

84 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 6: Microprocessor Software Specification (MSS)

MSS Keywords
The keywords that are used in an MSS file are as follows:

BEGIN

The keyword begins a driver, processor, or file system definition block. BEGIN should be
followed by the driver, processor or filesys keywords.

END

This keyword signifies the end of a definition block.

PARAMETER

The MSS file has a simple name = value format for most statements. The PARAMETER
keyword is required before all such NAME, VALUE pairs. The format for assigning a value to
a parameter is parameter name = value. If the parameter is within a BEGIN-END block, it
is a local assignment; otherwise it is a global (system level) assignment.

Requirements
The MSS file has a dependency on the MHS file. This dependency has to be specified as a
command line option to Libgen using the -mhs option. Refer to the “Library Generator”
chapter in the Embedded System Tools Reference Manual for more information. (For a link to
the manual, see the “Additional Resources,” page 83.) There is a resulting dependency on
hardware for the software flow. Refer to Chapter 2, “Microprocessor Hardware
Specification (MHS)” for more information on hardware configuration.

Prior to the EDK 6.1 release, this dependency was specified in the MSS file as parameter
HW_SPEC_FILE = file_name.mhs. This parameter will be deprecated for the EDK6.1
release, since the MHS file is given as a command line option to the Libgen tool, and will
eventually be removed for future releases.

The syntax of various files that the embedded development tools use is described by the
Platform Specification Format (PSF). The current PSF version is 2.1.0. The MSS file should
also contain version information in the form of parameter Version = 2.1.0, which
represents the PSF version 2.1.0.

Platform Specification Format Reference Manual www.xilinx.com 85
UG642, April 19, 2010

MSS Format

MSS Example
An example MSS file is given below:

parameter VERSION = 2.1.0

BEGIN OS
parameter PROC_INSTANCE = my_microblaze
parameter OS_NAME = standalone
parameter OS_VER = 1.00.a
parameter STDIN = my_uartlite_1
parameter STDOUT = my_uartlite_1
END

BEGIN PROCESSOR
parameter HW_INSTANCE = my_microblaze
parameter DRIVER_NAME = cpu
parameter DRIVER_VER = 1.00.a
parameter XMDSTUB_PERIPHERAL = my_jtag
END

BEGIN OS
parameter PROC_INSTANCE = my_ppc
parameter OS_NAME = standalone
parameter OS_VER = 1.00.a
parameter STDIN = my_uartlite_2
parameter STDOUT = my_uartlite_2
END

BEGIN PROCESSOR
parameter HW_INSTANCE = my_ppc
parameter DRIVER_NAME = cpu_ppc405
parameter DRIVER_VER = 1.00.a
END

BEGIN DRIVER
parameter HW_INSTANCE = my_intc
parameter DRIVER_NAME = intc
parameter DRIVER_VER = 1.00.a
END

BEGIN DRIVER
parameter HW_INSTANCE = my_uartlite_1
parameter DRIVER_VER = 1.00.a
parameter DRIVER_NAME = uartlite
parameter INT_HANDLER = uart_1_handler, INT_PORT = Interrupt
END

BEGIN DRIVER
parameter HW_INSTANCE = my_uartlite_2
parameter DRIVER_VER = 1.00.a
parameter DRIVER_NAME = uartlite
parameter INT_HANDLER = uart_2_handler, INT_PORT = Interrupt
END

BEGIN DRIVER
parameter HW_INSTANCE = my_timebase_wdt
parameter DRIVER_VER = 1.00.a
parameter DRIVER_NAME = timebase_wdt

http://www.xilinx.com

86 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 6: Microprocessor Software Specification (MSS)

parameter INT_HANDLER=my_timebase_hndl, INT_PORT = Timebase_Interrupt
parameter INT_HANDLER=my_timebase_hndl, INT_PORT = WDT_Interrupt
END

BEGIN LIBRARY
parameter LIBRARY_NAME = XilMfs
parameter LIBRARY_VER = 1.00.a
parameter NUMBYTES = 100000
parameter BASE_ADDRESS = 0x80f00000
END

BEGIN DRIVER
parameter HW_INSTANCE = my_jtag
parameter DRIVER_NAME = uartlite
parameter DRIVER_VER = 1.00.a
parameter INT_HANDLER = jtag_uart_handler, INT_PORT = Interrupt
END

Global Parameters
These parameters are system-specific parameters and do not relate to a particular driver,
file system, or library.

PSF Version
This option specifies the PSF version of the MSS file. This option is mandatory for versions
2.1.0 and above, and is formatted as:

parameter VERSION = 2.1.0

Parameter INT_HANDLER
This option defines the interrupt handler software routine for an external interrupt port
given in the MHS file, and is formatted as:

parameter INT_HANDLER = my_int_handl, INT_PORT = Interrupt

The external interrupt port that raises the interrupt is specified after the attribute as shown
above with the INT_PORT keyword. This port should match the port name (not the signal
name) specified in the MHS file as a global external port.

Instance-Specific Parameters
These parameters are OS-, processor-, driver-, or library-specific. The parameters must be
within a BEGIN and END block.

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 87
UG642, April 19, 2010

Instance-Specific Parameters

OS, Driver, Library, and Processor Block Parameters Summary
The following list shows the parameters that can be used in OS, driver, library and
processor blocks.

OS, Driver, Library, and Processor Block Parameters Definitions

PROC_INSTANCE

This option is required for the OS associated with a processor instances specified in the
MHS file, and is formatted as:

parameter PROC_INSTANCE = instance_name

All OSs in EDK require processor instances to be associated with the OSs. The instance
name that is given must match the name specified in the MHS file.

HW_INSTANCE

This option is required for drivers associated with peripheral instances specified in the
MHS file and is formatted as:

parameter HW_INSTANCE = instance_name

All drivers in EDK require instances to be associated with the drivers. Even a processor
definition block should refer to the processor instance. The instance name that is given
must match the name specified in the MHS file.

