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Chapter 1

Introduction

Overview
To achieve the highest possible acceleration of a software application, recent advances have 
included the development of multi-core and heterogeneous computing platforms. These 
architectures enable the software engineer to more effectively trade-off performance and 
power for different form factors and computational loads. The one challenge in using these 
new computing architectures is the programming model of each platform. All multi-core 
and heterogeneous computing platforms require the programmer to rethink the problem to 
be solved in terms of explicit parallelism.

Recognizing the programming challenge of multi-core and heterogeneous compute 
platforms, the Khronos™ Group industry consortium has developed the OpenCL™ 
programming standard [Ref 1]. The OpenCL specification for multi-core and heterogeneous 
compute platforms defines a single consistent programming model and system-level 
abstraction for all hardware platforms that support the standard. This means that a software 
engineer learns a single programming model and directly uses it on devices from multiple 
vendors.

Xilinx® is an active member of the Khronos Group, collaborating on the specification of 
OpenCL, and supports the compilation of OpenCL programs for Xilinx FPGA devices. 
SDAccel™ is the Xilinx® development environment for compiling OpenCL programs to 
execute on Xilinx FPGA devices.

The OpenCL standard guarantees functional portability but not performance portability. 
Therefore, even though the same code will run on every platform supporting OpenCL, the 
performance achieved will vary depending on coding style and capabilities of the 
underlying hardware. Optimizing for an FPGA using the SDAccel tool chain requires the 
same effort as code optimization for a CPU/GPU. The one difference in optimization for 
these platforms is that in a CPU/GPU, the programmer is trying to get the best mapping of 
an application onto a fixed architecture. For an FPGA, the programmer is concerned with 
guiding the compiler to generate optimized compute architecture for each accelerator 
(referred to as a kernel) in the application.
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Chapter 1: Introduction
As specified by the OpenCL standard, any code that complies with the OpenCL specification 
is functionally portable and will execute on any computing platform that supports the 
standard. Therefore, any code changes are for performance optimization. To aid the user in 
these optimizations, SDAccel offers performance profiling capabilities integrated into the 
run-time. This profiling helps the user analyze the achieved performance and pinpoint any 
potential bottlenecks that need to be addressed.

Guide Organization
This User Guide employs the integrated profiling in SDAccel to analyze and understand the 
implications of OpenCL constructs on FPGA performance. This guide uses a few key designs 
as vehicles to illustrate performance characteristics and in turn, suggests design techniques 
to write OpenCL accelerators using FPGAs. The chapters in this guide are organized as 
follows:

Chapter 2: What is an FPGA?
This chapter introduces the computational elements available on an FPGA and how they 
compare to a processor. It covers topics such as FPGA memory hierarchy, logic elements, 
and how these elements interrelate.

Chapter 3: What is OpenCL?
This chapter introduces the basic concepts of the OpenCL programming standard. It 
provides an overview of the standard, provides definitions of terminologies used in the 
standard, and describes how FPGAs are uniquely suited for the parallel computational 
aspects of the standard.

Chapter 4: Application Profiling in SDAccel
This chapter describes how to collect, display, and interpret profiling results in the SDAccel 
development environment.

Chapter 5: Data Path Optimizations
This chapter describes a matrix adder kernel example and steps through the performance 
optimizations applied to the design. These optimizations are primarily targeted to improve 
data path performance, and their effects on the overall design performance are described in 
detail.
Performance Optimization www.xilinx.com 6
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Chapter 1: Introduction
Chapter 6: Memory Access Optimizations
This chapter steps through a second design example implementing the Smith-Waterman 
algorithm. This algorithm performs local sequence alignment and is often applied to 
protein or nucleic acid sequences. The optimizations applied to this design primarily 
improve memory accesses, and their effects on the overall design performance are 
described in detail.

Chapter 7: Putting It All Together
This chapter provides a third design example accelerating a 3x3 median filter. This 
algorithm is applied to images and is excellent for removing certain types of noise. The 
optimizations used to improve this design target both data path and memory accesses. 
These optimizations are gradually applied to improve the kernel, and their effects are 
described in detail.

Chapter 8: Performance Checklist
This chapter provides a starting checklist that can generally be applied to any OpenCL 
kernels targeting FPGA devices. It contains a list of suggested items to consider when 
improving the performance of your kernel. This chapter also provides a few tool flow 
suggestions which leverage the many capabilities of SDAccel.

Appendix A: Improving Data Path Performance
This chapter highlights a few key techniques to improve the data path performance within 
OpenCL kernels. These techniques take the form of Tcl parameters, data types, or attributes 
in the OpenCL C kernel source code. This chapter describes their usage in SDAccel and 
demonstrates their effects on performance.

Appendix B: Improving Memory Efficiency
This chapter highlights some key techniques to improve memory efficiency of OpenCL 
kernels. These techniques take the form of Tcl parameters, usage of local memories, and 
other architectural concepts for OpenCL C kernels. This chapter describes their usage in 
SDAccel and demonstrates their effects on performance.
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Chapter 2

What is an FPGA?

Overview
An FPGA is an integrated circuit (IC) that can be programmed for different algorithms after 
fabrication. Modern FPGA devices consist of up to two million logic cells that can be 
configured to implement a variety of software algorithms. Although the traditional FPGA 
design flow is more similar to a regular IC than a processor, an FPGA provides significant 
cost advantages in comparison to an IC development effort and offers the same level of 
performance in most cases. Another advantage of the FPGA when compared to the IC is its 
ability to be dynamically reconfigured. This process, which is the same as loading a program 
in a processor, can affect part or all of the resources available in the FPGA fabric.

When using SDAccel, it is important to have a basic understanding of the available 
resources in the FPGA fabric and how they interact to execute a target application. This 
chapter presents fundamental information about FPGAs, which is required to guide SDAccel 
to the best computational architecture for any algorithm.

FPGA Architecture
Xilinx FPGAs are heterogeneous compute platforms that include Block RAMs, DSP Slices, 
PCI Express support, and programmable fabric. They enable parallelism and pipelining of 
applications across the entire platform as all of these compute resources can be used 
simultaneously. SDAccel is the tool provided by Xilinx to target and enable these compute 
resources for OpenCL programs.

The basic structure of an FPGA is composed of the following elements:

• Look-up table (LUT) - This element performs logic operations.

• Flip-Flop (FF) - This register element stores the result of the LUT.

• Wires - These elements connect elements to one another.

• Input/Output (I/O) pads - These physical ports get data in and out of the FPGA.
Performance Optimization www.xilinx.com 8
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Chapter 2: What is an FPGA?
The combination of these elements results in the basic FPGA architecture shown in 
Figure 2-1. Although this structure is sufficient for the implementation of any algorithm, 
the efficiency of the resulting implementation is limited in terms of computational 
throughput, required resources, and achievable clock frequency.

Contemporary FPGA architectures incorporate the basic elements along with additional 
computational and data storage blocks that increase the computational density and 
efficiency of the device. These additional elements, which are discussed in the following 
sections, include:

• Embedded memories for distributed data storage

• Phase-locked loops (PLLs) for driving the FPGA fabric at different clock rates

• High-speed serial transceivers

• Off-chip memory controllers

• Multiply-accumulate blocks

X-Ref Target - Figure 2-1

Figure 2-1: Basic FPGA Architecture
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Chapter 2: What is an FPGA?
Figure 2-2 shows the combination of these elements on a contemporary FPGA architecture. 
This provides the FPGA with the flexibility to implement any software algorithm running on 
a processor. Note that all of these elements across the entire FPGA device can be used 
concurrently, creating a unique compute platform for OpenCL applications. 

LUT
The LUT is the basic building block of an FPGA and is capable of implementing any logic 
function of N Boolean variables. Essentially, this element is a truth table in which different 
combinations of the inputs implement different functions to yield output values. The limit 
on the size of the truth table is N, where N represents the number of inputs to the LUT. For 
the general N-input LUT, the number of memory locations accessed by the table is 2N. This 
allows the table to implement 2N^N functions. Note that a typical value for N in Xilinx FPGA 
devices is 6.

X-Ref Target - Figure 2-2

Figure 2-2: Contemporary FPGA Architecture
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Chapter 2: What is an FPGA?
The hardware implementation of a LUT can be thought of as a collection of memory cells 
connected to a set of multiplexers. Figure 2-3 shows this functional representation of the 
LUT. The inputs to the LUT act as selector bits on the multiplexer to select the result at a 
given point in time. It is important to keep this representation in mind, because a LUT can 
be used as both a function compute engine and a data storage element. 

Flip Flop

X-Ref Target - Figure 2-3

Figure 2-3: Functional Representation of a LUT as a Collection of Memory Cells

X-Ref Target - Figure 2-4

Figure 2-4: Structure of a Flip-Flop
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Chapter 2: What is an FPGA?
The flip-flop is the basic storage unit within the FPGA fabric. This element is always paired 
with a LUT to assist in logic pipelining and data storage. As shown in Figure 2-4, page 11, 
the basic structure of a flip-flop includes a data input, clock input, clock enable, reset, and 
data output. During normal operation, any value at the data input port is latched and 
passed to the output on every pulse of the clock. The purpose of the clock enable pin is to 
allow the flip-flop to hold a specific value for more than one clock pulse. New data inputs 
are only latched and passed to the data output port when both clock and clock enable are 
equal to one.

DSP48 Block

The most complex computational block available in a Xilinx FPGA is the DSP48 block, which 
is shown in Figure 2-5. The DSP48 block is an arithmetic logic unit (ALU) embedded into the 
fabric of the FPGA and is composed of a chain of three different blocks. The computational 
chain in the DSP48 contains an add/subtract unit connected to a multiplier connected to a 
final add/subtract/accumulate engine. This chain allows a single DSP48 unit to implement 
functions of the form:

P=B×(A+D)+C

Or

P +=B×(A+D)

X-Ref Target - Figure 2-5

Figure 2-5: Structure of a DSP48 Block
Performance Optimization www.xilinx.com 12
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=12


Chapter 2: What is an FPGA?
The DSP48 block can be utilized by SDAccel to perform a lot of the computational load 
within OpenCL kernels. The synthesis flow inside the SDAccel tool targets this block 
automatically.

BRAM and Other Memories
The FPGA fabric includes embedded memory elements that can be used as random-access 
memory (RAM), read-only memory (ROM), or shift registers. These elements are block 
RAMs (BRAMs), LUTs, and shift registers.

The BRAM is a dual-port RAM module instantiated into the FPGA fabric to provide on-chip 
storage for a relatively large set of data. The two types of BRAM memories available in a 
device can hold either 18k or 36k bits, and the available amount of these memories is device 
specific. The dual-port nature of these memories allows for parallel, same-clock-cycle 
access to different locations.

In OpenCL code, BRAMs can implement either a RAM or a ROM, covering on-chip global, 
local, and private memory types. In a RAM configuration, the data can be read and written 
at any time during the runtime of the circuit. In contrast, in a ROM configuration, data can 
only be read during the runtime of the circuit. The data of the ROM is written as part of the 
FPGA configuration and cannot be modified in any way.

As previously discussed, the LUT is a small memory in which the contents of a truth table are 
written during device configuration. Due to the flexibility of the LUT structure in Xilinx 
FPGAs, these blocks can be used as 64-bit memories and are commonly referred to as 
distributed memories. This is the fastest kind of memory available on the FPGA device, 
because it can be instantiated in any part of the fabric that improves the performance of the 
implemented circuit.

The shift register is a chain of registers connected to each other, as shown in Figure 2-6. The 
purpose of this structure is to provide data reuse along a computational path, such as with 
a filter. For example, a basic filter is composed of a chain of multipliers that multiply a data 
sample against a set of coefficients. By using a shift register to store the input data, a 
built-in data transport structure moves the data sample to the next multiplier in the chain 
on every clock cycle.

X-Ref Target - Figure 2-6

Figure 2-6: Structure of an Addressable Shift Register
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Chapter 2: What is an FPGA?
FPGA Parallelism Versus Processor Architectures
When compared with processor architectures, the structures that comprise the FPGA fabric 
enable a high degree of parallelism in application execution. The custom processing 
architecture generated by SDAccel for an OpenCL kernel presents a different execution 
paradigm. This must be taken into account when deciding to port an application from a 
processor to an FPGA. To examine the benefits of the FPGA execution paradigm, this section 
provides a brief review of processor program execution.

Program Execution on a Processor
A processor, regardless of its type, executes a program as a sequence of instructions that 
translate into useful computations for the software application. This sequence of 
instructions is generated by processor compiler tools, such as the GNU Compiler Collection 
(GCC), which transform an algorithm expressed in C/C++ into assembly language 
constructs that are native to the processor. The job of a processor compiler is to take a C 
function of the form:

z=a+b;

and transform it into assembly code as follows:

ADD $R1,$R2,$R3

The assembly code above defines the addition operation to compute the value of z in terms 
of the internal registers of a processor. The input values for the computation are stored in 
registers R1 and R2, and the result of the computation is stored in register R3. The assembly 
code above is simplified as it does not express all the instructions needed to compute the 
value of z. This code only handles the computation after the data has arrived at the 
processor. Therefore, the compiler must create additional assembly language instructions 
to load the registers of the processor with data from a central memory and to write back the 
result to memory. The complete assembly program to compute the value of z is as follows:

LD a,$R1
LD b,$R2
ADD R1,$R2,$R3
ST $R3,c
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Chapter 2: What is an FPGA?
This code shows that even a simple operation, such as the addition of two values, results in 
multiple assembly instructions. The computational latency of each instruction is not equal 
across instruction types. For example, depending on the location of a and b, the LD 
operations take a different number of clock cycles to complete. If the values are in the 
processor cache, these load operations complete within a few tens of clock cycles. If the 
values are in the main, double data rate (DDR) memory, these operations take hundreds of 
clock cycles to complete. If the values are on a hard drive, the load operations take even 
longer to complete. This is why software engineers with cache hit traces spend so much 
time restructuring their algorithms to increase the spatial locality of data in memory to 
increase the cache hit rate and decrease the processor time spent per instruction [2].

Program Execution on an FPGA
The FPGA is an inherently parallel processing fabric capable of implementing any logical 
and arithmetic function that can run on a processor. The main difference is that the 
Vivado® High-Level Synthesis (HLS) compiler [3], which is used by SDAccel to transform 
OpenCL software descriptions into RTL, is not hindered by the restrictions of a cache and a 
unified memory space.

The computation of z is compiled by HLS into several LUTs required to achieve the size of 
the output operand. For example, assume that in the original software program the variable 
a, b, and z are defined with the short data type. This type, which defines a 16-bit data 
container, gets implemented as 16 LUTs by HLS. As a general rule, 1 LUT is equivalent to 1 
bit of computation.

The LUTs used for the computation of z are exclusive to this operation only. Unlike a 
processor, where all computations share the same ALU, an FPGA implementation 
instantiates independent sets of LUTs for each computation in the software algorithm.

In addition to assigning unique LUT resources per computation, the FPGA differs from a 
processor in both memory architecture and the cost of memory accesses. In an FPGA 
implementation, the HLS compiler arranges memories into multiple storage banks as close 
as possible to the point of use in the operation. This results in an instantaneous memory 
bandwidth, which far exceeds the capabilities of a processor. For example, the Xilinx 
Kintex®-7 410T device has a total of 1,590 18k-bit BRAMs available. In terms of memory 
bandwidth, the memory layout of this device provides the software engineer with the 
capacity of 0.5M-bits per second at the register level and 23T-bits per second at the BRAM 
level.

