel. Soon after
the kernel starts, it requests six values (three for a and three for b). This is a limit on the
queue size in the kernel. However, even with this limit, the kernel is able to pipeline the
operations and perform the multiplication and addition at the same time that the next
values are being read. By adding loop pipelining to this example, the execution time of the
kernel is decreased by 19% without any other code modification or additional hardware.

Work Item Pipelining
Work item pipelining is the extension of loop pipelining to the kernel work group. The
syntax for the attribute for this optimization is xcl_pipeline_workitems. An example
where work pipelining can be applied is the following kernel:

__kernel __attribute__ ((reqd_work_group_size(8, 8, 1)))
void madd(__global int* a, __global int* b, __global int* output)
{
int rank = get_local_size(0);
__local unsigned int bufa[64];
__local unsigned int bufb[64];

int x = get_local_id(0);
int y = get_local_id(1);
bufa[x*rank + y] = a[x*rank + y];
bufb[x*rank + y] = b[x*rank + y];
barrier(CLK_LOCAL_MEM_FENCE);

int index = get_local_id(1)*rank + get_local_id(0);
output[index] = bufa[index] + bufb[index];

}

In order to handle the reqd_work_group_size attribute, SDAccel automatically inserts a
loop nest to handle the multi-dimensional characteristics of the ND range. For this example,
the local work size is specified as (8, 8, 1). As a result of the loop nest added by SDAccel, the
execution profile of this code is the same as that of an un-pipelined loop.

X-Ref Target - Figure A-6

Figure A-6: Timeline Trace of Pipelined Vector Accumulator Kernel
Performance Optimization www.xilinx.com 80
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=80

Appendix A: Improving Data Path Performance
Figure A-7 shows the timeline trace of the un-optimized or sequential matrix adder. Two
read data transfers are performed at a time, one to request the next value of a and another
for b. There is then a gap of 80 nsec before the next set of reads begin. The largest number
of outstanding data transfers is two. The kernel is also written in such a way that the writes
are not performed until the reads have completed. This is due to the
barrier(CLK_LOCAL_MEM_FENCE) added in the kernel.

The work item pipeline attribute can be added to the code as follows:

__kernel __attribute__ ((reqd_work_group_size(8, 8, 1)))
void madd(__global int* a, __global int* b, __global int* output)
{
int rank = get_local_size(0);
__local unsigned int bufa[64];
__local unsigned int bufb[64];

__attribute__((xcl_pipeline_workitems)) {
int ix = get_local_id(1)*rank + get_local_id(0);
bufa[ix] = a[ix];
bufb[ix] = b[ix];

}
barrier(CLK_LOCAL_MEM_FENCE);

__attribute__((xcl_pipeline_workitems)) {
int ix = get_local_id(1)*rank + get_local_id(0);
output[ix] = bufa[ix] + bufb[ix];

}
}

X-Ref Target - Figure A-7

Figure A-7: Timeline Trace of Sequential Matrix Adder Kernel
Performance Optimization www.xilinx.com 81
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=81

Appendix A: Improving Data Path Performance
Figure A-8 shows the timeline trace of the pipelined matrix adder. The maximum number of
outstanding data transfers is now six, which is again limited by the queue in the kernel.
However, the pipelining is evident since multiple operations are being performed
simultaneously by the compute unit. Similar to loop pipelining, the resulting hardware
keeps all operations as busy as possible, which in turn maximizes performance. Adding this
work item pipelining improves the execution time of the matrix adder kernel from 0.11 msec
to 0.07 msec.

X-Ref Target - Figure A-8

Figure A-8: Timeline Trace of Pipelined Matrix Adder Kernel
Performance Optimization www.xilinx.com 82
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=82

Appendix B

Improving Memory Efficiency

Overview
There are a number of different methods to improve the performance of an OpenCL kernel.
This appendix introduces another important subset of these methods which specifically
address memory efficiency. To improve memory access efficiency, there are a number of
memory types, key constructs, and burst access capabilities available in the OpenCL kernel
language.

Figure 3-2, page 23 shows the OpenCL memory model used by the Xilinx SDAccel tool.
There are a multitude of memory types, and it is important to understand their usage and
benefits. This includes the following types: host memory, off-chip global memory, on-chip
global memory, local memory, and private memory. The examples in Chapters 4-6 describe
many use cases for off-chip global and local memories. This appendix describes on-chip
global memories, including a special type called on-chip pipes.