OS_NAME

This option is needed for processor instances that have OSs associated with them and is
formatted as:

parameter OS_NAME = standalone

Library Generator copies the OS directory specified to
OUTPUT_DIR/processor_instance_name/libsrc directory and compiles the OS sources
using makefiles provided. See the “Library Generator” chapter in the Embedded System
Tools Reference Manual for more information. For a link to the manual, see the “Additional
Resources,” page 83.

OS_VER

The OS version is set using the OSVER option and is formatted as:

parameter OS_VER = 1.00.a

This version is specified in the following format: x.yz.a, where x,y and z are digits, and
a is a character. This is translated to the OS directory searched by Libgen as follows:

USER_PROJECT/bsp/OS_NAME_vx_yz_a

XILINX_EDK/sw/lib/bsp/OS_NAME_vx_yz_a

PROC_INSTANCE
HW_INSTANCE
OS_NAME
OS_VER
DRIVER_NAME

DRIVER_VER
INT_HANDLER
LIBRARY_NAME
LIBRARY_VER

http://www.xilinx.com

88 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 6: Microprocessor Software Specification (MSS)

The MLD (Microprocessor Library Definition) files Libgen needs for each OS should be
named OS_NAME_v2_1_0.mld and should be present in a subdirectory data/ within the
driver directory. Refer to Chapter 7, “Microprocessor Library Definition (MLD)” for more
information.

DRIVER_NAME

This option is needed for peripherals that have drivers associated with them and is
formatted as:

parameter DRIVER_NAME = uartlite

Library Generator copies the driver directory specified to
OUTPUT_DIR/processor_instance_name/libsrc directory and compiles the drivers
using makefiles provided. Refer to the “Library Generator” chapter in the Embedded System
Tools Reference Manual, for more information.

DRIVER_VER

The driver version is set using the DRIVER_VER option, and is formatted as:

parameter DRIVER_VER = 1.00.a

This version is specified in the following format: x.yz.a, where x,y and z are digits, and
a is a character. This is translated to the driver directory searched by Libgen as follows:

USER_PROJECT/drivers/DRIVER_NAME_vx_yz_a

USER_PROJECT/pcores/DRIVER_NAME_vx_yz_a

XILINX_EDK/sw/XilinxProcessorIPLib/drivers/DRIVER_NAME_vx_yz_a

The MDD (Microprocessor Driver Definition) files needed by Libgen for each driver
should be named DRIVER_NAME_v2_1_0.mdd and should be present in a subdirectory
data/ within the driver directory. Refer to Chapter 8, “Microprocessor Driver Definition
(MDD),” for more information.

INT_HANDLER

This option defines the interrupt handler software routine for an interrupt port of the
peripheral and is formatted as:

parameter INT_HANDLER = my_int_handl, INT_PORT = Interrupt

The interrupt port of the peripheral instance that raises the interrupt is specified after the
attribute as shown above with the INT_PORT keyword. This port should match the port
name (and not the signal name) specified in the MHS file for that peripheral instance.

LIBRARY_NAME

This option is needed for libraries, and is formatted as:

parameter LIBRARY_NAME = xilmfs

Library Generator copies the library directory specified in the
OUTPUT_DIR/processor_instance_name/libsrc directory and compiles the libraries
using makefiles provided. See the “Library Generator” chapter in the Embedded System
Tools Reference Manual, for more information.

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 89
UG642, April 19, 2010

Instance-Specific Parameters

LIBRARY_VER

The library version is set using the LIBRARY_VER option and is formatted as:

parameter LIBRARY_VER = 1.00.a

This version is specified in the following format: x.yz.a, where x,y and z are digits, and
a is a character. This is translated to the library directory searched by Libgen as follows:

USER_PROJECT/sw_services/LIBRARY_NAME_vx_yz_a

XILINX_EDK/sw/lib/sw_services/LIBRARY_NAME_vx_yz_a

The MLD (Microprocessor Library Definition) files needed by Libgen for each library
should be named LIBRARY_NAME_v_2_1_0.mld and should be present in a subdirectory
data/ within the library directory. See Chapter 7, “Microprocessor Library Definition
(MLD)” for more information.

MDD/MLD Specific Parameters
Parameters specified in the MDD/MLD file can be overwritten in the MSS file and
formatted as

parameter PARAM_NAME = PARAM_VALUE

See Chapter 7, “Microprocessor Library Definition (MLD)” and Chapter 8,
“Microprocessor Driver Definition (MDD)” for more information.

OS-Specific Parameters Summary
The following list identifies all the parameters that can be specified only in an OS
definition block.

STDIN

Identify the standard input device with the STDIN option, which is formatted as:.

parameter STDIN = instance_name

STDOUT

Identify the standard output device with the STDOUT option, which is formatted as:

parameter STDOUT = instance_name

Example: MSS Snippet Showing OS Options

BEGIN OS
parameter PROC_INSTANCE = my_microblaze
parameter OS_NAME = standalone
parameter OS_VER = 1.00.a
parameter STDIN = my_uartlite_1
parameter STDOUT = my_uartlite_1
END

http://www.xilinx.com

90 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 6: Microprocessor Software Specification (MSS)

Processor-Specific Parameter Summary
Following is a list of all of the parameters that can be specified only in a processor
definition block.

Processor-Specific Parameter Definitions

XMDSTUB_PERIPHERAL

The peripheral that is used to handle the XMDStub should be specified in the
XMDSTUB_PERIPHERAL option. This is useful for the MicroBlaze™ processor only, and is
formatted as follows:

parameter XMDSTUB_PERIPHERAL = instance_name

COMPILER

This option specifies the compiler used for compiling drivers and libraries. The compiler
defaults to mb-gcc or powerpc-eabi-gcc depending on whether the drivers are part of the
MicroBlaze processor or PowerPC® processor instance. Any other compatible compiler
can be specified as an option, and should be formatted as follows:

parameter COMPILER = dcc

This example denotes the Diab compiler as the compiler to be used for drivers and
libraries.