With regard to computational throughput and memory bandwidth, the HLS compiler 
exercises the capabilities of the FPGA fabric through the processes of scheduling, 
pipelining, and dataflow. Although transparent to the user, these processes are integral 
stages of the software compilation process that extract the best possible circuit-level 
implementation of the software application.
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Scheduling
Scheduling is the process of identifying the data and control dependencies between 
different operations to determine when each will execute. In traditional FPGA design, this is 
a manual process also referred to as parallelizing the software algorithm for a hardware 
implementation.

HLS analyzes dependencies between adjacent operations as well as across time. This allows 
the compiler to group operations to execute in the same clock cycle and to set up the 
hardware to allow the overlap of function calls. The overlap of function call executions 
removes the processor restriction that requires the current function call to fully complete 
before the next function call to the same set of operations can begin. This process is called 
pipelining and is covered in detail in the following section and remaining chapters.

Pipelining
Pipelining is a digital design technique that allows the designer to avoid data dependencies 
and increase the level of parallelism in an algorithm hardware implementation. The data 
dependence in the original software implementation is preserved for functional 
equivalence, but the required circuit is divided into a chain of independent stages. All 
stages in the chain run in parallel on the same clock cycle. The only difference is the source 
of data for each stage. Each stage in the computation receives its data values from the result 
computed by the preceding stage during the previous clock cycle. For example, consider 
the following function:

y=(a*x)+b+c

The HLS compiler instantiates one multiplier and two adder blocks to implement this 
function.
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Chapter 2: What is an FPGA?
Figure 2-7 shows this compute structure and the effects of pipelining. It shows two 
implementations of the example function. The top implementation is the data path required 
to compute the result y without pipelining. This implementation behaves similarly to the 
corresponding software function in that all input values must be known at the start of the 
computation, and only one result y can be computed at a time. The bottom implementation 
shows the pipelined version of the same circuit.

The boxes in the data path in the above figure represent registers that are implemented by 
flip-flop blocks in the FPGA fabric. Each box can be counted as a single clock cycle. 
Therefore, in the pipelined version, the computation of each result y takes three clock 
cycles. By adding the register, each block is isolated into separate compute sections in time.

This means that the section with the multiplier and the section with the two adders can run 
in parallel and reduce the overall computational latency of the function. By running both 
sections of the data path in parallel, the block is essentially computing the values y and y' 
in parallel, where y' is the result of the next execution of the equation for y above. The initial 
computation of y, which is also referred to as the pipeline fill time, takes three clock cycles. 
However, after this initial computation, a new value of y is available at the output on every 
clock cycle. The computation pipeline contains overlapped data sets for the current and 
subsequent y computations.

X-Ref Target - Figure 2-7

Figure 2-7: FPGA Implementation of a Compute Function
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Figure 2-8 shows a pipelined architecture in which raw data (dark gray), semi-computed 
data (white), and final data (light gray) exist simultaneously, and each stage result is 
captured in its own set of registers. Thus, although the latency for such computation is in 
multiple cycles, a new result can be produced on every cycle.

Dataflow
Dataflow is another digital design technique, which is similar in concept to pipelining. The 
goal of dataflow is to express parallelism at a coarse-grain level. In terms of software 
execution, this transformation applies to parallel execution of functions within a single 
program.

SDAccel extracts this level of parallelism by evaluating the interactions between different 
functions of a program based on their inputs and outputs. The simplest case of parallelism 
is when functions work on different data sets and do not communicate with each other. In 
this case, SDAccel allocates FPGA logic resources for each function and then runs the blocks 
independently. The more complex case, which is typical in software programs, is when one 
function provides results for another function. This case is referred to as the 
consumer-producer scenario.

X-Ref Target - Figure 2-8

Figure 2-8: Pipelined Architecture
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Figure 2-9 shows a conceptual view of dataflow pipelining. After synthesis, the default 
behavior is to execute and complete func_A, then func_B, and finally func_C. However, 
you can use the Vivado HLS DATAFLOW directive to schedule each function to execute as 
soon as data is available. In this example, the original function has a latency and interval of 
8 clock cycles. When you use dataflow optimization, the interval is reduced to only 3 clock 
cycles. The tasks shown in this example are functions, but you can perform dataflow 
optimization between functions, between functions and loops, and between loops.

SDAccel supports two use models for the consumer-producer scenario. In the first use 
model, the producer creates a complete data set before the consumer can start its 
operation. Parallelism is achieved by instantiating a pair of BRAM memories arranged as 
memory banks ping and pong. Each function can access only one memory bank, ping or 
pong, for the duration of a function call. When a new function call begins, the 
HLS-generated circuit switches the memory connections for both the producer and the 
consumer. This approach guarantees functional correctness but limits the level of 
achievable parallelism to across function calls.

In the second use model, the consumer can start working with partial results from the 
producer, and the achievable level of parallelism is extended to include execution within a 
function call. The HLS-generated modules for both functions are connected through the use 
of a first in, first out (FIFO) memory circuit. This memory circuit, which acts as a queue in 
software programming, provides data-level synchronization between the modules. At any 
point during a function call, both hardware modules are executing their programming. The 
only exception is that the consumer module waits for some data to be available from the 
producer before beginning computation. In HLS terminology, the wait time of the consumer 
module is referred to as the interval or initiation interval (II).

X-Ref Target - Figure 2-9

Figure 2-9: Dataflow Optimization
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Chapter 3

What is OpenCL?

Overview
The OpenCL standard for parallel programming has been developed by the Khronos Group 
industry consortium to address the challenges of programming multi-core and 
heterogeneous compute platforms [Ref 1]. The OpenCL specification defines a single 
programming model and a set of system-level abstractions that are supported by all 
hardware platforms conforming to the standard. This means that a software engineer can 
learn a single programming model and use it directly on devices from multiple vendors.

OpenCL provides a programming language and runtime API to support the development of 
close-to-the-metal software which is both efficient and portable. Additionally, OpenCL 
provides low-level hardware abstractions that allow OpenCL implementations to expose 
many details of underlying hardware. These low-level abstractions are the platform, 
memory, and executions models described in the OpenCL specification. Understanding how 
these concepts translate into physical implementations on an FPGA is necessary for 
application optimization.

This chapter provides a review of the OpenCL platform model and its extensions to FPGA 
devices. It explains the mapping of the OpenCL platform and memory model into an 
SDAccel generated implementation. This chapter will also mention how contemporary 
FPGAs can be leveraged to achieve high levels of performance using the Xilinx SDAccel tool.

OpenCL Platform Model
The OpenCL platform model defines the logical representation of all hardware capable of 
executing an OpenCL program. OpenCL platforms are defined by the grouping of a host 
processor and one or more OpenCL compute devices. The host processor, which runs the 
OS for the system, is also responsible for the general bookkeeping and task launch duties 
associated with the execution of OpenCL applications. The device is the hardware element 
in the system on which the compute kernels of an OpenCL application are executed. Each 
device is further divided into a set of compute units. The number of compute units depends 
on the target hardware. A compute unit is further subdivided into processing elements. A 
processing element is the fundamental computation engine in the compute unit, which is 
responsible for executing the operations of one work item. 
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A conceptual view of the OpenCL platform model is shown in Figure 3-1. An OpenCL 
platform always starts with a host processor. For platforms created with Xilinx® devices, the 
host processor is an x86 based processor communicating to the devices using PCIe®. The 
host processor has the following responsibilities:

• Manage the operating system and enable drivers for all devices.

• Execute the application host program.

• Set up all global memory buffers and manage data transfer between the host and the 
device.

• Monitor the status of all compute units in the system.

In all OpenCL platforms, the host processor tasks are executed using a common set of 
OpenCL API. The implementation of the OpenCL API functions is provided by the hardware 
vendor and is referred to as the OpenCL runtime library. The OpenCL runtime library is 
responsible for translating user commands described by the OpenCL API into hardware 
specific commands for a given device. For example, when the application programmer 
allocates a memory buffer using the clCreateBuffer API, it is the responsibility of the 
runtime library to keep track of where the allocated buffer physically resides in the system, 
and of the mechanism required for buffer access. It is important for the application 
programmer to keep in mind that the OpenCL API is portable across vendors, but the 
runtime library provided by a vendor is not. Therefore, OpenCL applications have to be 
linked at compile time with the runtime library that is paired with the target execution 
device.

The other component of a platform is the device. A device in the context of OpenCL is the 
physical collection of hardware resources onto which the application kernels are executed. 

X-Ref Target - Figure 3-1

Figure 3-1: OpenCL Platform Model
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Chapter 3: What is OpenCL?
A platform must have at least one device available for the execution of kernels. Also, per the 
OpenCL platform model, all devices in a platform do not have to be of identical type.

OpenCL Devices and FPGAs
In the context of CPU and GPU hardware, the attributes of an OpenCL device are fixed and 
the programmer has very little influence on what the device looks like. An advantage of this 
characteristic of CPU/GPU systems makes it relatively easy to obtain and use off-the-shelf 
hardware. This advantage is also a major limitation when compared to FPGA based OpenCL 
devices. CPU and GPU based systems typically have fixed data paths, memory systems, and 
I/O architectures. It is not possible, for example, to directly attach high-speed I/O to an 
OpenCL compute kernel. Similarly, efficient data movement is only performed using bulk 
memory based transfers.

An OpenCL device for an FPGA is not limited by the constraints of a CPU/GPU device. By 
taking advantage of the fact that the FPGA starts off as a blank computational canvas, the 
user can decide the level of device customization that is appropriate to support a single 
application or a class of applications. In determining the level of customization in a device, 
the programmer can take advantage of the fact that kernel compute units are not placed in 
isolation within the FPGA fabric.

FPGA devices capable of supporting OpenCL programs can include, but are not limited to, 
the following components:

• DMA engines

• I/O peripherals such as PCIe and Ethernet

• Memory controllers

• Custom interconnects

• OpenCL compute units

• RTL-based accelerators

The creation of Xilinx FPGA based OpenCL devices requires FPGA design expertise and is 
beyond the scope of SDAccel itself. Devices for SDAccel are created using the Xilinx 
Vivado® design suite for FPGA designers. SDAccel provides pre-defined devices as well as 
allows users to augment the tool with third party created devices. A methodology guide 
describing how to create a device for SDAccel is available upon request from Xilinx.

The devices available in SDAccel are for Virtex®-7, Kintex®-7, and Kintex-UltraScale® 
devices from Xilinx. These devices are available in a PCIe form factor. The PCIe form factor 
assumes that the host processor is an x86 based processor and that the FPGA is used for the 
implementation of compute units.
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OpenCL Memory Model

The OpenCL memory model defines the behavior and hierarchy of memory that can be 
used by OpenCL applications, as shown in Figure 3-2. This hierarchical representation of 
memory is common across all OpenCL implementations, but it is up to individual vendors to 
define how the OpenCL memory model maps to specific hardware.  This section defines the 
mapping used by SDAccel.

Host Memory
The host memory is defined as the region of system memory that is directly accessible from 
the host processor. Any data needed by compute kernels must be transferred to and from 
OpenCL device global memory using the OpenCL API.

Global Memory
The global memory is defined as the region of device memory that is accessible to both the 
OpenCL host and device. Global memory permits read/write access to the host processor as 
well to all compute units in the device. As shown above, Xilinx OpenCL platforms may 
further divide the global memory space between on-chip and off-chip memories. The host 
is responsible for the allocation and de-allocation of buffers in this memory space. There is 
a handshake between host and device over control of the data stored in this memory. The 
host processor transfers data from the host memory space into the global memory space. 
Then, once a kernel is launched to process the data, the host loses access rights to the 
buffer in global memory. The device takes over and is capable of reading and writing from 

X-Ref Target - Figure 3-2

Figure 3-2: OpenCL Memory Model
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the global memory until the kernel execution is complete. Upon completion of the 
operations associated with a kernel, the device turns control of the global memory buffer 
back to the host processor. Once it has regained control of a buffer, the host processor can 
read and write data to the buffer, transfer data back to the host memory, and de-allocate 
the buffer.

Constant Global Memory
Constant global memory is defined as the region of system memory that is accessible with 
read and write access for the OpenCL host and with read only access for the OpenCL device. 
As the name implies, the typical use for this memory is to transfer constant data needed by 
kernel computation from the host to the device.

Local Memory
Local memory is a region of memory that is local to a single compute unit. The host 
processor has no visibility and no control on the operations that occur in this memory 
space. This memory space allows read and write operations by all the processing elements 
with a compute units. This level of memory is typically used to store data that must be 
shared by multiple work-items. Operations on local memory are un-ordered between 
work-items but synchronization and consistency can be achieved using barrier and fence 
operations.  In SDAccel, the structure of local memory can be customized to meet the 
requirements of an algorithm or application.

Private Memory
Private memory is the region of memory that is private to an individual work-item executing 
within an OpenCL processing element. As with local memory, the host processor has no 
visiblilty into this memory region.  This memory space can be read from and written to by 
all work-items, but variables defined in one work-item's private memory are not visible to 
another work-item.  In SDAccel, the structure of private memory can be customized to meet 
the requirements of an algorithm or application.

For devices using an FPGA device, the physical mapping of the OpenCL memory model is 
the following:

• Host memory is any memory connected to the host processor only.

• Global and constant memories are any memory that is connected to the FPGA device. 
These are usually memory chips (e.g. SDRAM) that are physically connected to the 
FPGA device, but might also include distributed memories (e.g. BlockRAM) within the 
FPGA fabric. The host processor has access to these memory banks through 
infrastructure provided by the FPGA platform.

• Local memory is memory inside of the FPGA device. This memory is typically 
implemented using registers or BlockRAMs in the FPGA fabric.
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• Private memory is memory inside of the FPGA device. This memory is typically 
implemented using registers or BlockRAMs in the FPGA fabric.

OpenCL Execution Model
The OpenCL execution model defines how kernels execute. The most important concept to 
understand is NDRange execution. When OpenCL kernels are submitted for execution on an 
OpenCL device, they execute within the computer science concept of an index space. An 
example of an index space which is easy to understand is a for loop in C/C++.  In the for 
loop defined by the statement "for(int i=0; i<10; i++)", any statements within this loop will 
execute ten times, with i=0,1,2…,9.  In this case the index space of the loop is [0,1,2,…,9].  In 
OpenCL, index spaces are called NDRanges, and can have 1, 2, or 3-dimensions.

OpenCL kernel functions are executed exactly one time for each point in the NDRange index 
space. This unit of work for each point in the NDRange is called a work-item. Unlike for 
loops in C, where loop iterations are executed sequentially and in-order, an OpenCL runtime 
and device is free to execute work-items in parallel and in any order. It is this characteristic 
of OpenCL execution model that allows the programmer to take advantage of parallel 
compute resources.

Work-items are not scheduled for execution individually onto OpenCL devices. Instead, 
work-items are organized into work-groups, which are the unit of work scheduled onto 
compute units. Because of this, work-groups also define the set of work-items that may 
share data using local memory.