There are also some key constructs and burst access capabilities that can significantly
improve performance. This appendix also describes a few of these, demonstrates how they
are used, and shows their effects on performance.

On-Chip Global Memories
One memory architectural optimization available in SDAccel utilizes global memories that
are used to pass data between kernels. In cases where the global memory buffer used for
inter-kernel communication does not need to be visible to the host processor, SDAccel
enables you to move the buffer out of DDR-based memory and into the BlockRAMs
available on the FPGA. This optimization is called on-chip global memories and is part of
the OpenCL 2.0 specification.

On-chip global memories are very useful because they can be accessed by all the kernels.
SDAccel generates an AXI bus in the programmable region and connects the global on-chip
memory to only the kernels which access it, thus saving on resources. Note that this bus is
narrow, and thus does not always achieve as high bandwidth as local memory. However, the
cross-kernel accessibility is key.
Performance Optimization www.xilinx.com 83
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=83

Appendix B: Improving Memory Efficiency
The following code example illustrates a usage model for global memory buffers:

// Global memory buffers used to transfer data between kernels
// Contents of the memory do not need to be accessed by host processor
global int g_var0[1024];
global int g_var1[1024];

// Kernel reads data from global memory buffer written by the host processor
// Kernel writes data into global buffer consumed by another kernel
kernel __attribute__ ((reqd_work_group_size(256,1,1)))
void input_stage(global int *input) {

__attribute__((xcl_pipeline_workitems)) {
g_var0[get_local_id(0)] = input[get_local_id(0)];

}
}

// Kernel computes a result based on data from the input_stage kernel
kernel __attribute__ ((reqd_work_group_size(256,1,1)))
void adder_stage(int inc) {

__attribute__ ((xcl_pipeline_workitems)) {
int input_data, output_data;
input_data = g_var0[get_local_id(0)];
output_data = input_data + inc;
g_var1[get_local_id(0)] = output_data;

}
}

// Kernel writes the results computed by the adder_stage to
// a global memory buffer that is read by the host processor
kernel __attribute__ ((reqd_work_group_size(256,1,1)))
void output_stage(global int *output) {

__attribute__ ((xcl_pipeline_workitems)) {
output[get_local_id(0)] = g_var1[get_local_id(0)];

}
}

In the code example above, the input_stage kernel reads the contents of global memory
buffer input and writes them into global memory buffer g_var0. The contents of buffer
g_var0 are used in a computation by the adder_stage kernel and stored into buffer
g_var1. The contents of g_var1 are then read by the output_stage kernel and stored
into the output global memory buffer. Although both g_var0 and g_var1 are declared as
global memories, the host processor only needs to have access to the input and output
buffers. Therefore, for this application to run correctly the host processor must only be
involved in setting up the input and output buffers in DDR memory.

Since buffers g_var0 and g_var1 are only used for inter-kernel communication, the
accesses to these buffers can be removed from the system-level memory bandwidth
requirements. SDAccel automatically analyzes this kind of coding style to infer that both
g_var0 and g_var1 can be implemented as on-chip memory buffers.

The only requirements in SDAccel are that all kernels with access to the on-chip global
memory are executed in the FPGA logic and that the memory has at least 1,000 entries.
Performance Optimization www.xilinx.com 84
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=84

Appendix B: Improving Memory Efficiency
Figure B-1 shows the timeline trace of the global memory test kernels. All three kernels are
executed in the following order: input_stage, adder_stage, then output_stage. Note
that the device profiling reports data transfers to off-chip global memory only, and hence,
the accesses to the on-chip global memories are not shown.

From a performance standpoint, these on-chip global memories provide much lower latency
than accessing data from the DDR or off-chip global memory. Therefore, these memories are
excellent for applications requiring heavy data reuse amongst multiple kernels. You can
create a scratchpad with on-chip global memories, re-use the data as often as is required,
then write the results to the host-accessible DDR.

On-Chip Pipes
Another type of global memory that allows two kernels to communicate with each other is
called a pipe. A pipe is essentially a FIFO and allows data streaming between kernels. It is
specified with a maximum depth and stores data in a first-in, first-out order.