ARCHIVER

This option specifies the utility to be used for archiving object files into libraries. The
archiver defaults to mb-ar or powerpc-eabi-ar depending on whether or not the drivers
are part of the MicroBlaze or PowerPC processor instance. Any other compatible archiver
can be specified as an option, and should be formatted as follows:

parameter ARCHIVER = ar

This example denotes the archiver ar to be used for drivers and libraries.

COMPILER_FLAGS

This option specifies compiler flags to be used for compiling drivers and libraries. If the
option is not specified, Libgen automatically uses platform and processor-specific options.
This option should not be specified in the MSS file if the standard compilers and archivers
in EDK are used. The COMPILER_FLAGS option can be defined in the MSS if there is a need
for custom compiler flags that override Libgen-generated flags. The
EXTRA_COMPILER_FLAGS option is recommended if compiler flags must be appended to the
ones Libgen already generates. Format this option as follows:

parameter COMPILER_FLAGS = ““

XMDSTUB_PERIPHERAL
COMPILER
ARCHIVER
COMPILER_FLAGS
EXTRA_COMPILER_FLAGS

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 91
UG642, April 19, 2010

Instance-Specific Parameters

EXTRA_COMPILER_FLAGS

This option can be used whenever custom compiler flags need to be used in addition to the
automatically generated compiler flags, and should be formatted as follows:

parameter EXTRA_COMPILER_FLAGS = -g

This example specifies that the drivers and libraries must be compiled with debugging
symbols in addition to the Libgen generated COMPILER_FLAGS.

Example MSS Snippet Showing Processor Options

BEGIN PROCESSOR
parameter HW_INSTANCE = my_microblaze
parameter DRIVER_NAME = cpu
parameter DRIVER_VER = 1.00.a
parameter DEFAULT_INIT = xmdstub
parameter XMDSTUB_PERIPHERAL = my_jtag
parameter STDIN = my_uartlite_1
parameter STDOUT = my_uartlite_1
parameter COMPILER = mb-gcc
parameter ARCHIVER = mb-ar
parameter EXTRA_COMPILER_FLAGS = -g -O0
parameter OS = standalone
END

http://www.xilinx.com

92 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 6: Microprocessor Software Specification (MSS)

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 93
UG642, April 19, 2010

Chapter 7

Microprocessor Library Definition
(MLD)

This chapter describes the Microprocessor Library Definition (MLD) format, Platform
Specification Format 2.1.0.

This chapter contains the following sections:

• “Overview”

• “Requirements”

• “Additional Resources”

• “Library Definition Files”

• “MLD Format Specification”

• “MLD Parameter Description Section”

• “Design Rule Check (DRC) Section”

• “Library Generation (Generate) Section”

Overview
An MLD file contains directives for customizing software libraries and generating Board
Support Packages (BSP) for Operating Systems (OS). This document describes the MLD
format and the parameters that can be used to customize libraries and OSs. It is
recommended that you read this document to become familiar with user-written libraries
and OSs that must be configured by the Libgen tool.

Requirements
Each OS and library has an MLD file and a Tcl (Tool Command Language) file associated
with it. The MLD file is used by the Tcl file to customize the OS or library, depending on
different options in the MSS file. For more information on the MSS file format, see
Chapter 6, “Microprocessor Software Specification (MSS).”

The OS and library source files and the MLD file for each OS and library must be located at
specific directories if Libgen is to find the files and libraries. Refer to the “Library
Generator” chapter in the Embedded System Tools Reference Manual, for a list of directories to
be searched for OSs and libraries. A link to the Embedded System Tools Reference Manual is
provided in the following section.

http://www.xilinx.com

94 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 7: Microprocessor Library Definition (MLD)

Additional Resources
Embedded System Tools Reference Manual:
http://www.xilinx.com/ise/embedded/edk_docs.htm

Library Definition Files
Library Definition involves defining Data Definition (MLD) and a Data Generation (Tcl)
files.

Data Definition File

The MLD file (named as <library_name>_v2_1_0.mld or <os_name>_v2_1_0.mld)
contains the configurable parameters. A detailed description of the various parameters
and the MLD format is described in “MLD Parameter Description Section,” page 98.

Data Generation File

The second file (named as <library_name>_v2_1_0.tcl or
<os_name>_v2_1_0.tcl, with the filename being the same as the MLD filename) uses
the parameters configured in the MSS file for the OS or library to generate data. Data
generated includes, but is not limited to, generation of header files, C files, running DRCs
for the OS or library and generating executables. The Tcl file includes procedures that are
called by the Libgen tool at various stages of its execution. Various procedures in a Tcl file
include: DRC (the name of the DRC given in the MLD file); generate (Libgen defined
procedure) called after OS and library files are copied; post_generate (Libgen defined
procedure) called after generate has been called on all OSs, drivers, and libraries; and
execs_generate (a Libgen-defined procedure) called after the BSPs, libraries, and
drivers have been generated. For more information on the workings of the Libgen tool
refer to the “Library Generator” chapter in the Embedded System Tools Reference Manual. A
link to this book is provided in the “Additional Resources” section, above.

Note: An OS/library need not have the data generation file (Tcl file).

MLD Format Specification
The MLD format specification involves the MLD file Format specification and the Tcl file
Format specification. These are described below.

MLD File Format Specification
The MLD file format specification involves the description of parameters defined in the
Parameter Description section.

Parameter Description Section

This data section describes configurable parameters in an OS/library. The format used to
describe this section is discussed in “MLD Parameter Description Section,” page 98.

Tcl File Format Specification
Each OS and library has a Tcl file associated with the MLD file. This Tcl file has the
following sections:

http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 95
UG642, April 19, 2010

MLD Format Specification

DRC Section

This section contains Tcl routines that validate your OS and library parameters for
consistency.