When a user submits a kernel for execution, they also provide the NDRange. This is called 
the global size in the OpenCL API. The user may also set the work-group size at runtime. 
This is called the local size in the OpenCL API. The user may also let the runtime select the 
local size based on the properties of the kernel and selected device. Once the work-group 
size (local size) has been determined, the NDRange (global size) is divided automatically 
into work-groups, and the work-groups are scheduled for execution on the device.

Optionally, a kernel programmer can set the work-group size at kernel compile time. 

IMPORTANT: In the case of an FPGA implementation, the specification of the work-group size is highly 
recommended as it can be used for performance optimization during the generation of the custom 
logic for a kernel. 

The work-group size of a kernel can be specified using the following OpenCL C attribute:

__kernel __attribute__ ((reqd_work_group_size(256, 1, 1)))

In this example, the only work-group size supported by the kernel is the tuple (256, 1, 1). 
SDAccel will therefore generate a specialized compute unit supporting only this size 
work-group.
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OpenCL supports one-dimensional, two-dimensional, and three-dimensional NDRanges 
and work-groups.

One-Dimensional NDRange

Figure 3-3 illustrates an example of one-dimensional NDRange with global size = (4096, 1, 
1) and local size = (512, 1, 1). This allows the computation to be broken down into eight 
work-groups, each with 512 work-items.

Now consider a simple vector adder kernel written with a work size of (1, 1, 1):

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vadd(__global const int* a, __global const int* b, __global int* c) {
int i;
for (i=0; i < 4096; i++) {
c[i] = a[i] + b[i];

}
}

In this example, the kernel is written in sequential C style. The length of the data is 4096, 
and the function iterates over the data using an explicit loop. In OpenCL C, however, it is 
better to write the kernel as shown below:

__kernel __attribute__ ((reqd_work_group_size(512, 1, 1)))
void vadd(__global const int* a, __global const int* b, __global int* c) {
int i = get_global_id(0);
c[i] = a[i] + b[i];

}

This produces the NDRange and work group sizes shown above. Because this example 
allows the OpenCL compiler and runtime to control the iteration over the 4096 data items, 
it allows a simpler coding style and enables the compiler to make better optimization 
decisions to parallelize the operations. The call to get_global_id(0) provides the current 

X-Ref Target - Figure 3-3

Figure 3-3: One-Dimensional Work Size
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location in the NDRange and is analogous to the index of a for loop. This is a simple 
example but is extensible to other larger work sizes. When using SDAccel, it is sometimes 
useful to think of the above code as transformed into the following form by the SDAccel 
compiler:

__kernel void vadd(global const int* a, global const int* b, global int* c) {
localid_t id;
for (id[0] = 0; id[0] < 512; id[0]++) {
for (id[1] = 0; id[1] < 1; id[1]++) {
for (id[2] = 0; id[2] < 1; id[2]++) {
c[id[0]] = a[id[0]] + b[id[0]];

}
}

}
}

Note that the code written within the kernel is surrounded by three nested loops to traverse 
the entire work-group size. These three for loops are conceptually introduced by SDAccel 
into the kernel to handle the three-dimensional space of the NDRange. The SDAccel 
compiler exploits NDRange parallelism by pipelining and vectorizing these conceptual 
loops.

The conceptual loop nest introduced by SDAccel can have either variable or fixed loop 
bounds. By setting the reqd_work_group_size attribute, the programmer is setting the loop 
boundaries on this loop nest. Fixed boundaries allow the kernel compiler to optimize the 
size of local memory in the compute unit and to provide latency estimates. If the work size 
is not specified, SDAccel might assume a large size for private memory, which can hinder 
the number of compute units that can be instantiated in the FPGA fabric.

Two-Dimensional NDRange
These concepts can be extended to a two-dimensional NDRanges. This type of NDRange 
works well with two-dimensional data such as matrices. Consider the following matrix adder 
kernel:

__kernel __attribute__ ((reqd_work_group_size(2, 2, 1)))
void madd(__global int* a, __global int* b, __global int* output) {
int index = get_global_id(1)*get_global_size(0) + get_global_id(0);
  

output[index] = a[index] + b[index];
}

This kernel defines a local work size of 2x2, specified as a required size of (2, 2, 1). The calls 
to get_global_id() provide the index in the global work size, while get_global_size() provides 
the total range value (e.g., 64 for a 64x64 matrix). Alternatively, the kernel could also index 
the local work indices and sizes using get_local_id() and get_local_size().
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Chapter 3: What is OpenCL?
Figure 3-4 illustrates how this two-dimensional space is defined and indexed. While the ND 
range is 64x64x1, the local work size is 2x2x1. Similar to the one-dimensional work size, this 
enables simpler coding as well as concurrent implementation across the vast resources of 
the FPGA.

Three-Dimensional NDRange

The concept of work size can be extended to a three-dimensional space. Figure 3-5 
illustrates this work size as a three-dimensional cube of size 16x16x16. While the total 
number of work items is again 4096, the work space is now defined across three different 

X-Ref Target - Figure 3-4

Figure 3-4: Two-Dimensional NDRange

X-Ref Target - Figure 3-5

Figure 3-5: Three-Dimensional Work Size
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Chapter 3: What is OpenCL?
dimensions. This works well for applications that can be defined across three dimensions 
such as 3D computer graphics and data mining algorithms.  Similar to the one- and 
two-dimensional cases, three dimensional work-items can be implemented to operate in a 
concurrent fashion on the FPGA device.

OpenCL Region
An SDAccel device contains a customization area called the OpenCL region (OCL Region). 
Although not defined in the OpenCL standard, the OCL Region is an important concept in 
SDAccel. The compute units generated from user kernel functions are placed in this region. 
These compute units are highly specialized to execute a single kernel function and 
internally contain parallel execution resources to exploit work-group level parallelism. By 
placing multiple compute units of the same type in the OCL Region, developers can easily 
scale the performance of single kernels across larger NDRange sizes. By placing multiple 
compute units of different types in the OCL Region, developers can leverage task 
parallelism between disparate kernels. In this way, the massive amounts of parallelism 
available in the FPGA device can be customized and harnessed by the SDAccel developer. 
This is different from CPU and GPU implementations of OpenCL which contain a fixed set of 
general purpose resources.

X-Ref Target - Figure 3-6

Figure 3-6: Block Diagram of Example Xilinx SDAccel Platform
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Chapter 3: What is OpenCL?
Figure 3-6 shows how an OCL region fits into an example Xilinx SDAccel platform. The OCL 
region contains the customized compute units which implement the user-defined 
accelerator kernels. SDAccel automatically adds the necessary interconnects for these 
compute units to communicate with the rest of the platform. Also contained on the FPGA 
device is a static region containing all the necessary circuitry for communication between 
host, compute units, and off-chip global memory. This static region is a pre-defined base 
platform which can be flashed onto an EPROM on the board. The FPGA would then be 
configured with this base platform upon power-up and is always there and accessible for 
the user. As shown in the above figure, communication to the host is performed over PCIe, 
a fast, standard interface used to connect and link with boards.

OpenCL C Example
To understand the benefits of FPGAs for OpenCL, consider the following OpenCL C kernel 
code:

#define LENGTH 64

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vmult(__global const int* a, __global const int* b, __global int* c) {
local int bufa[LENGTH];
local int bufb[LENGTH];
local int bufc[LENGTH];

event_t evt[3];
evt[0] = async_work_group_copy(bufa, a, LENGTH, 0);
evt[1] = async_work_group_copy(bufb, b, LENGTH, 0);
wait_group_events(2, evt);

for (int i=0; i < LENGTH; i++) {
bufc[i] = bufa[i] * bufb[i];

}

barrier(CLK_LOCAL_MEM_FENCE);
event_t e = async_work_group_copy(c, bufc, LENGTH, 0);
wait_group_events(1, &e);

}
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Chapter 3: What is OpenCL?
There are a number of FPGA resources leveraged by SDAccel to perform the functionality in 
this kernel. This includes the following:

• Loops - These are common elements in kernel functionality and are implemented using 
a variety of FPGA resources including LUTs and flip-flops. These loops can be unrolled 
and pipelined based on resource and performance requirements (refer to Loop 
Unrolling and Loop Pipelining in Appendix A for more information). How loops are 
implemented can have a major impact on overall kernel performance. 

• Arrays - The arrays bufa, bufb, and bufc are typically implemented in BRAMs, utilizing 
the distributed local storage on the FPGA.

• Operators - The multiplication of each element in the vectors can be performed by 
either LUTs or DSP48 Blocks. The same is true for other common operators such as 
addition, subtraction, comparators, etc.

° If desired to improve performance, the loop could be partially or fully unrolled. A 
high number of multiplications would then be performed concurrently.

• Communication - The high-speed communication between this kernel and the rest of 
the device would be implemented using LUTs and flip-flops. This includes the 
interconnect and memory controller to handle the calls to async_work_group_copy 
using high-bandwidth burst data transfers.
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Chapter 4

Application Profiling in SDAccel
The SDAccel™ runtime collects profiling data for host code execution on the CPU, as well as 
kernel execution on the FPGA. The profiling data include a number of useful statistics for 
your OpenCL™ application. This can provide you with information on performance 
bottlenecks in the application and optimization techniques that can be utilized to improve 
the performance. This chapter describes how to collect, display, and interpret profiling 
results in the SDAccel development environment.

Profiling Summary Report
The SDAccel™ runtime automatically collects profiling data on host applications. After the 
application finishes execution, the profile summary is saved in HTML,.csv, and Google 
Protocol Buffer formats in the solution report directory or working directory. These reports 
can be reviewed in a web browser, spreadsheet viewer, or the integrated Profile Summary 
Viewer in SDAccel. The profile reports are generated in all three compilation and execution 
flows: SDAccel GUI, Tcl, and XOCC/Makefile.

If you use the Profile Summary Viewer, Profile Rule Checks (PRC) are also provided to help 
interpret profiling results and suggest areas for performance improvements. These PRCs 
operate on the results in the profile summary .csv file and are reported in the Google 
Protocol Buffer file.
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GUI Flow
When you compile and execute an application from SDAccel GUI, the profile summary is 
automatically generated and placed in the Solution Explorer. Simply double-click the report 
to open it in the Profile Summary Viewer. You can also right-click and select Open.

Tcl Flow
Below are the profiling reports generated by the runtime depending on emulation or 
system run modes:

• When running CPU emulation using the run_emulation command in the SDAccel 
environment, the profile summary reports are as follows:

<solution_name>/rpt/profile_summary_cpu_em.html
<solution_name>/rpt/profile_summary_cpu_em.csv
<solution_name>/rpt/profile_summary_cpu_em.xprf

• When running hardware emulation using the run_emulation command in the 
SDAccel environment, the profile summary reports are as follows:

<solution_name>/rpt/profile_summary_hw_em.html
<solution_name>/rpt/profile_summary_hw_em.csv
<solution_name>/rpt/profile_summary_hw_em.xprf

• When running an application on hardware the using the run_system command in the 
SDAccel environment, the profile summary reports are as follows:

<solution_name>/rpt/profile_summary_hw.html
<solution_name>/rpt/profile_summary_hw.csv
<solution_name>/rpt/profile_summary_hw.xprf

X-Ref Target - Figure 4-1

Figure 4-1: Profiling in SDAccel GUI Flow
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Chapter 4: Application Profiling in SDAccel
XOCC/Makefile Flow
XOCC/Makefile users execute applications standalone outside the SDAccel environment. 
The following profile summary reports are generated in the directory where the application 
is executed:

<working_directory>/sdaccel_profile_summary.html
<working_directory>/sdaccel_profile_summary.csv

The .csv file needs to be manually converted to Google Protocol Buffer format (.xprf) 
before the profiling result can be viewed in the integrated “Profile Summary Viewer”. The 
following is a command line example that generates an .xprf file from the .csv input 
file:

$sda2protobuf sdaccel_profile_summary.csv

Displaying Profile Summary
Use the following methods to display the profile summary.

• Web Browser
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Chapter 4: Application Profiling in SDAccel
The HTML profile summary can be displayed in a Web Browser. The following figure 
shows the profiling result from a system run on the FPGA.

X-Ref Target - Figure 4-2

Figure 4-2: SDAccel Profile Summary - Part 1
Performance Optimization www.xilinx.com 35
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=35


Chapter 4: Application Profiling in SDAccel
• Profile Summary Viewer

Use the integrated “Profile Summary Viewer” to display profile summary generated 
from the SDAccel GUI, Tcl flow or XOCC/Makefile flow.

° SDAccel GUI Flow

For SDAccel GUI users, double click Profile Summary in the Solution Explorer window 
to open the Application Timeline window.

° TCL and XOCC/Makefile Flow

For Tcl or XOCC/Makefile users, follow the steps below to open the profile summary 
onto the Profile Summary Viewer:

1. Start SDAccel GUI by running “sdaccel” command:

X-Ref Target - Figure 4-3

Figure 4-3: SDAccel Profile Summary - Part 2
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Chapter 4: Application Profiling in SDAccel
$sdaccel

2. Choose the default workspace when prompted.

3. Select File > Open File…, browse to and then open the .xprf file generated 
during an emulation or system run.

• Profile Summary Window

Below is a snapshot of the Profile Summary window that displays OpenCL API calls, 
kernel executions, data transfers, and profile rule checks (PRCs).

Profile Summary Descriptions
The profile summary includes a number of useful statistics for your OpenCL™ application. 
This can provide you with a general idea of the functional bottlenecks in your application. 
The profile summary consists of the following tables:

• OpenCL API Calls - This table displays the profile data for all OpenCL host API function 
calls executed in the host application.

• Kernel Execution - This table displays the profile data for all kernel functions 
scheduled and executed.

• Compute Unit Utilization - This table displays the profile data for all compute units on 
the FPGA device.

X-Ref Target - Figure 4-4
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Chapter 4: Application Profiling in SDAccel
• Data Transfer: Host and Global Memory - This table displays the profile data for all 
read and write transfers between the host and device memory via PCIe® link.

° Number of Transfers: Number of host data transfers (Note: May contain printf 
transfers)

° Transfer Rate (MB/s): (Total Bytes Sent)/(Total Time in uSec) 

° Average Bandwidth Utilization (%): Transfer Rate / (Max. Transfer Rate) where Max. 
Transfer Rate = 5.0 GBps

° Average Size (KB): (Total KB sent) / (number of transfers)

° Total Time (ms): Total Time (ms) 

° Average Time (ms): (Total Time) / (number of transfers)

• Data Transfer: Kernels and Global Memory - This table displays the profile data for 
all read and write transfers between the FPGA and device memory.

° Number of Transfers: Number of transactions monitored on device (Note: May 
contain printf transfers)

° Transfer Rate (MB/s): (Total Bytes Sent) / (Device Execution Time) 

where Total Bytes Sent is sum of bytes across all transactions,

° Device Execution Time = End of last kernel execution - Start of first kernel execution

° Average Bandwidth Utilization (%): (Transfer Rate) / (Max. Transfer Rate) 

where Max. Transfer Rate = 0.6 * 10.7 GBps = 6.4 GBps

° Average Size (KB): (Total KB sent) / (number of transactions)

° Average Time (ms): (Total latency of all transaction) / (number of transactions)

• Top Data Transfer: Kernels and Global Memory - This table displays the profile data 
for top data transfers between FPGA and device memory.