Consider the following sample code:

pipe int p0 __attribute__((xcl_reqd_pipe_depth(512)));
pipe int p1 __attribute__((xcl_reqd_pipe_depth(512)));

// Stage 1
kernel __attribute__ ((reqd_work_group_size(256, 1, 1)))
void input_stage(__global int *input) {
write_pipe(p0, &input[get_local_id(0)]);

}

// Stage 2
kernel __attribute__ ((reqd_work_group_size(256, 1, 1)))
void adder_stage(int inc) {
int input_data, output_data;
read_pipe(p0, &input_data);
output_data = input_data + inc;
write_pipe(p1, &output_data);

}

X-Ref Target - Figure B-1

Figure B-1: Timeline Trace of Global Memory Test Kernels
Performance Optimization www.xilinx.com 85
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=85

Appendix B: Improving Memory Efficiency
// Stage 3
kernel __attribute__ ((reqd_work_group_size(256, 1, 1)))
void output_stage(__global int *output) {
read_pipe(p1, &output[get_local_id(0)]);

}

There are two pipes specified in the above code, p0 and p1, which transfer data between
the three kernels. Each has a depth of 512 values. Note that the functions write_pipe()
and read_pipe() are used to write to and read from the pipes, respectively. The stage 2
kernel named adder_stage modifies the values in the pipe by adding inc to each value.
The input to input_stage and the output of output_stage are in off-chip global
memory.

Pipes are excellent for transferring data between kernels when order needs to be preserved
and random access is not required. Note that pipes are implemented with AXI Stream, and
their activity is currently not observable using the current profiling infrastructure.

Multiple Memory Ports per Kernel
The default behavior of SDAccel is to generate functionally correct FPGA compute units that
consume the least amount of FPGA resources. This behavior produces the most area
efficient implementation, but might not always achieve the desired performance
requirements. The area efficient behavior of SDAccel is demonstrated by the following
example:

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vadd(__global int* a, __global int* b, __global int* c) {
int i;
for (i=0; I < 256; i++) {
c[i] = a[i] + b[i];

}
}

The code above is a vector adder which reads 256 values from a and b, adds them together,
and writes the result to c (see Vectorization, page 73 for one method of improving the
performance of this kernel). All 256 results are then stored into the appropriate locations in
DDR dictated by c. Given the kernel code above, the hardware implementation generated by
SDAccel has a single port to global memory through which all accesses to buffers a, b, and
c are time-multiplexed. During execution, the single port forces sequential access to
off-chip global memory to fetch individual elements from all three buffers. For designs with
multiple data ports like the vector adder, this can lead to inefficiencies.

One way of increasing the memory bandwidth available to a kernel is to increase the number
of physical connections to memory that are attached to a kernel. Proper implementation of
this optimization requires knowledge of both the application and the target compute
platform. Therefore, SDAccel requires user specification to increase the number of physical
memory ports on a kernel. The SDAccel command to increase the number of physical
memory ports available to the kernel is:
Performance Optimization www.xilinx.com 86
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=86

Appendix B: Improving Memory Efficiency
set_property max_memory_ports true [get_kernels <kernel name>]

The max_memory_ports property tells SDAccel to generate one physical memory interface
for every global memory buffer declared as arguments to the kernel. This command is only
valid for kernels that have been placed into binaries that will be executed in the FPGA logic.
There is no effect on kernels executing in a processor.

Note that for HLS C/C++ files, you can also specify maximum memory ports using pragmas
in the kernel source file:

void vadd(int * a, int * b, int * c) {
#pragma HLS INTERFACE m_axi port=a offset=slave bundle=gmem0
#pragma HLS INTERFACE m_axi port=b offset=slave bundle=gmem1
#pragma HLS INTERFACE m_axi port=c offset=slave bundle=gmem2
…

}

In the example code above, three different values are specified for the bundle: gmem0,
gmem1, and gmem2. This creates three separate AXI interfaces for accessing the three
pointers. To achieve the best performance for your kernel, it is highly recommended to do
this.