Generation Section

 This section contains Tcl routines that generate the configuration header and C files based
on the library parameters.

Examples
This section explains the MLD format through an example MLD file and its corresponding
Tcl file.

Example: MLD File for a Library

An example of an MLD file for the xilmfs library is given below:

OPTION psf_version = 2.1.0 ;

OPTION is a keyword identified by the Libgen tool. The option name following the
OPTION keyword is a directive to the Libgen tool to do a specific action. Here
psf_version of the MLD file is defined to be 2.1. This is the only option that can occur
before a BEGIN LIBRARY construct now.

BEGIN LIBRARY xilmfs

The BEGIN LIBRARY construct defines the start of a library named xilmfs.

 OPTION DRC = mfs_drc ;
 OPTION COPYFILES = all;

The COPYFILES option indicates the files to be copied for the library. The DRC option
specifies the name of the Tcl procedure that the tool invokes while processing this library.
Here mfs_drc is the Tcl procedure in the xilmfs_v2_1_0.tcl file that would be
invoked by Libgen while processing the xilmfs library.

 PARAM NAME = numbytes, DESC = "Number of Bytes", TYPE = int, DEFAULT =
100000, DRC = drc_numbytes ;
PARAM NAME = base_address, DESC = "Base Address", TYPE = int, DEFAULT =
0x10000, DRC = drc_base_address ;
 PARAM NAME = init_type, DESC = "Init Type", TYPE = enum, VALUES = ("New
file system"=MFSINIT_NEW, "MFS Image"=MFSINIT_IMAGE, "ROM
Image"=MFSINIT_ROM_IMAGE), DEFAULT = MFSINIT_NEW ;
 PARAM NAME = need_utils, DESC = "Need additional Utilities?", TYPE =
bool, DEFAULT = false ;

PARAM defines a library parameter that can be configured. Each PARAM has the following
properties associated with it, whose meaning is self-explanatory: NAME, DESC, TYPE,
DEFAULT, RANGE, DRC. The property VALUES defines the list of possible values associated
with an ENUM type.

http://www.xilinx.com

96 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 7: Microprocessor Library Definition (MLD)

 BEGIN INTERFACE file
 PROPERTY HEADER="xilmfs.h" ;
 FUNCTION NAME=open, VALUE=mfs_file_open ;
 FUNCTION NAME=close, VALUE=mfs_file_close ;
 FUNCTION NAME=read, VALUE=mfs_file_read ;
 FUNCTION NAME=write, VALUE=mfs_file_write ;
 FUNCTION NAME=lseek, VALUE=mfs_file_lseek ;
 END INTERFACE

An Interface contains a list of standard functions. A library defining an interface should
have values for the list of standard functions. It must also specify a header file where all the
function prototypes are defined.

PROPERTY defines the properties associated with the construct defined in the BEGIN
construct. Here HEADER is a property with value “xilmfs.h”, defined by the file
interface. FUNCTION defines a function supported by the interface. The open, close,
read, write, and lseek functions of the file interface have the values
mfs_file_open, mfs_file_close, mfs_file_read, mfs_file_write, and
mfs_file_lseek. These functions are defined in the header file xilmfs.h.

 BEGIN INTERFACE filesystem

BEGIN INTERFACE defines an interface the library supports. Here file is the name of
the interface.

 PROPERTY HEADER="xilmfs.h" ;
 FUNCTION NAME=cd, VALUE=mfs_change_dir ;
 FUNCTION NAME=opendir, VALUE=mfs_dir_open ;
 FUNCTION NAME=closedir, VALUE=mfs_dir_close ;
 FUNCTION NAME=readdir, VALUE=mfs_dir_read ;
 FUNCTION NAME=deletedir, VALUE=mfs_delete_dir ;
 FUNCTION NAME=pwd, VALUE=mfs_get_current_dir_name ;
 FUNCTION NAME=rename, VALUE=mfs_rename_file ;
 FUNCTION NAME=exists, VALUE=mfs_exists_file ;
 FUNCTION NAME=delete, VALUE=mfs_delete_file ;
 END INTERFACE

END LIBRARY

END is used with the construct name that was used in the BEGIN statement. Here END is
used with INTERFACE and LIBRARY constructs to indicate the end of each of INTERFACE
and LIBRARY constructs.

Example: Tcl File of a Library

The following is the xilmfs_v2_1_0.tcl file corresponding the xilmfs_v2_1_0.mld
file described in the previous section. The mfs_drc procedure would be invoked by
Libgen for the xilmfs library while running DRCs for libraries. The generate routine
generates constants in a header file and a c file for xilmfs library based on the library
definition segment in the MSS file.

proc mfs_drc {lib_handle} {
 puts "MFS DRC ..."
}
proc mfs_open_include_file {file_name} {
 set filename [file join "../../include/" $file_name]
 if {[file exists $filename]} {

 set config_inc [open $filename a]

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 97
UG642, April 19, 2010

MLD Format Specification

Example: MLD File for an OS

An example of an MLD file for the standalone OS is given below:

OPTION psf_version = 2.1.0 ;

OPTION is a keyword identified by the Libgen tool. The option name following the
OPTION keyword is a directive to the Libgen tool to do a specific action. Here the
psf_version of the MLD file is defined to be 2.1. This is the only option that can occur
before a BEGIN OS construct at this time.

BEGIN OS standalone

The BEGIN OS construct defines the start of an OS named standalone.

OPTION DESC = “Generate standalone BSP”;
OPTION COPYFILES = all;

The DESC option gives a description of the MLD. The COPYFILES option indicates the files
to be copied for the OS.