° Average Bytes per Transfer: (Total Read Bytes + Total Write Bytes) /(Total Read 
Transactions + Total Write Transactions)

° Transfer Efficiency (%): (Average Bytes per Transfer) / min(4K, (Memory Bit Width/8 
* 256)) 

AXI4 specification limits the max burst length to 256 and max burst size to 4K bytes.

° Transfer Rate (MB/s): (Total Data Transfer) / (Device Execution Time) 

° Average Bandwidth Utilization (%): (Transfer Rate) / (0.6 * Max. Theoretical Rate)
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Chapter 4: Application Profiling in SDAccel
Profile Rule Checks
Profile Rule Checks (PRCs) are integrated with the Profile Summary Viewer and interpret 
profiling results so users know exactly where to focus on to improve the performance of a 
kernel. PRCs highlight certain profile results, inform users known issues, and provide 
improvement recommendations. PRCs work for both hardware emulation and system runs 
on the FPGA.

The PRC analyses are displayed in a tabular format with the following columns:

Rule

The Rule column displays the rule name. The following are the current rule set:

• Kernel Data Transfer

° Average Read Size (KB)

° Average Write Size (KB)

° Read Bandwidth (%)

° Write Bandwidth (%)

° Read Amount - Minimum (MB)

° Read Amount - Maximum (MB)

• Host Data Transfer

° Average Read Size (KB)

° Average Write Size (KB)

• Resource Usage

° Compute Unit Calls - Minimum

° Compute Unit Calls - Maximum

° Compute Unit Utilization (%)

° Kernel Utilization (%)

° Device Utilization (ms)

Threshold Value

The Threshold Value column displays the values used by the PRCs to determine whether or 
not a rule is met. The threshold values are collected from many applications that follow 
good design and coding practices in the SDAccel development environment.
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Chapter 4: Application Profiling in SDAccel
Actual Value

The Actual Value column displays the values in the profiling report from the hardware 
emulation or system run. This value is compared against the threshold value to see if the 
rule is met.

Conclusion

The Conclusion column displays the current status of the rule check: Met or Not Met.

Details

The Details column provides additional explanation on the current rule.

Guidance

The Guidance column provides recommendations on ways to improve the kernel in order to 
meet the current rule. Clicking the text brings up a popup window with tips and code 
snippets that you can apply to your kernel.

Timeline Trace
Timeline trace collects and displays host and device events on a common timeline to help 
you understand and visualize the overall health and performance of your systems. These 
events include:

• OpenCL API calls from the host code.

• Device trace data including AXI transaction start/stop, kernel start/stop, etc.

Collecting Timeline and Device Trace Data
Timeline and device trace data are not collected by default because the runtime needs to 
periodically unload the trace data from the FPGA device, which can add additional time to 
the overall application execution. However, the device data are collected with dedicated 
hardware inside the FPGA device, so the data collection will not affect kernel functionality 
on the FPGA. The following sections describe setups required to enable time and device 
data collection.

Note: Turning on device profiling is intrusive and can negatively affect overall performance. This 
feature should be used for system performance debugging only.
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GUI Flow

Timeline and device trace data collection is part of run configuration for an SDAccel project 
created from the SDAccel integrated environment. Follow the steps below to enable it:

Click the down arrow next to the debug or run button and then select Run Configurations 
to open the Run Configurations window.

On the Run Configurations window, go to Profile tab and check both Generate Timeline 
Report and Collect Device Data checkboxes. 

Note: You can have multiple run configurations for the same project and the profile settings need 
to be changed for each run configuration.

X-Ref Target - Figure 4-5

X-Ref Target - Figure 4-6
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Tcl and XOCC/Makefile Flow

Follow the instructions below to enable timeline and device trace data collection in the Tcl 
and XOCC/Makefile flow:

1. Set up the environment variables below to turn on timeline report and device trace data 
generations.

Bash:

export  SDACCEL_TIMELINE_REPORT=true

export SDACCEL_DEVICE_PROFILE=true

Csh:

setenv SDACCEL_TIMELINE_REPORT true

setenv SDACCEL_DEVICE_PROFILE true

Note: To turn off timeline report and device trace data generation, these two environment 
variables need to be unset. 

Bash:

unset SDACCEL_TIMELINE_REPORT

unset SDACCEL_DEVICE_PROFILE

Csh:

unsetenv SDACCEL_TIMELINE_REPORT

unsetenv SDACCEL_DEVICE_PROFILE

2. Execute hardware emulation or system run as normal. The timeline reports are 
generated after the application completes.

3. In the Tcl flow, the timeline reports are generated in the <solution>/rpt directory. Below 
are the reports from the hardware emulation of the median filter example. These reports 
can be directly opened and viewed in the SDAccel GUI as discussed in the Displaying 
Timeline Trace section.

timeline_trace_hw_em.csv

timeline_trace_hw_em.wcfg

timeline_trace_hw_em.wdb

4. In XOCC/Makefile flow, the timeline reports are generated in the current working 
directory. Below are the reports from the hardware emulation of the median filter 
example.

sdaccel_timeline_trace.csv

sdaccel_timeline_trace.html

The CSV report needs to be converted to the timeline trace format using “sda2wdb” 
utility before it can be opened and displayed on SDAccel GUI.
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$ sda2wdb sdaccel_timeline_trace.csv

This command creates the following two files in the current working directory:

sdaccel_timeline_trace.wcfg

sdaccel_timeline_trace.wdb

Displaying Timeline and Device Trace Data

SDAccel GUI Flow

For SDAccel GUI users, double click Application Timeline in the Solution Explorer window 
to open the Application Timeline window. You can also right-click and select Open.

TCL and XOCC/Makefile Flow

For Tcl or XOCC/Makefile users, follow the steps below to open the timeline report to 
visualize host and device events during application execution.

1. Start SDAccel GUI by running “sdaccel” command:

$sdaccel

2. Choose the default workspace when prompted.

3. Select File>Open File…, browse to the .wdb file generated during hardware emulation 
or system run, and open it.

X-Ref Target - Figure 4-7
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Application Timeline Window

Below is a snapshot of the Application Timeline window that displays host and device 
events on a common Timeline. This information helps you to understand details of 
application execution and identify potential areas for improvements.
X-Ref Target - Figure 4-8
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Chapter 5

Data Path Optimizations

Overview
Now that you have an understanding of the acceleration capabilities of FPGA devices and 
the OpenCL programming environment that enables them, it would be helpful to step 
through a few design examples. The hope is that these designs are complex enough to 
provide example characteristics yet simple enough to be easily understood. These designs 
take advantage of various attributes and architectural techniques, and step through their 
usage and impact. The profiling capabilities integrated into SDAccel are used to visually 
demonstrate these performance impacts.

This chapter focuses on a matrix adder kernel which computes the addition of two 64x64 
matrices. While these are relatively small matrices, the techniques described herein are 
applicable to much larger matrices.

Three different architectures for a 64x64 matrix adder were created and compared. 
Table 5-1 lists the kernel execution times as reported by the profiling summary. As you can 
see, the different architectures and settings had a significant impact on the overall 
performance of the system as the run-time to compute one matrix was considerably 
reduced. Below are details on how these kernels were created including the attributes and 
architectures for each.

Table 5-1: Comparison of Kernel Execution Times for 64x64 Matrix Adder

Design Kernel Execution Time (msec)

Un-Optimized 4.16

Workgroup Pipelined 1.64

Multiple Compute Units 1.26
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Unoptimized Design
#define RANK 64

__kernel __attribute__ ((reqd_work_group_size(RANK, RANK, 1)))
void madd(__global int* a, __global int* b, __global int* output) {
int index = get_local_id(1)*get_local_size(0) + get_local_id(0);

  
  output[index] = a[index] + b[index];
}

Above is the kernel source code for the un-optimized adder. No attributes were specified 
for this design other than the work size equal to the size of the matrices (i.e., 64x64). That 
is, iterating over an entire workgroup will fully add the input matrices a and b and output 
the result to output. All three are global integer pointers, which means each value in the 
matrices is four bytes and is stored in off-chip DDR global memory.

This local work size of (64, 64, 1) is the same as the global work size. It should be noted that 
this setting creates a total work size of 4096. 

IMPORTANT: This is the largest work size that SDAccel supports with the standard OpenCL attribute 
reqd_work_group_size. SDAccel supports work size larger than 4096 with the Xilinx attribute 
xcl_max_work_group_size. 

Any matrix larger than 64x64 would need to only use one dimension to define the work size. 
That is, a 128x128 matrix could be operated on by a kernel with a work size of (128, 1, 1), 
where each invocation operates on an entire row or column of data.

Figure 5-1 shows the kernel data transfer summary table for the un-optimized matrix adder 
kernel. This table is shown in the profile summary in the SDAccel user interface (UI). There 
are 8K read transfers, each with a size of 64 bytes. This is a single 512-bit memory word. 
Since read transfers do not use byte enables, we can deduce from our code that this is one 
32-bit word per transfer. The kernel reads two matrices, each containing 4K integer values. 
Writing the output matrix involves 4K transfers, each with a size of 4 bytes. This is one 
integer value per transfer.

X-Ref Target - Figure 5-1

Figure 5-1: Kernel Data Transfer Summary of Un-optimized Matrix Adder Kernel
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Chapter 5: Data Path Optimizations
Figure 5-2 shows a timeline trace of the un-optimized matrix adder. As expected from the 
profile summary in Figure 5-1, page 46, the timeline shows a high number of data transfers 
initiated by the kernel. The kernel is clearly spending a lot of time on data transfers.

Figure 5-3 displays the details of this timeline trace. The data transfers are performed as 
two reads, followed by time to add the two values, then a single write. The read transfers are 
then initiated for the next work item, and the process repeats again until all work items have 
been processed.

However, since the sizes of these data transfers is so small, this leads to a very inefficient 
kernel execution. This fact is also reflected in the high kernel execution time, as shown in 
Table 5-1, page 45, and low bandwidth utilization, as shown in Figure 5-1, page 46. This can 
be improved in a number of ways, including burst data transfers and improvements in the 
kernel data path. For this chapter, we are going to focus on the data path improvements.

Workgroup Pipelined
We can take advantage of the fact that the matrix adder kernel uses multiple workgroups. 
Across multiple invocations in the workgroup, we can expose a number of optimizations to 
the Vivado HLS compiler. One important one is workgroup pipelining. This involves 
pipelining the activity across all of the work items.

X-Ref Target - Figure 5-2

Figure 5-2: Timeline Trace of Un-Optimized Matrix Adder Kernel

X-Ref Target - Figure 5-3

Figure 5-3: Details of Timeline Trace for Un-optimized Matrix Adder Kernel
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Chapter 5: Data Path Optimizations
As described in NDRange Kernels, it is best to think of workgroups as nested for loops to 
cover the entire range of (x,y,z) values. Pipelining the activity across the entire range keeps 
as much of the kernel implementation as busy as possible throughout the execution. For 
more information, see Work Item Pipelining, page 80.

#define RANK 64

__kernel __attribute__ ((reqd_work_group_size(RANK, RANK, 1)))
void madd(__global int* a, __global int* b, __global int* output) {
  __local unsigned int bufa[RANK*RANK];
  __local unsigned int bufb[RANK*RANK];

  // Global
  int width = get_global_size(0);
  int xg = get_global_id(0);
  int yg = get_global_id(1);
  // Local
  int xl = get_local_id(0);
  int yl = get_local_id(1);
  // Indeces
  int index1 = yl*RANK + xl;
  int index2 = yg*width + xg; 
  

  __attribute__((xcl_pipeline_workitems)) {
    bufa[index1] = a[index2];
    bufb[index1] = b[index2];
  }
  barrier(CLK_LOCAL_MEM_FENCE);
  
  __attribute__((xcl_pipeline_workitems)) {
    output[index2] = bufa[index1] + bufb[index1];
  }
  barrier(CLK_LOCAL_MEM_FENCE);
}

The above code shows an initial improvement to the matrix adder kernel. The attribute 
xcl_pipeline_workitems was added twice to wrap the data transfers and pipeline the 
read and write requests. As shown in Figure 5-3, page 47, the read transfers are requested 
in pairs in order to obtain one value of each input matrix. The next read pair does not 
happen until the other pair has completed. This can be improved by pipelining these read 
requests. The same can be done to improve the integer addition and write transfers.

To accommodate the local storage of these pipelined read requests, we added local 
memories bufa and bufb. These memories as well as the global pointers are accessed 
accordingly using global and local indeces. We also added calls to 
barrier(CLK_LOCAL_MEM_FENCE) to ensure all values have been read before we begin the 
next stage. For a matrix adder kernel where each value can be computed independently, this 
is not absolutely necessary. However, it provides good design practice as a method of 
isolating read and write data transfers.
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Chapter 5: Data Path Optimizations
Figure 5-4 shows the timeline trace of the pipelined matrix adder kernel. Rather than the 
kernel performing two read transfers then a single write, it now first performs all read 
transfers. Once all are completed, then the kernel performs the addition and subsequent 
write transfers to DDR memory. 

While this is a more efficient kernel design with a lower execution time, we can further take 
advantage of the workgroups. Since the matrix addition involved separate operations for 
each work item, we can do a lot more in parallel and take advantage of the resources on the 
FPGA. To do this, we can include multiple compute units on the device.

Multiple Compute Units
If we take a closer look at the matrix addition computation, we see that it can be broken 
down into smaller chunks which can be performed independently. This allows us to perform 
them concurrently. Using OpenCL, the mechanism to do this is called workgroups. We can 
enqueue the madd kernel using a local work size which is different from the global work 
size.

The global work size is still 64x64, which is the size of the matrices. However, we now specify 
a required local work size of 16x16 for the kernel. For the matrix adder, we essentially use 
the same source code above in Workgroup Pipelined, page 47; however, we modify the 
value of RANK to be 16 (i.e., #define RANK 16). That informs the SDAccel compiler to 
break down the computation into groups of 16x16 for each call to a compute unit. If 
multiple compute units are on the device, then this computation can be done 
simultaneously.

X-Ref Target - Figure 5-4

Figure 5-4: Timeline Trace of Pipelined Matrix Adder Kernel
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Chapter 5: Data Path Optimizations
We take advantage of this parallelization by including eight compute units on our device. 
This exploits the multitude of resources available on an FPGA. An SDAccel Tcl script in order 
to request eight compute units would include the following:

create_opencl_binary bin_madd
set_property region "OCL_REGION_0" [get_opencl_binary bin_madd]
create_compute_unit -opencl_binary [get_opencl_binary bin_madd] -kernel [get_kernels 
madd] -name madd0
create_compute_unit -opencl_binary [get_opencl_binary bin_madd] -kernel [get_kernels 
madd] -name madd1
create_compute_unit -opencl_binary [get_opencl_binary bin_madd] -kernel [get_kernels 
madd] -name madd2
create_compute_unit -opencl_binary [get_opencl_binary bin_madd] -kernel [get_kernels 
madd] -name madd3
create_compute_unit -opencl_binary [get_opencl_binary bin_madd] -kernel [get_kernels 
madd] -name madd4
create_compute_unit -opencl_binary [get_opencl_binary bin_madd] -kernel [get_kernels 
madd] -name madd5
create_compute_unit -opencl_binary [get_opencl_binary bin_madd] -kernel [get_kernels 
madd] -name madd6
create_compute_unit -opencl_binary [get_opencl_binary bin_madd] -kernel [get_kernels 
madd] -name madd7

With a global size of 64x64 and a local size of 16x16, there will be (64/16) x (64/16) = 16 
invocations to these compute units. We chose eight units since that would ideally allow 
each compute unit to be used twice. Note that SDAccel supports up to ten compute units 
on one device.