Adjustable Memory Port Data Width
In addition to increasing the number of memory ports available to a kernel, you have the
ability to change the bit width of the memory port. The benefit of modifying the bit width
of the memory interface depends on the computation in the kernel. Consider the following
kernel:

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vadd(__global int16* a, __global int16* b, __global int16* c) {
int i;
for (i=0; i< 256/16; i++){
c[i] = a[i] + b[i];

}
}

Where a, b, and c are of type int16. This is a 16 element vector data type created from the
fundamental c data type int (see Vectorization, page 73 for more information on vector data
types). SDAccel uses the fundamental data type when determining the default bit width of a
memory interface. In the case above, the memory interfaces have a bit width of 32 bits.
Therefore, the kernel requires 16 memory transactions to read enough data to complete the
vector. You can override the default behavior of SDAccel with the following kernel property
command:

set_property memory_port_data_width <bit width> [get_kernels <kernel name>]

The bit widths currently supported by SDAccel are 32, 64, 128, 256, and 512 bits. In cases
where your defined bit width does not match the bit width declared in the kernel source
Performance Optimization www.xilinx.com 87
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=87

Appendix B: Improving Memory Efficiency
code, SDAccel handles all data width conversions between the physical interface and the
data type in the kernel source code. This optimization is only supported for kernels mapped
for execution in the FPGA logic.

Burst Transfers from Off-Chip Global Memory
Some kernels require large amounts of data and can potentially only start processing once
a certain amount of data is available. Burst transfers enable a kernel to transfer as much data
as is required and allow kernels to read data before it is needed by the computation. Large
bursts also optimize the performance of the memory controller.

Consider the following vector multiplier example:

#define LENGTH 64

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vmult(__global const int* a, __global const int* b, __global int* c) {
 for (int i=0; i < LENGTH; i++)
 c[i] = a[i] * b[i];
 }
}

In this example, every iteration of the loop performs two reads and one write. Figure A-1,
page 74 shows the timeline trace for this vector adder with 256 loop iterations. The memory
controller receives 3 requests per loop iteration (2 reads, 1 write), none of which are bursts.
While the kernel creates a burst for the write transfer, this still results in under-utilization of
the off-chip memory bandwidth.

To perform a burst read from off-chip memory, we can use local memory to buffer the
incoming and outgoing data. Consider the following modified kernel that takes advantage
of burst reads and writes:

#define LENGTH 64

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vmult(__global const int* a, __global const int* b, __global int* c) {
 local int bufa[LENGTH];
 local int bufb[LENGTH];
 local int bufc[LENGTH];

 async_work_group_copy(bufa, a, LENGTH, 0);
 async_work_group_copy(bufb, b, LENGTH, 0);

 for (int i=0; i < LENGTH; i++) {
 bufc[i] = bufa[i] * bufb[i];
 }

 async_work_group_copy(c, bufc, LENGTH, 0);
}

Performance Optimization www.xilinx.com 88
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=88

Appendix B: Improving Memory Efficiency
The async_work_group_copy command performs a burst data transfer between two
specified locations in memory. In the kernel above, the kernel first performs read accesses
by copying data from a to bufa and from b to bufb. These are transfers between off-chip
global memory and local memories. In a physical sense, this copies data from DDR to
BlockRAMs on the FPGA. The amount of data is specified by LENGTH. At the end of
processing, a similar burst transfer is performed. This time, however, it copies data from
bufc to c. In a physical sense, this copies data from BlockRAMs to DDR.

Timeline trace can confirm this activity. Figure A-3, page 76 shows a similar timeline trace
for this vector multiplier design. Trace essentially shows 3 data transfers: 2 read and 1 write.
The time in between is the time it takes to perform the computation in the for loop.

Since the for loop now only reads and writes from local memories, the computation is now
decoupled from the off-chip global memory accesses. Since local memories enable one
cycle reads and writes, this optimization usually leads to significant performance
improvement. The overhead is the time to transfer data between global and local memories.
However, since these transfers utilize large burst sizes, this overhead is minimized.

In the vector multiplier code above, there is no need to pipeline the entire kernel using the
xcl_pipeline_workitems attribute. The burst reads and writes are already pipelined
automatically. Individually, the for loop can be pipelined by using the
xcl_pipeline_loop attribute just before the for loop (see Loop Pipelining, page 78 for
more information).

Burst transfers can also be performed in HLS C/C++ using the memcpy command.
Performance Optimization www.xilinx.com 89
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=89

Appendix C

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

For a glossary of technical terms used in Xilinx documentation, see the Xilinx Glossary.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.

• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.
Performance Optimization www.xilinx.com 90
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=90

Appendix C: Additional Resources and Legal Notices
Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.

References
1. Khronos OpenCL Working Group, "The OpenCL Specification", Version 2.0, October 17,

2014 (khronos.org/registry/cl/sdk/2.0/docs/man/xhtml)

2. Ulrich Drepper, "What Every Programmer Should Know About Memory", November 21,
2007 (cs.bgu.ac.il/~os142/wiki.files/drepper-2007.pdf)

3. Vivado Design Suite User Guide: High-Level Synthesis (UG902)

4. Khronos Conformance (khronos.org/conformance)

5. Smith-Waterman Algorithm
(cs.stanford.edu/people/eroberts/courses/soco/projects/computers-and-the-hgp/smith
_waterman.html)

6. Median Filter (wikipedia.org/wiki/Median_filter)

7. ADM-PCIE-7V3 board (xilinx.com/products/boards-and-kits/1-4i8a6z.html)

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications,
please refer to Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.
© Copyright 2016 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their
respective owners.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS
FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON
PRODUCT LIABILITY.
Performance Optimization www.xilinx.com 91
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2.0;d=ug902-vivado-high-level-synthesis.pdf
https://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/
http://www.cs.bgu.ac.il/~os142/wiki.files/drepper-2007.pdf
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
https://www.khronos.org/conformance/
http://cs.stanford.edu/people/eroberts/courses/soco/projects/computers-and-the-hgp/smith_waterman.html
http://cs.stanford.edu/people/eroberts/courses/soco/projects/computers-and-the-hgp/smith_waterman.html
https://en.wikipedia.org/wiki/Median_filter
http://www.xilinx.com/products/boards-and-kits/1-4i8a6z.html
http://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=91

	SDAccel Development Environment Methodology Guide: Performance Optimization
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Overview
	Guide Organization
	What is an FPGA?
	What is OpenCL?
	Application Profiling in SDAccel
	Data Path Optimizations
	Memory Access Optimizations
	Putting It All Together
	Performance Checklist
	Improving Data Path Performance
	Improving Memory Efficiency

	Ch. 2: What is an FPGA?
	Overview
	FPGA Architecture
	LUT
	BRAM and Other Memories

	FPGA Parallelism Versus Processor Architectures
	Program Execution on a Processor
	Program Execution on an FPGA
	Scheduling
	Pipelining
	Dataflow

	Ch. 3: What is OpenCL?
	Overview
	OpenCL Platform Model
	OpenCL Devices and FPGAs
	OpenCL Memory Model
	Host Memory
	Global Memory
	Constant Global Memory
	Local Memory
	Private Memory

	OpenCL Execution Model
	One-Dimensional NDRange
	Two-Dimensional NDRange
	Three-Dimensional NDRange

	OpenCL Region
	OpenCL C Example

	Ch. 4: Application Profiling in SDAccel
	Profiling Summary Report
	GUI Flow
	Tcl Flow
	XOCC/Makefile Flow
	Displaying Profile Summary
	Profile Summary Descriptions
	Profile Rule Checks
	Rule
	Threshold Value
	Actual Value
	Conclusion
	Details
	Guidance

	Timeline Trace
	Collecting Timeline and Device Trace Data
	GUI Flow
	Tcl and XOCC/Makefile Flow
	Displaying Timeline and Device Trace Data

	Ch. 5: Data Path Optimizations
	Overview
	Unoptimized Design
	Workgroup Pipelined
	Multiple Compute Units

	Ch. 6: Memory Access Optimizations
	Overview
	Un-Optimized Design
	Optimized Design

	Ch. 7: Putting It All Together
	Overview
	Un-Optimized Design
	Partially Optimized Design
	Fully Optimized Design
	Data Transfer Analysis

	Ch. 8: Performance Checklist
	Overview
	Tool Flow Suggestions

	Appx. A: Improving Data Path Performance
	Overview
	Vectorization
	Loop Unrolling
	Loop Pipelining
	Work Item Pipelining

	Appx. B: Improving Memory Efficiency
	Overview
	On-Chip Global Memories
	On-Chip Pipes
	Multiple Memory Ports per Kernel
	Adjustable Memory Port Data Width
	Burst Transfers from Off-Chip Global Memory

	Appx. C: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Please Read: Important Legal Notices