PARAM NAME = stdin, DESC = "stdin peripheral ", TYPE =
peripheral_instance, REQUIRES_INTERFACE = stdin, DEFAULT = none;
PARAM NAME = stdout, DESC = "stdout peripheral ", TYPE =
peripheral_instance, REQUIRES_INTERFACE = stdout, DEFAULT = none ;
PARAM NAME = need_xilmalloc, DESC = "Need xil_malloc?", TYPE = bool,
DEFAULT = false ;

PARAM defines an OS parameter that can be configured. Each PARAM has the following,
associated properties: NAME, DESC, TYPE, DEFAULT, RANGE, DRC. The property VALUES
defines the list of possible values associated with an ENUM type.

END OS

END is used with the construct name that was used in the BEGIN statement. Here END is
used with OS to indicate the end of OS construct.

Example: Tcl File of an OS

The following is the standalone_v2_1_0.tcl file corresponding to the
standalone_v2_1_0.mld file described in the previous section.The generate routine
generates constants in a header file and a c file for xilmfs library based on the library
definition segment in the MSS file.

proc generate {os_handle} {
global env

set need_config_file "false"

#Copy over the right set of files as src based on processor type
set prochandle [xget_processor]
set proctype [xget_value $prochandle "OPTION" "IPNAME"]
set mbsrcdir "./src/microblaze"
set ppcsrcdir "./src/ppc405"
switch $proctype {
"microblaze" {
foreach entry [glob -nocomplain [file join $mbsrcdir *]] {
file copy -force $entry "./src/"

}
set need_config_file "true”

http://www.xilinx.com

98 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 7: Microprocessor Library Definition (MLD)

}
"ppc405" {
foreach entry [glob -nocomplain [file join $ppcsrcdir *]] {
file copy -force $entry "./src/"

}
}
"default" {puts "unknown processor type\n"}
}

Remove microblaze and ppc405 directories...
file delete -force $mbsrcdir
file delete -force $ppcsrcdir

Handle stdin and stdout
xhandle_stdin $os_handle
xhandle_stdout $os_handle

Create config file for microblaze interrupt handling
if {[string compare -nocase $need_config_file "true"] == 0} {
xhandle_mb_interrupts

}

Generate xil_malloc.h if required
set xil_malloc [xget_value $os_handle "PARAMETER" "need_xil_malloc"]
if {[string compare -nocase $xil_malloc "true"] == 0} {
xcreate_xil_malloc_config_file

}
}

MLD Parameter Description Section
This section gives a detailed description of the constructs used in the MLD file.

Conventions
[] Denotes optional values.

<> Value substituted by the MLD writer.

Comments
Comments can be specified anywhere in the file. A “#” character denotes the beginning of
a comment and all characters after the “#” right up to the end of the line are ignored. All
white spaces are also ignored and semi-colons with carriage returns act as sentence
delimiters.

OS or Library Definition
The OS or library section includes the OS or library name, options, dependencies, and
other global parameters, using the following syntax:

OPTION psf_version = <psf version number>
BEGIN LIBRARY/OS <library/os name>
[OPTION drc = <global drc name>]
[OPTION depends = <list of directories>]
[OPTION help = <help file>]
[OPTION requires_interface = <list of interface names>]

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 99
UG642, April 19, 2010

MLD Parameter Description Section

PARAM <parameter description>
[BEGIN CATEGORY <name of category>
<category description>

END CATEGORY]
BEGIN INTERFACE <interface name>

END INTERFACE]

END LIBRARY/OS

MLD or MDD Keyword Summary
The keywords that are used in an MLD or MDD file are as follows:

MLD or MDD Keyword Definitions
The keywords that are used in an MLD or MDD file are as follows:

Note: The keyword ARRAY can only be used in MLD files. It is not allowed for MDD files.

BEGIN

The BEGIN keyword begins one of the following: os, library, driver, block,
category, interface, array.

END

The END keyword signifies the end of a definition block.

PSF_VERSION

Specifies the PSF version of the library.

DRC

Specifies the DRC function name. This is the global DRC function, which is called by
the GUI configuration tool or the command-line Libgen tool. This DRC function is
called once you enter all the parameters and MLD or MDD writers can verify that a
valid OS, library, or driver can be generated with the given parameters.

BEGIN
END
PSF_VERSION
DRC
OPTION
COPYFILES
DEPENDS
SUPPORTED_PERIPHERALS
LIBRARY_STATE
APP_COMPILER_FLAGS

APP_LINKER_FLAGS
OS_STATE
BSP
REQUIRES_INTERFACE
REQUIRES_OS
HELP
DEP
INTERFACE
HEADER
FUNCTION
CATEGORY

PARAM
PROPERTY
NAME
DESC
TYPE
DEFAULT
GUI_PERMIT
ARRAY

http://www.xilinx.com

100 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 7: Microprocessor Library Definition (MLD)

OPTION

Specifies that the name following the keyword option is an option to the Libgen or
GUI tools.

COPYFILES

Specifies the files to be copied for the OS, library, or driver. If ALL is used, then Libgen
copies all the OS, library, or driver files.

DEPENDS

Specifies the list of directories that needs to be compiled before the OS or library is
built.

SUPPORTED_PERIPHERALS

Specifies the list of peripherals supported by the OS. The values of this option can be
specified as a list, or as a regular expression. For example,

option supported_peripherals = (ppc405)

Indicates that the OS supports all versions of ppc_405. Regular expressions can be
used in specifying the peripherals and versions. The regular expression (RE) is
constructed as follows:

Single-character REs

- Any character that is not a special character (to be defined) matches itself.

- A backslash (followed by any special character) matches the literal character
itself. That is, this “escapes” the special character.

- The special characters are: + * ? . [] ^ $

- The period (.) matches any character except the new line. For example,
.umpty matches either "Humpty" or "Dumpty."

- A set of characters enclosed in brackets ([]) is a one-character RE that
matches any of the characters in that set. For example, [akm] matches either
an "a", "k", or "m". A range of characters can be indicated with a dash. For
example, [a-z] matches any lower-case letter. However, if the first character
of the set is the caret (^), then the RE matches any character except those in
the set. It does not match the empty string. Example: [^akm] matches any
character except "a", "k", or "m". The caret loses its special meaning if it is not
the first character of the set.