In the host code, we still only enqueue the kernel once. Only a slight modification is 
required to specify different global and local sizes. The host code would look like the 
following:

global[0] = 64;
global[1] = 64;
local[0] = 16;
local[1] = 16;
err = clEnqueueNDRangeKernel(commands, kernel, 2, NULL, 
                             (size_t*)&global, (size_t*)&local, 0, NULL, NULL);
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Chapter 5: Data Path Optimizations
Figure 5-5 shows the compute unit utilization table as displayed in the SDAccel profile 
summary. As expected, each compute unit is called twice. With eight compute units, this 
involves 16 total calls. While the global work size is confirmed as 64:64:1 for each compute 
unit, the local work size is now 16:16:1 as specified. Since we have broken down the 
computation into smaller local work sizes, the call times for each compute unit is much 
smaller than the kernel execution time of the single workgroup pipelined kernel. This is 
entirely because the work size is smaller.

The timeline trace confirms this operation. Figure 5-6 shows the timeline trace of the matrix 
adder with eight compute units. The calls to the compute units are run simultaneously thus 
providing an improved execution time of the kernel, as shown in Table 5-1, page 45. Their 
calls are also staggered to accommodate for the overhead of starting and stopping each 
unit.

X-Ref Target - Figure 5-5

Figure 5-5: Compute Unit Utilization Table for Matrix Adder Kernel with Eight Compute Units

X-Ref Target - Figure 5-6

Figure 5-6: Timeline Trace for Matrix Adder Kernel with Eight Compute IUnits
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Chapter 6

Memory Access Optimizations

Overview
Improving memory accesses is a second category of optimizations that can be made to a 
kernel. Efficient memory accesses are critical to the performance of OpenCL kernels running 
on an FPGA since there is an inherent latency overhead to read and write data from off-chip 
DDR DRAM. A well-designed kernel will minimize this latency impact. A few suggested 
techniques include the following:

• On-Chip Memories - These memories utilize the BlockRAMs on the FPGAs and are 
physically located near the kernel computation. In the OpenCL memory architecture, 
these can either be on-chip global, local, or private memories. They allow one-cycle 
reads and writes, thus drastically improving memory access performance. Copying the 
data from DDR to these memories can be done very quickly using burst transactions 
(see below).

• On-Chip Pipes - These memories are implemented in BlockRAMs similarly to on-chip 
global memories. They provide efficient communication channels in between kernels. 

• Multiple Memory Ports per Kernel - This setting informs the SDAccel tool to maximize 
the number of memory ports per kernel. This provides a much more efficient method 
to read and write data instead of sharing a memory port across multiple interfaces.

• Adjustable Bit Width for Memory Ports - This setting takes advantage of the wider 
memory path on the device. For example, the Alpha Data board [Ref 7] uses a 512-bit 
memory path, which can enable access to sixteen 32-bit integers in a single memory 
word.

• Burst Transfers from Off-Chip Global Memory - This architectural technique utilizes 
large bursts of data between the kernel and the off-chip global memory. The benefit is 
much more efficient memory accesses as the overhead of the access is shared across a 
large amount of data being transferred.

All of the memory access optimizations listed above are described in more detail in 
Appendix B, Improving Memory Efficiency. 
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Chapter 6: Memory Access Optimizations
This chapter steps though an implementation of the Smith-Waterman algorithm [Ref 5]. 
This is a database search algorithm that performs local sequence alignment. It determines 
similar regions between two strings and is often used to compare protein or nucleic 
sequences. The algorithm compares segments of all possible lengths and optimizes a 
similarity measurement. Two version of the design, one un-optimized and the other 
optimized, were created and their profile results were compared and contrasted.

Un-Optimized Design
An un-optimized Smith-Waterman kernel, shown in the code snippet below, was created 
and profiled. It was designed for functionality only and no attempt was made to optimize 
any parts of the design. This can be considered an "off the shelf" design created by an FPGA 
novice. It also provides a good starting point to understand the profiling capabilities in 
SDAccel.

#include "constants.h"

__attribute__ ((reqd_work_group_size(1, 1, 1)))
kernel void smithwaterman (global int *matrix, global int *maxIndex, global const 
char *s1, global const char *s2) {
    short north = 0;
    short west = 0;
    short northwest = 0;
    int maxValue = 0;

    for (short index = N; index < N * N; index++) {
        short dir = CENTER;
        short val = 0;
        short j = index % N;
        if (j == 0) { // Skip the first column
            west = 0;
            northwest = 0;
            continue;
        }
        short i = index / N;
        short2 temp = matrix[index - N];
        north = temp.x;
        const short match = (s1[j] == s2[i]) ? MATCH : MISMATCH;
        short val1 = northwest + match;

        if (val1 > val) {
            val = val1;
            dir = NORTHWEST;
        }
        val1 = north + GAP;
        if (val1 > val) {
            val = val1;
            dir = NORTH;
        }
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        val1 = west + GAP;
        if (val1 > val) {
            val = val1;
            dir = WEST;
        }
        temp.x = val;
        temp.y = dir;
        matrix[index] = as_int(temp);
        west = val;
        northwest = north;
        if (val > maxValue) {
            *maxIndex = index;
            maxValue = val;
        }
    }
}

Note that this design compares two strings located at the s1 and s2 global constant 
pointers. This kernel assumes that the two string sequences have already been written to 
that location in shared global memory by the host processor. As we compare these two 
sequences and replace values according to the algorithm, the results are stored in global 
memory specified by the matrix pointer. The pointer maxIndex is used to store the index 
of the maximum value in the sequence.

This design was compiled with N=85 and run on an Alpha Data Virtex-7 board. Figure 6-1 
shows the kernel data transfer summary table reported by the integrated profiling in 
SDAccel. The inefficiency of this design is expressed in a few different values in this table. 
First, the number of read and write transfers is much more than it needs to be. For example, 
consider the fact that there are only 2*85 = 170 unique values in the two sequences, s1 and 
s2. However, there are 21,168 read transfers, or 124.5x more than there are unique values.

Second, one reason for the large number of transfers is expressed in the small average size 
of 64 bytes per transfer (listed in the table as 0.064 KB). This corresponds to a single 512-bit 
value. This is a very inefficient way of accessing this data since each read data transfer to 
DDR can take 50-70 clock cycles.

X-Ref Target - Figure 6-1

Figure 6-1: Kernel Data Transfer Summary Table of Un-Optimized Smith-Waterman Kernel
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Chapter 6: Memory Access Optimizations
The high number of data transfers is confirmed in the timeline trace. Figure 6-2 shows a 
partial view of the timeline trace for this un-optimized kernel. While this kernel is busy with 
many data transfers, each transfer only involves a burst length of one. Since these values are 
stored in sequential addresses in global memory, this is a poor method of reading this data. 

Optimized Design
__attribute__ ((reqd_work_group_size(1, 1, 1))
kernel void smithwaterman (global int *matrix, global int *maxIndex, global const 
char *s1, global const char *s2) {

short north = 0;
short west = 0;
short northwest = 0;
int maxValue = 0;
int localMaxIndex = 0;
int gid = get_global_id(0);

// Local memories using BlockRAMs
local char localS1[N];
local char localS2[N];
local int localMatrix[N*N];

async_work_group_copy(localS1, s1, N, 0);
async_work_group_copy(localS2, s2, N, 0);
async_work_group_copy(localMatrix, matrix, N*N, 0);

__attribute__((xcl_pipeline_loop)
for (short index = N; index < N * N; index++) {
short dir = CENTER;
short val = 0;
short j = index % N;
if (j == 0) { // Skip the first column
west = 0;
northwest = 0;
continue;

}
short i = index / N;
short2 temp = localMatrix[index - N];
north = temp.x;
const short match = (localS1[j] == localS2[i]) ? MATCH : MISMATCH;

X-Ref Target - Figure 6-2

Figure 6-2: Timeline Trace of Un-optimized Smith-Waterman Kernel
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short val1 = northwest + match;

if (val1 > val) {
val = val1;
dir = NORTHWEST;

}
val1 = north + GAP;
if (val1 > val) {
val = val1;
dir = NORTH;

}
val1 = west + GAP;
if (val1 > val) {
val = val1;
dir = WEST;

}0 temp.x = val;
temp.y = dir;
localMatrix[index] = as_int(temp);
west = val;
northwest = north;
if (val > maxValue) {
localMaxIndex = index;
maxValue = val;

}
}

*maxIndex = localMaxIndex;
async_work_group_copy(matrix, localMatrix, N*N, 0);

}

The source code above shows the optimized Smith-Waterman kernel. Key changes are 
highlighted in red. To increase the efficiency of the memory accesses, burst reads and writes 
were added using calls to the async_work_group_copy() function. This enables large 
amounts of data to be transferred between the kernel and global memory. To temporarily 
store the data locally, three local memories were added: localS1, localS2, and 
localMatrix. These memories involve local storage with fast single-cycle accesses and 
provide buffer interfaces between global memory and the data processing in the kernel.

Figure 6-3 shows the kernel data transfer summary table of the optimized Smith-Waterman 
kernel. All of the data can be transferred between kernel and global memory in three burst 
transfers: two read and one write. The transfers of s1 and s2 are completed in a single 
transfer, while the values of matrix are read in the second read transfer. The new values of 
matrix are written to global memory in the single write transfer. The Transfer Rate is 
low, however, which is expected because of the small number of transfers. This is typical of 
a compute-intensive algorithm such as Smith-Waterman.

X-Ref Target - Figure 6-3

Figure 6-3: Kernel Data Transfer Summary Table of Optimized Smith-Waterman Kernel
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Chapter 6: Memory Access Optimizations
The timing of the small number of data transfers is confirmed using trace. Figure 6-4 shows 
the timeline trace of the optimized Smith-Waterman kernel. Two read transfers are 
executed, then processing is performed on the data according to the algorithm. Once this 
computation is completed, then the write transfer is executed.

Note that the performance of the processing portion of the kernel was also improved by 
applying a xcl_pipeline_loop attribute to the kernel source code, as shown above. See 
Loop Pipelining, page 78 for more details on this attribute.

In summary, we used the SDAccel profiling to deduce that the poor performance of our 
Smith-Waterman kernel was the inefficient memory transfers. To improve on this, we took 
advantage of bursts to transfer large amounts of data from the off-chip global memory. In 
order to accommodate this data, we added local memories to store the data in the kernel. 
This enabled the kernel to perform much faster reads and writes during processing. With 
the optimizations discussed above, the kernel execution rate improved 41.0x to 0.19 msec.

X-Ref Target - Figure 6-4

Figure 6-4: Timeline Trace of Optimized Smith-Waterman Kernel
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Chapter 7

Putting It All Together

Overview
This chapter describes a median filter kernel which applies a 3x3 filter window to an image. 
This application is typically used in noise reduction and removal [Ref 6]. Three different 
versions of the design are described: one un-optimized, one partially optimized, and one 
fully optimized. The optimizations applied to this kernel include both data path and 
memory access optimizations, typical of a more complex design. The profiling results of 
each design will be analyzed and the process to interpret these results and improve the 
kernel will be discussed.

A median filter is a popular image and video processing design used for noise removal. 
Figure 7-1 shows how the filter uses a two-dimensional aperture or window surrounding a 
pixel in the image or frame and then calculates the median value within that aperture. The 
pixel is then replaced by this median value. Using the example values shown in the above 
figure, this new median value would be 122. This value is calculated after comparing and 
sorting the pixel values within the filter window. For a color image that contains three 
components (i.e., red, green, and blue), this median value is calculated separately for all 
three components.

X-Ref Target - Figure 7-1

Figure 7-1: 3x3 Median Filter Example
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Chapter 7: Putting It All Together
Figure 7-2 shows how the median filter is applied to an image as well as its effects on noise 
removal. On the left is the example Bookcase image with white noise added. After the 3x3 
median filter is applied to this image, the actual resulting image read from hardware is 
shown on the right of the above figure. While this filter performs a smoothing of the values, 
you can see how it is also excellent at removing the high and low values typical of noise.

Table 7-1 lists the three median filter designs that will be described and compared in this 
chapter. The kernel execution times were taken from the profile summary report as run on 
an Alpha Data Virtex-7 board [Ref 7]. As shown in the above table, the optimizations about 
to be described had a high impact on the performance of the median filter kernel. This 
chapter will describe the series of analyses and subsequent optimizations applied to this 
kernel.

X-Ref Target - Figure 7-2

Figure 7-2: Original and Filtered Images To Demonstrate the Effects of the Median Filter

Table 7-1: Comparison of Kernel Execution Times for Median Filter Designs Using 
512x512 Images

Median Filter Design Kernel Execution Time (msec)

Un-optimized 445.9

Partially Optimized (Line buffers only) 167.6

Fully Optimized 6.0
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Chapter 7: Putting It All Together
Un-Optimized Design
The code snippet below displays the first implementation, which is a capture of the median 
filter algorithm directly into kernel code:

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void median(__global const uint* input, __global uint* output, int width, int height) 
{
for (int y=0; y < height; y++) {
int offset = y * width;
int prev = offset - width;
int next = offset + width;

  
for (int x=0; x < width; x++) {
// Get pixels within 3x3 aperture
uint rgb[SIZE];
rgb[0] = input[prev + x - 1];
rgb[1] = input[prev + x];
rgb[2] = input[prev + x + 1];

  
rgb[3] = input[offset + x - 1];
rgb[4] = input[offset + x];
rgb[5] = input[offset + x + 1];

  
rgb[6] = input[next + x - 1];
rgb[7] = input[next + x];
rgb[8] = input[next + x + 1];

  
uint result = 0;

  
// Iterate over all color channels
for (int channel = 0; channel < CHANNELS; channel++) {
result |= getMedian(channel, rgb);

}
  

// Store result into memory
output[offset + x] = result;

}
}

}

It was designed for functional correctness but not optimized in any way. There are two for 
loops to traverse the entire 2-D frame. For every pixel in the image, a 3x3 aperture of pixel 
values is read and copied locally. Each pixel is 24 bits (e.g., 8 bits for red, green, blue). 
Another for loop then computes the median value of the aperture for each of the three 
color channels.
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Chapter 7: Putting It All Together
Figure 7-3 shows the kernel data transfer summary table as taken from the SDAccel profile 
summary. Note the large amount of read transfers, each only involving 64 bytes. Each 
transfer actually involves reading a single 4-byte value representing one pixel. The total 
number of read transfers is exactly as expected for a 512x512 image using a 9-pixel 
aperture (512 * 512 * 9 = 2359296). That is, the kernel reads the 3x3 aperture before 
computing the median values for every pixel in the image. This is the equivalent of reading 
the entire image nine times. Clearly, this is an inefficient design.