Multi-character REs

- A single-character RE followed by an asterisk (*) matches zero or more
occurrences of the RE. Thus, [a-z]* matches zero or more lower-case
characters.

- A single-character RE followed by a plus (+) matches one or more occurrences
of the RE. Thus, [a-z]+ matches one or more lower-case characters.

- A question mark (?) is an optional element. The preceeding RE can occur zero
or once in the string -- no more. Thus, xy?z matches either xyz or xz.

- The concatenation of REs is a RE that matches the corresponding
concatenation of strings. For example, [A-Z][a-z]* matches any
capitalized word.

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 101
UG642, April 19, 2010

MLD Parameter Description Section

- For example, the following matches an version of the ppc405 and
ppc405_virtex4:

OPTION supported_peripherals = (ppc405_v[0-9]+_[1-9][0-9]_[a-z]
ppc405_virtex4);

LIBRARY_STATE

Specifies the state of the library. Following is the list of values that can be assigned to
LIBRARY_STATE:

ACTIVE

An active library. By default the value of LIBRARY_STATE is ACTIVE.

DEPRECATED

This library is deprecated and will be removed from the release soon.

OBSOLETE

This library is obsolete and will not be recognized by any tools. Tools error out on an
obsolete library and a new library should be used instead.

APP_COMPILER_FLAGS

This option specifies what compiler flags must be added to the application when using
this library. For example:

OPTION APP_COMPILER_FLAGS = "-D MYLIBRARY"

The GUI tools can use this option value to automatically set compiler flags
automatically for an application.

APP_LINKER_FLAGS

This option specifies that linker flags must be added to the application when using a
particular library or OS. For example:

OPTION APP_LINKER_FLAGS = "-lxilkernel"

The GUI tools can use this value to set linker flags automatically for an application.

BSP

Specifies a boolean keyword option that can be provided in the MLD file to identify
when an OS component is to be treated as a third partyBSP. For example

OPTION BSP = true;

This indicates that the SDK tools will offer this OS component as a board support
package. If set to false, the component is handled as a native embedded software
platform.

OS_STATE

Specifies the state of the operating system (OS). Following is the list of values that can be
assigned to OS_STATE:

ACTIVE

This is an active OS. By default the value of OS_STATE is ACTIVE.

http://www.xilinx.com

102 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 7: Microprocessor Library Definition (MLD)

DEPRECATED

This OS is deprecated and will be removed from a future release.

OBSOLETE

This OS is obsolete and will not be recognized by the tools. Tools error out on an
obsolete OS and a new OS must be specified.

REQUIRES_INTERFACE

Specifies the interfaces that must be provided by other OSs, libraries, or drivers in the
system.

REQUIRES_OS

Specifies the list of OSs with which the specified library will work. For example:

OPTION REQUIRES_OS = (standalone xilkernel_v4_[0-9][0-9]_[a-z])

The GUI tools use this option value to determine which libraries are offered for a given
operating system choice. The values in the list can be regular expressions as shown in
the example.

Note: This option must be used on libraries only.

HELP

Specifies the HELP file that describes the OS, library, or driver.

DEP

Specifies the condition that must be satisfied before processing an entity. For example
to include a parameter that is dependent on another parameter (defined as a DEP, for
dependent, condition), the DEP condition should be satisfied. Conditions of the form
(operand1 OP operand2) are the only supported conditions.

INTERFACE

Specifies the interfaces implemented by this OS, library, or driver. It describes the
interface functions and header files used by the library/driver.

BEGIN INTERFACE <interface name>
OPTION DEP=<list of dependencies>;
PROPERTY HEADER=<name of header file where the function is declared>;
FUNCTION NAME=<name of interface function>, VALUE=<function name of

library/driver implementation> ;
END INTERFACE

HEADER

Specifies the HEADER file in which the interface functions would be defined.

FUNCTION

Specifies the FUNCTION implemented by the interface. This is a name-value pair in
which name is the interface function name and value is the name of the function
implemented by the OS, library, or driver.

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 103
UG642, April 19, 2010

MLD Parameter Description Section

CATEGORY

Defines an unconditional block. This block gets included based on the default value of
the category or if included in the MSS file.

BEGIN CATEGORY <category name>
PARAM name = <category name>, DESC=<param description>,

TYPE=<category type>, DEFAULT=<default>, GUI_PERMIT=<value>, DEP =
<condition>
OPTION DEPENDS=<list of dependencies>, DRC=<drc name>, HELP=<help

file>;
< parameters or categories description>

END CATEGORY

Nested categories are not supported through the syntax that specifies them. A
category is selected in a MSS file by specifying the category name as a parameter with
a boolean value TRUE. A category must have a PARAM with category name.

PARAM

The MLD file has a simple name = value format for most statements. The PARAM
keyword is required before every such NAME, VALUE pairs. The format for
assigning a value to a parameter is param name = <name>, default =
value. The PARAM keyword specifies that the parameter can be overwritten in the
MSS file.

PROPERTY

Specifies the various properties of the entity defined with a BEGIN statement

NAME

Specifies the name of the entity in which it was defined. (Examples: param and
property.)

DESC

Describes the entity in which it was defined. (Examples: param and property.)

TYPE

Specifies the type for the entity in which it was defined. (Example: param.) The
following types are supported:

bool

Boolean (true or false).

int

Integer

string

String value within " ".

enum

http://www.xilinx.com

104 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 7: Microprocessor Library Definition (MLD)

List of possible values that a parameter can take.

library

Specify other library that is needed for building the library/driver.

peripheral_instance

Specify other hardware drivers that is needed for building the library.

DEFAULT

Specifies the default value for the entity in which it was defined.

GUI_PERMIT

Specifies the permissions for modification of values. The following permissions exist:

NONE

The value cannot be modified at all.

ADVANCED_USER

The value can be modified by all. The SDK GUI does not display this value by
default. This is displayed only for the advanced option in the GUI.

ALL_USERS

The value can be modified by all. The SDK GUI displays this value by default. This
is the default value for all the values. If GUI_PERMIT = NONE, the category is
always active.

ARRAY

BEGIN ARRAY <array name>
PROPERTY desc = <array description> ;
PROPERTY size = <size of the array>;
PROPERTY default = <List of Values for each element based on the size

of the array>
array field description as parameters
PARAM name = <name of parameter>, desc = "description of param", type

= <type of param>, default = <default value>
.....
END ARRAY

ARRAY can have any number of PARAMs, and only PARAMs. It cannot have CATEGORY
as one of the fields of an array element. The size of the array can be defined as one of
the properties of the array. An array with default values specified in the default
property leads to its size property being initialized to the number of values. If there is
no size property defined, a size property is created before initializing it with the
default number of elements. Each parameter in the array can have a default value. In
cases in which size is defined with an integer value, an array of size elements would be
created wherein the value of each element would be the default value of each of the
parameters.

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 105
UG642, April 19, 2010

Design Rule Check (DRC) Section

Design Rule Check (DRC) Section
proc mydrc { handle } {

}

The DRC function could be any Tcl code that checks your parameters for correctness. The
DRC procedures can access (read-only) the Platform Specification Format database (which
Libgen builds using the MHS and the MSS files) to read the parameter values that you set.
The handle is associated with the current library in the database. The DRC procedure can
get the OS and library parameters from this handle. It can also get any other parameter
from the database by first requesting a handle and using the handle to get the parameters.

For errors, DRC procedures call the Tcl error command error "error msg" that displays
in an error dialog box.

For warnings, DRC procedures return a string value that can be printed on the console.

On success, DRC procedures return without any value.

Library Generation (Generate) Section
proc mygenerate { handle } {

}

Generate could be any Tcl code that reads your parameters and generates configuration
files for the OS or library. The configuration files can be C files, Header files, Makefiles, etc.
The generate procedures can access (read-only) the Platform Specification Format
database (which Libgen builds using the MHS and the MSS files) to read the parameter
values of the OS or library that you set. The handle is a handle to the current OS or library
in the database. The generate procedure can get the OS or library parameters from this
handle. It can also get any other parameter from the database by first requesting a handle
and using the handle to get the parameter.

http://www.xilinx.com

106 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 7: Microprocessor Library Definition (MLD)

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 107
UG642, April 19, 2010

Chapter 8

Microprocessor Driver Definition
(MDD)

This chapter describes the Microprocessor Driver Definition (MDD) format, Platform
Specification Format 2.1.0.

This chapter contains the following sections:

• “Overview”

• “Requirements”

• “Additional Resources”

• “Driver Definition Files”

• “MDD Format Specification”

• “MDD Parameter Description”

• “Design Rule Check (DRC) Section”

• “Driver Generation (Generate) Section”

Overview
An MDD file contains directives for customizing software drivers. This document
describes the MDD format and the parameters that can be used to customize drivers. For
more information on drivers, refer to the Driver Reference Guide (xilinx_drivers.htm)
and/or the Device Driver Programmer Guide (xilinx_drivers_guide.pdf), both contained in
your EDK installation directory under docs/usenglish. It is recommended that you
refer to these documents to gain an understanding of user-written drivers that must be
configured by the Libgen tool.

Requirements
Each device driver has an MDD file and a Tcl (Tool Command Language) file associated
with it. The MDD file is used by the Tcl file to customize the driver, depending on different
options configured in the MSS file. For more information on the MSS file format, refer to
Chapter 6, “Microprocessor Software Specification (MSS).”

The driver source files and the MDD file for each driver must be located at specific
directories in order for Libgen to find the files and the drivers. Refer to the “Library
Generator” chapter in the Embedded System Tools Reference Manual for a list of directories
that is searched for drivers. A link to the manual is provided in the section below.

http://www.xilinx.com

108 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 8: Microprocessor Driver Definition (MDD)

Additional Resources
• Embedded System Tools Reference Manual:

http://www.xilinx.com/ise/embedded/edk_docs.htm

• Driver Reference Guide (xilinx_drivers.htm): contained in your EDK installation
directory under docs/usenglish

• Device Driver Programmer Guide (xilinx_drivers_guide.pdf): contained in your EDK
installation directory under docs/usenglish

Driver Definition Files
Driver Definition involves defining a Data Definition file (MDD) and a Data Generation
file (Tcl file).

• Data Definition File - The MDD file (<driver_name>_v2_1_0.mdd) contains the
configurable parameters. A detailed description of the parameters and the MDD
format is described in “MDD Parameter Description,” section of this chapter.

• Data Generation File - The second file (<driver_name>_v2_1_0.tcl, with the
filename being the same as the MDD filename) uses the parameters configured in the
MSS file for the driver to generate data. Data generated includes but not limited to
generation of header files, C files, running DRCs for the driver and generating
executables. The Tcl file includes procedures that are called by the Libgen tool at
various stages of its execution. Various procedures in a Tcl file includes: the DRC
(name of the DRC given in the MDD file), generate (Libgen defined procedure)
called after driver files are copied, post_generate (Libgen defined procedure)
called after generate has been called on all drivers and libraries, and
execs_generate (Libgen defined procedure) called after the libraries and drivers
have been generated. For more information on the working of the Libgen tool, refer to
the “Library Generator” chapter in the Embedded System Tools Reference Manual. (A link
to the document is provided in the “Additional Resources” section)

Note: A driver need not have the data generation file (Tcl file).

MDD Format Specification
The MDD format specification involves the MDD file Format specification and the Tcl file
Format specification. These are described below.