Figure 7-4 shows a portion of the timeline trace for the un-optimized median filter design. 
Focusing on the Kernel Data Transfer - Read, this timeline confirms the lack of 
efficiency in the DDR memory reads. The creation of the aperture (i.e., the 9 values in the 
local rgb array) involves nine individual reads from off-chip global memory since that is 
where the global input pointer references. While reading these values is necessary to create 
this aperture, there are two problems with this kernel design approach:

1. Reads One Value at a Time - Only one value is read on each data transfer. The 
transaction, therefore, has a burst size of 1. This is very inefficient since nearby values in 
memory will also be used in the same as well as subsequent apertures. 

2. Reads Values Multiple Times - Each pixel value is read from the DDR nine different times 
for each of the apertures it is a part of. This is also inefficient as the data values are not 
stored and re-used in subsequent apertures.

Partially Optimized Design
One popular technique in video design is to use line buffers to store all pixel values from an 
entire line of the image or frame. These buffers are loaded once per line (e.g., 512 pixel 

X-Ref Target - Figure 7-3

Figure 7-3: Kernel Data Transfer Summary for Un-Optimized Median Filter Kernel

X-Ref Target - Figure 7-4

Figure 7-4: Timeline Trace of Un-Optimized Median Filter Kernel
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Chapter 7: Putting It All Together
values for a 512x512 image) and can also be traversed using common, incremental 
addressing to create the apertures. 

Figure 7-5 shows how line buffers were added to the median filter kernel. This modification 
addressed the two above mentioned concerns and provided the following benefits for the 
median filter design:

1. Reads Bursts of Data - Calls to async_work_group_copy() were used to fill up the 
line buffers with a row of image data. This uses burst access to the data stored in DDR 
memory and thus, provides the best performance.

2. Reads Every Value Only Once - After the line buffer is filled, the data is continually used 
as we sweep across its contents to provide different apertures. We also re-use that line 
buffer and only re-fill it once its current contents are no longer needed. This enables the 
kernel to read every pixel value only once.

Note that the usage of these line buffers in the median filter is a bit different than typical 
line buffers as pixel values do not shift across the buffer on every clock cycle. However, they 
do store an entire row, and accessing their values is done using simple incremental 
addressing.

X-Ref Target - Figure 7-5

Figure 7-5: Block Diagram of Partially Optimized Median Filter Kernel
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Chapter 7: Putting It All Together
Below is a code snippet of a partially optimized median filter kernel:

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void median(__global const uint* input, __global uint* output, int width, int height) 
{
local uint linebuf0[MAX_WIDTH];
local uint linebuf1[MAX_WIDTH];
local uint linebuf2[MAX_WIDTH];
local uint lineres[MAX_WIDTH];

for (int line = 0; line < height; line++) {
if (line == 0) {
async_work_group_copy(linebuf0, input, width, 0);
async_work_group_copy(linebuf1, input, width, 0);
async_work_group_copy(linebuf2, input + width, width, 0);

}
else if (line < height-1) {
if (line % 3 == 0)
async_work_group_copy(linebuf0, input + (line+1)*width, width, 0);

else if (line % 3 == 1)
async_work_group_copy(linebuf1, input + (line+1)*width, width, 0);

else if (line % 3 == 2)
async_work_group_copy(linebuf2, input + (line+1)*width, width, 0);

}
barrier(CLK_LOCAL_MEM_FENCE);

for (int x=0; x < width; x++) {
uint rgb[SIZE];
rgb[0] = (x == 0) ? linebuf0[x] : linebuf0[x - 1];
rgb[1] = linebuf0[x];
rgb[2] = (x == width-1) ? linebuf0[x] : linebuf0[x + 1];

rgb[3] = (x == 0) ? linebuf1[x] : linebuf1[x - 1];
rgb[4] = linebuf1[x];
rgb[5] = (x == width-1) ? linebuf1[x] : linebuf1[x + 1];

rgb[6] = (x == 0) ? linebuf2[x] : linebuf2[x - 1];
rgb[7] = linebuf2[x];
rgb[8] = (x == width-1) ? linebuf2[x] : linebuf2[x + 1];

uint result = 0;
for (int channel = 0; channel < CHANNELS; channel++) {
result |= getMedian(channel, rgb);

}
lineres[x] = result;

}

async_work_group_copy(output + line*width, lineres, width, 0);
barrier(CLK_LOCAL_MEM_FENCE);

}
}

Four line buffers were added to the kernel: three for pre-filtered input and one for the 
filtered result. Calls to async_work_group_copy() were also added to perform write 
and read transfers between these buffers and DDR memory.
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Chapter 7: Putting It All Together
Figure 7-6 shows the data transfer summary table between DDR global memory and the 
partially optimized median filter kernel. Again, the image size is 512x512. The number of 
read transfers was drastically reduced to 2052. This was partly due to the burst transfers, 
where the average size was increased to 512 bytes. Also, since the kernel re-used values in 
the line buffers, there was a 9x reduction in the total amount of data that the kernel read. 

While the memory accesses have clearly been optimized, the transfer rate and bandwidth 
utilization are still very low. To decipher why this is the case, utilize the timeline trace to 
show details of the kernel activity.

Figure 7-7 shows the timeline trace for this partially optimized median filter kernel. The 
reads and writes using async_work_group_copy() are very efficient as a line of 512 
pixels is transferred in two transactions, each with a burst size of 16. Each line of pixels is 
512 pixels * 32 bits = 16,384 bits per line. The DDR memory controller burst transfers 512 
bits * 16 beats for a total of 8,192 bits per burst. Therefore, two burst transactions are 
required to completely transfer one line of 512 pixels.

While the data transfer issues were optimized, the inefficiency is in the computation or 
processing time. The design uses 372.6 usec to process a row of pixels, as measured from 
the end of the second read transfer to the beginning of the first write transfer. This is an 
unacceptably long period to process the data. The next section addresses how this can be 
optimized. 

X-Ref Target - Figure 7-6

Figure 7-6: Kernel Data Transfer Summary for Partially Optimized Median Filter Kernel

X-Ref Target - Figure 7-7

Figure 7-7: Timeline Trace of Partially Optimized Median Filter Kernel
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Chapter 7: Putting It All Together
Fully Optimized Design
There are two data path optimizations that can be performed on the median filter kernel:

1. Local memory reads and processing can be pipelined - The kernel operation involves 
reads, computation, and writes. It reads from the line buffers and creates the aperture by 
storing it in an array of size 9 called rgb. It then calculates the median value of this 
aperture for each of the color channels and writes the results to another line buffer. All 
of these operations were pipelined by including the xcl_pipeline_loop attribute 
before the x for loop. This informs the compiler to keep the implementation of reads, 
computation, and writes to be as busy as possible. 

2. Color channels can be processed in parallel - We have a for loop that computes the 
median value for all three color channels. Since there are no dependencies across color 
channels, we can compute these three, separate median values in parallel. We added an 
opencl_unroll_hint attribute before the channel for loop. This informs the 
compiler to fully unroll this loop and add hardware such that all three median values are 
calculated concurrently. Since this loop is only of size three, a considerable speedup can 
be achieved with only a slight increase in FPGA resources.

Below is a code snippet of a fully optimized median filter kernel: 

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void median(__global const uint* input, __global uint* output, int width, int height) 
{
:
for (int line = 0; line < height; line++) {
:
__attribute__((xcl_pipeline_loop))
for (int x=0; x < width; x++) {
:
__attribute__((opencl_unroll_hint))
for (int channel = 0; channel < CHANNELS; channel++) {
result |= getMedian(channel, rgb);

}
lineres[x] = result;

}

async_work_group_copy(output + line*width, lineres, width, 0);
barrier(CLK_LOCAL_MEM_FENCE);

}
}

This kernel uses the same source code as the partially optimized kernel except for two 
additions: the x for loop was pipelined; and the channel for loop was unrolled. These two 
lines of code inform HLS to perform the two data path optimizations listed above. 
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Chapter 7: Putting It All Together
Figure 7-8 shows the data transfer summary table for the fully optimized median filter 
kernel. Note the number of read transfers was again 2052 and the average size was still 512 
bytes. This informs you that the memory access optimizations were still in place and did not 
change. However, transfer rate and bandwidth utilization values are much higher. This tells 
you the kernel execution time was full of efficient memory transfers.

The timeline trace confirms this efficiency. Figure 7-9 shows the timeline trace of the fully 
optimized median filter design. Note that the continuous write data transfers demonstrates 
that the hardware is constantly kept busy throughout the processing. Table 7-1, page 59 
shows that the run-time of this fully optimized median filter design is 6.0 msec to process 
a 512x512 image. This performance is 74.3 times faster than the un-optimized kernel and 
27.9 times faster than the partially optimized kernel.

Data Transfer Analysis
Looking back on the progressive optimizations of the median filter design, an interesting 
question arises: what is the maximum throughput of this design? A related question would 
be: when do you stop optimizing? These are good question and get to the heart of the 
optimizations performed. To arrive at answers, understanding how to optimize both the 
data transfers and the computation in your design is critical.

X-Ref Target - Figure 7-8

Figure 7-8: Kernel Transfer Summary for Fully Optimized Median Filter Kernel

X-Ref Target - Figure 7-9

Figure 7-9: Timeline Trace of Fully Optimized Median Filter Kernel
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Chapter 7: Putting It All Together
To that end, one method to accomplish this would be to create various test kernels that 
separate out the data transfer from the computation. This actually teaches you a few things 
about both. Specific to the median filter, consider the test kernel below:

void test(__global const int* input, __global int* output) {
local int linebuf0[WIDTH];
local int linebuf1[WIDTH];
local int linebuf2[WIDTH];
local int result[WIDTH];

for (int line = 0; line < HEIGHT; line++) {
// Fetch Lines
if (line == 0) {
async_work_group_copy(linebuf0, input, WIDTH, 0);
async_work_group_copy(linebuf1, input, WIDTH, 0);
async_work_group_copy(linebuf2, input + WIDTH, WIDTH, 0);

}
else if (line < HEIGHT-1) {
if (line % 3 == 0)
async_work_group_copy(linebuf0, input + (line+1)*WIDTH, WIDTH, 0);

else if (line % 3 == 1)
async_work_group_copy(linebuf1, input + (line+1)*WIDTH, WIDTH, 0);

else if (line % 3 == 2)
async_work_group_copy(linebuf2, input + (line+1)*WIDTH, WIDTH, 0);

}
barrier(CLK_LOCAL_MEM_FENCE);

async_work_group_copy(output + line*WIDTH, result, WIDTH, 0);
barrier(CLK_LOCAL_MEM_FENCE);

} // for line
}

This test kernel contains the same data transfers as the median filter kernel. However, it 
contains no computation of median values. The contents of the result buffer is simply 
copied to the output pointer without any processing or computation. While clearly this 
kernel is not functionally correct, this type of test kernel addresses the two questions 
mentioned above:

1. What is the maximum throughput of this design? Creating a test kernel that only 
contains the data transfers allows us to isolate the reading and writing of data to/from 
the kernel.

a. Since data transfers are typically bottlenecks in a kernel, emulating this kernel or 
running it on a board will tell you the maximum performance expected given the 
selected data transfers.

b. If this test kernel does not meet your performance requirements, then you need to 
improve on either the amount of data or the method that you read and write the 
data.
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Chapter 7: Putting It All Together
2. When do you stop optimizing? Once you have achieved the desired throughput and 
performance with this test kernel, you can compare it to the performance of the actual 
kernel. 

a. If the actual kernel has much lower performance than the test kernel, then 
optimizations need to be performed to improve on the computation time. For the 
median filter, this involved pipelining or unrolling two of the loops. 

b. Once the test kernel and actual kernel have similar performance, then the 
computation time of the kernel has been optimized.

The execution time for the test kernel shown above is approximately 6.0 msec to operate on 
a 512x512 image. Almost exactly the same execution time of the fully optimized design. 
That means that the computation time of the kernel was fully optimized. Any further 
improvements to the kernel would need to come from optimizing the memory accesses.

Figure 7-10 shows a flow diagram for one suggested method of optimizing the 
performance of kernels. This follows the procedure taken to optimize the median filter. The 
memory accesses for the original, un-optimized kernel were extracted and a test kernel was 
created. The memory accesses were then optimized using line buffers and burst transfers 
with async_work_group_copy. If this extraction is not possible, then the memory access 
optimizations can certainly be performed on the original kernel.

Once the desired performance was met, then if needed, these new data transfers were 
incorporated back into the median filter kernel and a partially optimized kernel was created. 
The computation or data path was then optimized using pipelining and unrolling until the 
desired performance goal was met. The result was a fully optimized kernel. Note that the 
same host code was used throughout the process, including using the test kernel and all 
variations of the median filter kernel. 

X-Ref Target - Figure 7-10

Figure 7-10: Flow Diagram of One Methodology to Optimize Kernels
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Chapter 8

Performance Checklist

Overview
The goal of this chapter is to create a checklist of items to consider when evaluating the 
performance of your SDAccel design. This should by no means be considered an exhaustive 
list, but instead a starting point for ideas to consider or investigate further.

• Verify functional correctness: First and foremost before you begin performance 
optimizations, be certain that you have correctly captured the desired functionality of 
your algorithm. In SDAccel, this can be verified using CPU emulation. You can create a 
"testbench" by running a corresponding function in host software and comparing the 
results with the kernel. 

• Use profiling summary: This is a great starting point to tell you the overall 
performance health of your system. The summary tables can tell you whether or not 
performance goals have been met as well as clues on where to begin making 
improvements. 

° For continued functional correctness, first make sure the total data transferred for 
both write and read is correct by viewing the results in the Top Data Transfer: 
Kernels and Global Memory table. Some applications have very specific data 
transfer amounts (e.g., an HD video frame).

° Next, view other important metrics such as number of transfers, average size or 
bytes, transfer rate, and bandwidth utilization. These metrics can be used to analyze 
the proficiency of the memory accesses and the data paths in the system.

• Use timeline trace: Trace tells you details of the timeline progression of your 
emulation or run on a board. The timestamped events provide insight into potential 
bottlenecks or dependencies that may have executed your system in an un-optimized 
manner. While the profiling summary provides useful aggregated results, trace shows 
you the relative timing of important events in the system. In SDAccel, host and device 
level events are plotted on the same timeline.

• Use burst data transfers: This enables a kernel to transfer as much data as is required 
and allows kernels to read data before it is needed by the computation. Large bursts 
also optimize the performance of the memory controller. Burst transfers can be defined 
using async_work_group_copy in OpenCL C, memcpy in HLS C/C++, or inferred from 
successive requests of data from consecutive address locations. Both the optimized 
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Chapter 8: Performance Checklist
Smith-Waterman kernel (described in Optimized Design, page 55) and the partially and 
fully optimized median filter kernels (described in Partially Optimized Design, page 61 
and Fully Optimized Design, page 65) used this method to optimize their performance.

• Isolate data transfer or computation: Take advantage of the fact that FPGAs are 
re-programmable and iterate to verify the performance of multiple test kernels. One 
methodology to better understand the performance of your kernels is to isolate either 
the data transfers or the computation. Separating out the two will help you to better 
understand where to begin your optimizations. See Data Transfer Analysis, page 66 for 
more details.

• Use local and private memories: This complements the burst data transfer concept. 
Local and private memories can be used repetitively as scratch pads, and both reads 
and writes can be accomplished in a single clock cycle. FPGAs provide a wealth of 
BlockRAMs distributed throughout the chip. Use them as much as possible.

• Use on-chip global memories: This also complements the burst data transfer concept 
by allowing data to be shared between multiple kernels and compute units. See 
On-Chip Global Memories, page 83 for more details.

• Use on-chip pipes: This allows data to be streamed between multiple kernels and 
compute units. See On-Chip Pipes, page 85 for more details.

• Use workgroups: This is a concept exclusive to OpenCL and should be exploited. 
Workgroups allow the system to schedule tasks in parallel and thus, can enable better 
overall performance. See Multiple Compute Units, page 49 for how this was used to 
improve the performance of the matrix adder.

• Use multiple memory ports: This setting increases the memory bandwidth available 
to a kernel by increasing the number of connections to memory attached to a kernel. 
See Multiple Memory Ports per Kernel, page 86 for more information.

• Use the entire port width: Take advantage of the entire 512-bit memory controller 
interface. This can be accomplished using a combination of vectors and Tcl settings. 
See Vectorization, page 73 and Adjustable Memory Port Data Width, page 87 for more 
information.

• Unroll loops: Loops that are unrolled are performed simultaneously rather than in an 
iterative, sequential fashion. This is appropriate for small to medium sized loops such 
as the color channel loop described in Chapter 7, Putting It All Together. See Loop 
Unrolling, page 76 for further details.

• Use pipelining: This can be either loop or work item pipelining and exposes pipelining 
capabilities to Vivado HLS. This is appropriate for larger loops such as the x for loop 
described in Chapter 7, Putting It All Together. See Loop Pipelining, page 78 and Work 
Item Pipelining, page 80 for more information.
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Chapter 8: Performance Checklist
Tool Flow Suggestions

Figure 8-1 shows a possible flow diagram using all three compilation flows in SDAccel to 
analyze and optimize kernel performance. First, verify functional correctness using CPU 
emulation. This is the fastest flow and can enable fast verification of functionality. One 
method of doing this is to add a 'testbench' in your host code. A testbench provides a 
corresponding software function that performs the exact same functionality as the kernel, 
runs both, and compares the results.

Next, use hardware (HW) emulation to evaluate performance. Check the profile summary 
for an overview of the run, then view the timeline trace for details. A few items should be 
noted when running HW emulation. First, consider using a smaller, representative data set 
size to minimize emulation runtime. Second, note that the profile results are estimates of 
actual performance. Profiling results for HW emulation are very good at providing 
comparative results across multiple kernel revisions and solutions. 

Finally, the same performance evaluation can then be done for a system run on a board. 
Again, check the profile summary for overview metrics of your run. If needed, then view the 
timeline trace for details of timing and performance.

X-Ref Target - Figure 8-1

Figure 8-1: Flow Diagram Using All Three Flows To Optimize Kernel Performance
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Chapter 8: Performance Checklist
Once you start running on a board, Figure 8-2 shows a simplified flow diagram to achieve 
kernel performance optimizations. At the highest level, iterations are accomplished until 
performance goal(s) have been met. Within each iteration, profiling results are analyzed to 
verify amounts and efficiencies of both memory accesses and data paths. These different 
results are listed on the left-hand side of the above figure and can all be found in the 
SDAccel profile summary and timeline trace. 

First, memory accesses are analyzed. If the amount of data (in MB) is correct, then the 
efficiency is analyzed. This efficiency is reported as such values as number of transfers and 
average size. Second, the efficiency of the kernel data paths or computation is evaluated 
using such metrics as transfer rate and average bandwidth utilization. Finally, the details of 
the timeline trace are viewed to see if further information can be extracted from the run. 
After subsequent updates are made to the kernel(s), these steps are repeated until the 
previously stated goals have been met.

X-Ref Target - Figure 8-2

Figure 8-2: Flow Diagram of Kernel Performance Optimizations Within System Runs
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Appendix A

Improving Data Path Performance

Overview
There are a number of different methods to improve the performance of an OpenCL kernel. 
This appendix introduces an important subset of these methods which specifically address 
data path performance. To achieve this, there are a number of key constructs and attributes 
for the OpenCL kernel language. This appendix describes a few of these, demonstrates how 
they are used, and shows their effects on performance using the integrated profiling 
capabilities in SDAccel.

Vectorization
Vectorization creates a wide computation data path inside the kernel. Vectorization is 
created by changing the data type of the data to be processed. For example, the following 
"unvectorized" code performs 256 loop iterations and reads each element of a and b 
separately. 

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vadd( __global int* a, __global int* b, __global int* c) {
int i;
for (i=0; i< 256; i++) {
c[i] = a[i] + b[i];

}
}
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Appendix A: Improving Data Path Performance
Figure A-1 shows the timeline trace of the unvectorized vector adder. There are 256 loop 
iterations that are completed separately. Each transaction only obtains one 32-bit integer 
value, and there are 512 total read transactions. While the implementation of the kernel is 
able to group the write into a single transaction containing all 256 integers, the timeline 
above is not ideal performance for this design. 

The following vectorized code reads 16 words from global buffer a and b at a time:

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vadd( __global int16* a, __global int16* b, __global int16* c) {
int i;
for (i=0; i< 256/16; i++){
c[i] = a[i] + b[i];

}
}

The vector is signified by the int16 pointer type for both inputs as well as the output c. 
This results in 16 integer values being read or written at a time. This value of 16 was chosen 
for a reason: 16 x 32bits = 512 bits, the width of the memory word on the Alpha Data 
Virtex-7 board. Also, because 16 additions are performed in parallel, the loop iterates only 
16 times, as opposed to 256.

Figure A-2 shows the timeline trace of the vectorized vector adder design. There are now 
only 16 loop iterations since each iteration computes 16 output values. This results in a total 
of 32 read transactions and a single write transaction performed at the end to write the 
entire vector to DDR. Since the memory interface is 512 bits, a burst size of one can read or 
write 16 32-bit values in one word.

X-Ref Target - Figure A-1

Figure A-1: Timeline Trace of Unvectorized Vector Adder with 256 Loop Iterations

X-Ref Target - Figure A-2

Figure A-2: Timeline Trace of Vectorized Vector Adder with 16 Loop Iterations
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The profiling summary confirmed that the performance significantly improved: the kernel 
execution time went from 8.33 msec for the un-vectorized version to 0.08 msec for the 
vectorized kernel. This is an improvement of 104x. 

Note that vectorization on the host is not necessary. In other words, the host code does not 
have to be re-written if vectors are used in the compute units on the device. The host 
creates and buffers a and b as regular 256 element integer arrays. The benefits of 
vectorization can only be determined by either running hardware emulation or running on 
a board and viewing the profiling results.

Table A-1 lists all of the vector types supported by SDAccel. These are all defined in the 
OpenCL 2.0 specification [Ref 1], and SDAccel support is verified using conformance testing 
[Ref 4]. The data types are the same used by traditional software programming, while the 
value of N is the number of values in the vector.

Table A-1: Vector Types Supported by SDAccel

Data Type N=2 N=3 N=4 N=8 N=16

Character char2 char3 char4 char8 char16

Unsigned Character uchar2 uchar3 uchar4 uchar8 uchar16

Short short2 short3 short4 short8 short16

Unsigned Short ushort2 ushort3 ushort4 ushort8 ushort16

Integer int2 int3 int4 int8 int16

Unsigned Integer uint2 uint3 uint4 uint8 uint16

Half half2 half3 half4 half8 half16

Float float2 float3 float4 float8 float16
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Loop Unrolling
Loop unrolling is an important optimization technique available in SDAccel. The purpose of 
the loop unroll optimization is to expose concurrency to the compiler and take advantage 
of the parallelism inherent to an FPGA. This is an official attribute in the OpenCL 2.0 
specification. For example, consider the following vector multiplier kernel:

#define LENGTH 64

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vmult(__global const int* a, __global const int* b, __global int* c) {
local int bufa[LENGTH];
local int bufb[LENGTH];
local int bufc[LENGTH];
int tid = get_global_id(0);

async_work_group_copy(bufa, a, LENGTH, 0);
async_work_group_copy(bufb, b, LENGTH, 0);

for (int i=0; i < LENGTH; i++) {
int idx = tid*LENGTH + i;
bufc[idx] = bufa[idx] * bufb[idx];

}

async_work_group_copy(c, bufc, LENGTH, 0);
}

This kernel multiplies two integer vectors, a and b. The length of the vectors is 64. Since we 
want to isolate the performance of the for loop, we first read the two vectors into local 
memories using calls to async_work_group_copy. Also, a third local memory is used to 
store the output vector, c, so all data in the for loop uses local memories. Once the loop is 
completed, the entire output vector is written back to DDR. 

Figure A-3 shows the timeline trace for the sequential vector multiplier. The two read and 
one write data transfers are evident in the timeline. To demonstrate loop unrolling, the 
metric of concern is the time in between the second read and the write transfer. This is the 
processing time of the for loop.

X-Ref Target - Figure A-3u

Figure A-3: Timeline Trace for Sequential Vector Multiplier
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The performance of the vector multiplier can be improved by using the 
opencl_unroll_hint attribute with an unroll factor of 2:

__attribute__((opencl_unroll_hint(2)))
for (int i=0; i < LENGTH; i++) {
  int idx = tid*LENGTH + i;
  bufc[idx] = bufa[idx] * bufb[idx];
}

The code above tells SDAccel to unroll the loop by a factor of two. This results in LENGTH/2 
or 32 loop iterations for the compute unit to complete the operation. By enabling SDAccel 
to reduce the loop iteration count, the programmer has exposed more concurrency to the 
compiler. This newly exposed concurrency reduces latency and improves performance, but 
also consumes more FPGA fabric resources.

Another variety of this attribute is to unroll the loop completely. The syntax for the fully 
unrolled version of the vector multiplier example is as shown below:

__attribute__((opencl_unroll_hint))
for (int i=0; i < LENGTH; i++) {
  int idx = tid*LENGTH + i;
  bufc[idx] = bufa[idx] * bufb[idx];
}

In this fully unrolled design, all of the possible concurrency in the loop nest is exposed to 
the compiler. SDAccel analyzes the data and control dependencies of the unrolled loop nest 
and automatically parallelizes all operations that can be executed concurrently.

Due to resource constraints, note that full unrolling is appropriate for for loops of small or 
medium length. Large for loops may require too many resources to implement on the 
FPGA device. For larger loops, it is recommended to use loop pipeline (see the next section). 

In general, it is recommended to use the report_estimate command and understand 
how Vivado HLS compiles the kernel code before building a complex system.

Table A-2 summarizes results showing the impact of loop unrolling on the performance of 
the vector multiplier kernel. The total loop time (in usec) is measured using the timeline 
trace panel in SDAccel and is the time between the completion of the last read data transfer 
to the start of the write data transfer. This metric was chosen since the data transfers are the 
same for all three versions of the kernel. These values show how the loop unrolling can 
impact the overall performance of a kernel execution.

Table A-2: Summary of Performance Results Comparing Different Vector Multiplier Kernels

Vector Multiplier Kernel Total Loop Time (usec)

Sequential 3.96

Partially Unrolled 2.68

Fully Unrolled 1.27
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Loop Pipelining
Although loop unrolling exposes concurrency, it does not address the issue of keeping all 
elements in a kernel data path busy at all times. This is necessary for maximizing kernel 
throughput and performance. Even in an unrolled case, loop control dependencies can lead 
to sequential behavior. The sequential behavior of operations results in idle hardware and a 
loss of performance.

Xilinx addresses this issue by introducing a vendor extension on top of the OpenCL 2.0 
specification for loop pipelining. The Xilinx attribute for loop pipelining is 
xcl_pipeline_loop.

In order to understand the effect of loop pipelining on performance, consider the following 
code example:

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vaccum(__global const int* a, __global const int* b, __global int* result) {
int tmp = 0;

for (int i=0; i < 32; i++) {
tmp += a[i] * b[i];

}
result[0] = tmp;

}

This kernel code has no attributes and is executed sequentially per the order of operations 
stated in the kernel code. Although the execution is functionally correct, the 
implementation is not maximizing performance because the read, multiply, add, and store 
operations are not always busy. The pipeline attribute serves as a command to the SDAccel 
compiler to maximize performance and minimize the idle time of any stage in the 
generated logic. 

Figure A-4 shows the timeline trace for the sequential vector accumulator. The read data 
transfers are performed two at a time, one to read the next value of a and another for b. 
There is also approximately 100 nsec in between each read to perform the multiplication 
and addition. Since all of these operations can be pipelined, this is clearly an inefficient 
kernel design. Most of the design is idle at any point in time.

X-Ref Target - Figure A-4

Figure A-4: Timeline Trace of Sequential Vector Accumulator
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We can address these concerns by adding pipelining. Example code with an added loop 
pipeline attribute looks like the following:

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vaccum(__global const int* a, __global const int* b, __global int* result) {
int tmp = 0;

__attribute__((xcl_pipeline_loop))
for (int i=0; i < 32; i++) {
tmp += a[i] * b[i];

}
result[0] = tmp;

}

Adding this attribute exposes the pipeline nature of the design to the compiler. In turn, the 
compiler then adds appropriate pipelining to improve the performance of the design. 

Figure A-5 shows a timing diagram of the vector accumulator before and after exposing 
loop pipelining. The diagram on top is sequential in nature and was confirmed with the 
timeline trace for the un-pipelined kernel. The diagram below shows the improved timing of 
the pipelined version. Notice how the different operations are kept busy throughout the 
loop iterations. Similar to loop unrolling, this exploits the vast hardware resources available 
on an FPGA.

X-Ref Target - Figure A-5

Figure A-5: Timing Diagram of Loop Pipelining
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Figure A-6 shows the timeline trace of the pipelined vector accumulator kernel. Soon after 
the kernel starts, it requests six values (three for a and three for b). This is a limit on the 
queue size in the kernel. However, even with this limit, the kernel is able to pipeline the 
operations and perform the multiplication and addition at the same time that the next 
values are being read. By adding loop pipelining to this example, the execution time of the 
kernel is decreased by 19% without any other code modification or additional hardware.

Work Item Pipelining
Work item pipelining is the extension of loop pipelining to the kernel work group. The 
syntax for the attribute for this optimization is xcl_pipeline_workitems. An example 
where work pipelining can be applied is the following kernel:

__kernel __attribute__ ((reqd_work_group_size(8, 8, 1)))
void madd(__global int* a, __global int* b, __global int* output)
{
int rank = get_local_size(0); 
__local unsigned int bufa[64];
__local unsigned int bufb[64];

int x = get_local_id(0);
int y = get_local_id(1);
bufa[x*rank + y] = a[x*rank + y];
bufb[x*rank + y] = b[x*rank + y];
barrier(CLK_LOCAL_MEM_FENCE);

int index = get_local_id(1)*rank + get_local_id(0);
output[index] = bufa[index] + bufb[index];

}

In order to handle the reqd_work_group_size attribute, SDAccel automatically inserts a 
loop nest to handle the multi-dimensional characteristics of the ND range. For this example, 
the local work size is specified as (8, 8, 1). As a result of the loop nest added by SDAccel, the 
execution profile of this code is the same as that of an un-pipelined loop.

X-Ref Target - Figure A-6

Figure A-6: Timeline Trace of Pipelined Vector Accumulator Kernel 
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Figure A-7 shows the timeline trace of the un-optimized or sequential matrix adder. Two 
read data transfers are performed at a time, one to request the next value of a and another 
for b. There is then a gap of 80 nsec before the next set of reads begin. The largest number 
of outstanding data transfers is two. The kernel is also written in such a way that the writes 
are not performed until the reads have completed. This is due to the 
barrier(CLK_LOCAL_MEM_FENCE) added in the kernel.

The work item pipeline attribute can be added to the code as follows:

__kernel __attribute__ ((reqd_work_group_size(8, 8, 1)))
void madd(__global int* a, __global int* b, __global int* output)
{
int rank = get_local_size(0); 
__local unsigned int bufa[64];
__local unsigned int bufb[64];

__attribute__((xcl_pipeline_workitems)) {
int ix = get_local_id(1)*rank + get_local_id(0);
bufa[ix] = a[ix];
bufb[ix] = b[ix];

}
barrier(CLK_LOCAL_MEM_FENCE);

__attribute__((xcl_pipeline_workitems)) {
int ix = get_local_id(1)*rank + get_local_id(0);
output[ix] = bufa[ix] + bufb[ix];

}
}
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Figure A-7: Timeline Trace of Sequential Matrix Adder Kernel
Performance Optimization www.xilinx.com 81
UG1207 (v2.0) August 31, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1207&Title=SDAccel%20Development%20Environment%20Methodology%20Guide%3A%20Performance%20Optimization&releaseVersion=2.0&docPage=81


Appendix A: Improving Data Path Performance
Figure A-8 shows the timeline trace of the pipelined matrix adder. The maximum number of 
outstanding data transfers is now six, which is again limited by the queue in the kernel. 
However, the pipelining is evident since multiple operations are being performed 
simultaneously by the compute unit. Similar to loop pipelining, the resulting hardware 
keeps all operations as busy as possible, which in turn maximizes performance. Adding this 
work item pipelining improves the execution time of the matrix adder kernel from 0.11 msec 
to 0.07 msec.

X-Ref Target - Figure A-8

Figure A-8: Timeline Trace of Pipelined Matrix Adder Kernel
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Appendix B

Improving Memory Efficiency

Overview
There are a number of different methods to improve the performance of an OpenCL kernel. 
This appendix introduces another important subset of these methods which specifically 
address memory efficiency. To improve memory access efficiency, there are a number of 
memory types, key constructs, and burst access capabilities available in the OpenCL kernel 
language. 

Figure 3-2, page 23 shows the OpenCL memory model used by the Xilinx SDAccel tool. 
There are a multitude of memory types, and it is important to understand their usage and 
benefits. This includes the following types: host memory, off-chip global memory, on-chip 
global memory, local memory, and private memory. The examples in Chapters 4-6 describe 
many use cases for off-chip global and local memories. This appendix describes on-chip 
global memories, including a special type called on-chip pipes.

There are also some key constructs and burst access capabilities that can significantly 
improve performance. This appendix also describes a few of these, demonstrates how they 
are used, and shows their effects on performance.

On-Chip Global Memories
One memory architectural optimization available in SDAccel utilizes global memories that 
are used to pass data between kernels. In cases where the global memory buffer used for 
inter-kernel communication does not need to be visible to the host processor, SDAccel 
enables you to move the buffer out of DDR-based memory and into the BlockRAMs 
available on the FPGA. This optimization is called on-chip global memories and is part of 
the OpenCL 2.0 specification.

On-chip global memories are very useful because they can be accessed by all the kernels. 
SDAccel generates an AXI bus in the programmable region and connects the global on-chip 
memory to only the kernels which access it, thus saving on resources. Note that this bus is 
narrow, and thus does not always achieve as high bandwidth as local memory. However, the 
cross-kernel accessibility is key. 
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The following code example illustrates a usage model for global memory buffers:

// Global memory buffers used to transfer data between kernels
// Contents of the memory do not need to be accessed by host processor
global int g_var0[1024];
global int g_var1[1024];

// Kernel reads data from global memory buffer written by the host processor
// Kernel writes data into global buffer consumed by another kernel
kernel __attribute__ ((reqd_work_group_size(256,1,1)))
void input_stage(global int *input) {

__attribute__((xcl_pipeline_workitems)) {
g_var0[get_local_id(0)] = input[get_local_id(0)];

}
}

// Kernel computes a result based on data from the input_stage kernel
kernel __attribute__ ((reqd_work_group_size(256,1,1)))
void adder_stage(int inc) {

__attribute__ ((xcl_pipeline_workitems)) {
int input_data, output_data;
input_data = g_var0[get_local_id(0)];
output_data = input_data + inc;
g_var1[get_local_id(0)] = output_data;

}
}

// Kernel writes the results computed by the adder_stage to
// a global memory buffer that is read by the host processor
kernel __attribute__ ((reqd_work_group_size(256,1,1)))
void output_stage(global int *output) {

__attribute__ ((xcl_pipeline_workitems)) {
output[get_local_id(0)] = g_var1[get_local_id(0)];

}
}

In the code example above, the input_stage kernel reads the contents of global memory 
buffer input and writes them into global memory buffer g_var0. The contents of buffer 
g_var0 are used in a computation by the adder_stage kernel and stored into buffer 
g_var1. The contents of g_var1 are then read by the output_stage kernel and stored 
into the output global memory buffer. Although both g_var0 and g_var1 are declared as 
global memories, the host processor only needs to have access to the input and output 
buffers. Therefore, for this application to run correctly the host processor must only be 
involved in setting up the input and output buffers in DDR memory. 

Since buffers g_var0 and g_var1 are only used for inter-kernel communication, the 
accesses to these buffers can be removed from the system-level memory bandwidth 
requirements. SDAccel automatically analyzes this kind of coding style to infer that both 
g_var0 and g_var1 can be implemented as on-chip memory buffers. 

The only requirements in SDAccel are that all kernels with access to the on-chip global 
memory are executed in the FPGA logic and that the memory has at least 1,000 entries.
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Figure B-1 shows the timeline trace of the global memory test kernels. All three kernels are 
executed in the following order: input_stage, adder_stage, then output_stage. Note 
that the device profiling reports data transfers to off-chip global memory only, and hence, 
the accesses to the on-chip global memories are not shown. 

From a performance standpoint, these on-chip global memories provide much lower latency 
than accessing data from the DDR or off-chip global memory. Therefore, these memories are 
excellent for applications requiring heavy data reuse amongst multiple kernels. You can 
create a scratchpad with on-chip global memories, re-use the data as often as is required, 
then write the results to the host-accessible DDR.

On-Chip Pipes
Another type of global memory that allows two kernels to communicate with each other is 
called a pipe. A pipe is essentially a FIFO and allows data streaming between kernels. It is 
specified with a maximum depth and stores data in a first-in, first-out order. 

Consider the following sample code: 

pipe int p0 __attribute__((xcl_reqd_pipe_depth(512)));
pipe int p1 __attribute__((xcl_reqd_pipe_depth(512)));

// Stage 1
kernel __attribute__ ((reqd_work_group_size(256, 1, 1)))
void input_stage(__global int *input) {
write_pipe(p0, &input[get_local_id(0)]);

}

// Stage 2
kernel __attribute__ ((reqd_work_group_size(256, 1, 1)))
void adder_stage(int inc) {
int input_data, output_data;
read_pipe(p0, &input_data);
output_data = input_data + inc;
write_pipe(p1, &output_data);

}

X-Ref Target - Figure B-1

Figure B-1: Timeline Trace of Global Memory Test Kernels
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// Stage 3
kernel __attribute__ ((reqd_work_group_size(256, 1, 1)))
void output_stage(__global int *output) {
read_pipe(p1, &output[get_local_id(0)]);

}

There are two pipes specified in the above code, p0 and p1, which transfer data between 
the three kernels. Each has a depth of 512 values. Note that the functions write_pipe() 
and read_pipe() are used to write to and read from the pipes, respectively. The stage 2 
kernel named adder_stage modifies the values in the pipe by adding inc to each value. 
The input to input_stage and the output of output_stage are in off-chip global 
memory.

Pipes are excellent for transferring data between kernels when order needs to be preserved 
and random access is not required. Note that pipes are implemented with AXI Stream, and 
their activity is currently not observable using the current profiling infrastructure.

Multiple Memory Ports per Kernel
The default behavior of SDAccel is to generate functionally correct FPGA compute units that 
consume the least amount of FPGA resources. This behavior produces the most area 
efficient implementation, but might not always achieve the desired performance 
requirements. The area efficient behavior of SDAccel is demonstrated by the following 
example:

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vadd( __global int* a, __global int* b, __global int* c) {
int i;
for (i=0; I < 256; i++) {
c[i] = a[i] + b[i];

}
}

The code above is a vector adder which reads 256 values from a and b, adds them together, 
and writes the result to c (see Vectorization, page 73 for one method of improving the 
performance of this kernel). All 256 results are then stored into the appropriate locations in 
DDR dictated by c. Given the kernel code above, the hardware implementation generated by 
SDAccel has a single port to global memory through which all accesses to buffers a, b, and 
c are time-multiplexed. During execution, the single port forces sequential access to 
off-chip global memory to fetch individual elements from all three buffers. For designs with 
multiple data ports like the vector adder, this can lead to inefficiencies.

One way of increasing the memory bandwidth available to a kernel is to increase the number 
of physical connections to memory that are attached to a kernel. Proper implementation of 
this optimization requires knowledge of both the application and the target compute 
platform. Therefore, SDAccel requires user specification to increase the number of physical 
memory ports on a kernel. The SDAccel command to increase the number of physical 
memory ports available to the kernel is:
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set_property max_memory_ports true [get_kernels <kernel name>]

The max_memory_ports property tells SDAccel to generate one physical memory interface 
for every global memory buffer declared as arguments to the kernel. This command is only 
valid for kernels that have been placed into binaries that will be executed in the FPGA logic. 
There is no effect on kernels executing in a processor.

Note that for HLS C/C++ files, you can also specify maximum memory ports using pragmas 
in the kernel source file:  

void vadd(int * a, int * b, int * c) {
#pragma HLS INTERFACE m_axi port=a offset=slave bundle=gmem0
#pragma HLS INTERFACE m_axi port=b offset=slave bundle=gmem1
#pragma HLS INTERFACE m_axi port=c offset=slave bundle=gmem2
…

}

In the example code above, three different values are specified for the bundle: gmem0, 
gmem1, and gmem2. This creates three separate AXI interfaces for accessing the three 
pointers. To achieve the best performance for your kernel, it is highly recommended to do 
this.

Adjustable Memory Port Data Width
In addition to increasing the number of memory ports available to a kernel, you have the 
ability to change the bit width of the memory port. The benefit of modifying the bit width 
of the memory interface depends on the computation in the kernel. Consider the following 
kernel:

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vadd( __global int16* a, __global int16* b, __global int16* c) {
int i;
for (i=0; i< 256/16; i++){
c[i] = a[i] + b[i];

}
}

Where a, b, and c are of type int16. This is a 16 element vector data type created from the 
fundamental c data type int (see Vectorization, page 73 for more information on vector data 
types). SDAccel uses the fundamental data type when determining the default bit width of a 
memory interface. In the case above, the memory interfaces have a bit width of 32 bits. 
Therefore, the kernel requires 16 memory transactions to read enough data to complete the 
vector. You can override the default behavior of SDAccel with the following kernel property 
command:

set_property memory_port_data_width <bit width> [get_kernels <kernel name>]

The bit widths currently supported by SDAccel are 32, 64, 128, 256, and 512 bits. In cases 
where your defined bit width does not match the bit width declared in the kernel source 
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Appendix B: Improving Memory Efficiency
code, SDAccel handles all data width conversions between the physical interface and the 
data type in the kernel source code. This optimization is only supported for kernels mapped 
for execution in the FPGA logic.

Burst Transfers from Off-Chip Global Memory
Some kernels require large amounts of data and can potentially only start processing once 
a certain amount of data is available. Burst transfers enable a kernel to transfer as much data 
as is required and allow kernels to read data before it is needed by the computation. Large 
bursts also optimize the performance of the memory controller.

Consider the following vector multiplier example:

#define LENGTH 64

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vmult(__global const int* a, __global const int* b, __global int* c) {
  for (int i=0; i < LENGTH; i++) 
    c[i] = a[i] * b[i];
  }
}

In this example, every iteration of the loop performs two reads and one write. Figure A-1, 
page 74 shows the timeline trace for this vector adder with 256 loop iterations. The memory 
controller receives 3 requests per loop iteration (2 reads, 1 write), none of which are bursts. 
While the kernel creates a burst for the write transfer, this still results in under-utilization of 
the off-chip memory bandwidth. 

To perform a burst read from off-chip memory, we can use local memory to buffer the 
incoming and outgoing data. Consider the following modified kernel that takes advantage 
of burst reads and writes:

#define LENGTH 64

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void vmult(__global const int* a, __global const int* b, __global int* c) {
  local int bufa[LENGTH];
  local int bufb[LENGTH];
  local int bufc[LENGTH];
    
  async_work_group_copy(bufa, a, LENGTH, 0);
  async_work_group_copy(bufb, b, LENGTH, 0);
  
  for (int i=0; i < LENGTH; i++) {
    bufc[i] = bufa[i] * bufb[i];
  }
  
  async_work_group_copy(c, bufc, LENGTH, 0);
}
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The async_work_group_copy command performs a burst data transfer between two 
specified locations in memory. In the kernel above, the kernel first performs read accesses 
by copying data from a to bufa and from b to bufb. These are transfers between off-chip 
global memory and local memories. In a physical sense, this copies data from DDR to 
BlockRAMs on the FPGA. The amount of data is specified by LENGTH. At the end of 
processing, a similar burst transfer is performed. This time, however, it copies data from 
bufc to c. In a physical sense, this copies data from BlockRAMs to DDR.

Timeline trace can confirm this activity. Figure A-3, page 76 shows a similar timeline trace 
for this vector multiplier design. Trace essentially shows 3 data transfers: 2 read and 1 write. 
The time in between is the time it takes to perform the computation in the for loop.

Since the for loop now only reads and writes from local memories, the computation is now 
decoupled from the off-chip global memory accesses. Since local memories enable one 
cycle reads and writes, this optimization usually leads to significant performance 
improvement. The overhead is the time to transfer data between global and local memories. 
However, since these transfers utilize large burst sizes, this overhead is minimized.

In the vector multiplier code above, there is no need to pipeline the entire kernel using the 
xcl_pipeline_workitems attribute. The burst reads and writes are already pipelined 
automatically. Individually, the for loop can be pipelined by using the 
xcl_pipeline_loop attribute just before the for loop (see Loop Pipelining, page 78 for 
more information).

Burst transfers can also be performed in HLS C/C++ using the memcpy command.
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Appendix C

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx 
Support.

For a glossary of technical terms used in Xilinx documentation, see the Xilinx Glossary.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual 
property at all stages of the design cycle. Topics include design assistance, advisories, and 
troubleshooting tips.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support 
resources, which you can filter and search to find information. To open the Xilinx 
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.

• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other 
topics, which you can use to learn key concepts and address frequently asked questions. To 
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.
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Note: For more information on Documentation Navigator, see the Documentation Navigator page 
on the Xilinx website.
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