MDD File Format Specification
The MDD file format specification describes the parameters defined in the Parameter
Description section. This data section describes configurable parameters in a driver. The
format used to describe these parameters is discussed in the “MDD Parameter
Description,” section of this chapter.

http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 109
UG642, April 19, 2010

MDD Format Specification

Tcl File Format Specification
Each driver has a Tcl file associated with the MDD file. This Tcl file has the following
sections:

DRC Section

This section contains Tcl routines that validate your driver parameters for consistency.

Generation Section

 This section contains Tcl routines that generate the configuration header and C files based
on the driver parameters

Example
This section explains the MDD format through an example of an MDD file and its
corresponding Tcl file.

MDD: File Example

An example of an MDD file for the uartlite driver is given below:

OPTION psf_version = 2.1;

OPTION is a keyword identified by the Libgen tool. The option name following the
OPTION keyword is a directive to the Libgen tool to do a specific action. Here the
psf_version of the MDD file is defined as 2.1. This is the only option that can occur
before a BEGIN DRIVER construct.

BEGIN DRIVER uartlite

The BEGIN DRIVER construct defines the start of a driver named uartlite.

 PARAM NAME = level, DESC = "Driver Level", TYPE = int, DEFAULT = 0,
RANGE = (0, 1);

PARAM defines a driver parameter that can be configured. Each PARAM has the following
properties associated with it: NAME, DESC, TYPE, DEFAULT, RANGE.

BEGIN BLOCK, DEP = (level = 0)

BEGIN BLOCK, DEP allows conditional inclusion of a set of parameters subject to a
condition fulfillmen. The condition is given by the DEP construct. Here the set of
parameters defined inside the BLOCK would be processed by Libgen tool only when
“level” parameter has a value 0.

 OPTION DEPENDS = (common_v1_00_a);
 OPTION COPYFILES = (xuartlite_l.c xuartlite_l.h Makefile);
 OPTION DRC = uartlite_drc;

The DEPENDS option specifies that the driver depends on the sources of a directory named
common_v1_00_a. The area for searching the dependent directory is decided by the
Libgen tool. The COPYFILES option indicates the files to be copied for a “level” 0 uartlite
driver. The DRC option specifies the name of the Tcl procedure that the tool invokes while
processing this driver. The uartlite_drc is the Tcl procedure in the
uartlite_v2_1_0.tcl file that would be invoked by Libgen while processing the
uartlite driver.

 BEGIN INTERFACE stdin

http://www.xilinx.com

110 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 8: Microprocessor Driver Definition (MDD)

BEGIN INTERFACE defines an interface the driver supports. The interface name is stdin.

 PROPERTY header = xuartlite_l.h;
 FUNCTION name = inbyte, value = XUartLite_RecvByte;

END INTERFACE

An Interface contains a list of standard functions. A driver defining an interface should
have values for the list of standard functions. It must also specify a header file in which all
the function prototypes are defined.

PROPERTY defines the properties associated with the construct defined in the BEGIN
construct. The header is a property with the value xuartlite_l.h, defined by the
stdin interface. FUNCTION defines a function supported by the interface. The inbyte
function of the stdin interface has the value XUartLite_RecvByte. This function is
defined in the header file xuartlite_l.h.

 BEGIN INTERFACE stdout
 PROPERTY header = xuartlite_l.h;
 FUNCTION name = outbyte, value = XUartLite_SendByte;
 END INTERFACE

 BEGIN INTERFACE stdio
 PROPERTY header = xuartlite_l.h;
 FUNCTION name = inbyte, value = XUartLite_RecvByte;
 FUNCTION name = outbyte, value = XUartLite_SendByte;
 END INTERFACE

 BEGIN ARRAY interrupt_handler
 PROPERTY desc = "Interrupt Handler Information";
 PROPERTY size = 1, permit = none;
 PARAM name = int_handler, default = XIntc_DefaultHandler, desc =
"Name of Interrupt Handler", type = string;
 PARAM name = int_port, default = Interrupt, desc = "Interrupt pin
associated with the interrupt handler", permit = none;
 END ARRAY

The ARRAY construct defines an array of parameters. The interrupt_handler is the
name of the array. The description (DESC) of the array and the size (SIZE) are defined as
properties of the array interrupt_handler. The construct GUI_PERMIT is a directive to
the tool that you cannot change the size of the array. The array defines int_handler and
int_port as parameters of an element of the array.

 END BLOCK
BEGIN BLOCK, dep = (level = 1)
 OPTION depends = (common_v1_00_a uartlite_vxworks5_4_v1_00_a);
 OPTION copyfiles = all;
BEGIN ARRAY interrupt_handler
 PROPERTY desc = "Interrupt Handler Information";
 PROPERTY size = 1, permit = none;
 PARAM name = int_handler, default = XUartLite_InterruptHandler,
desc = "Name of Interrupt Handler", type = string;
 PARAM name = int_port, default = Interrupt, desc = "Interrupt pin
associated with the interrupt handler", permit = none;
 END ARRAY
PARAM name = connect_to, desc = "Connect to operationg system", type =
enum, values = {"VxWorks5_4" = VxWorks5_4, "None" = none}, default =
none;
 END BLOCK
END DRIVER

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 111
UG642, April 19, 2010

MDD Parameter Description

END is used with the construct name that was used in the BEGIN statement. Here END is
used with BLOCK and DRIVER constructs to indicate the end of each BLOCK and DRIVER
construct.

Example: Tcl File

The following is the uartlite_v2_1_0.tcl file corresponding to the uartlite_v2_1_0.mdd file
described in the previous section. The “uartlite_drc” procedure would be invoked by
Libgen for the uartlite driver while running DRCs for drivers. The generate routine
generates constants in a header file and a c file for uartlite driver, based on the driver
definition segment in the MSS file.

proc uartlite_drc {drv_handle} {
puts “UartLite DRC”

}

proc generate {drv_handle} {
 set level [xget_value $drv_handle "PARAMETER" "level"]
 if {$level == 0} {
 xdefine_include_file $drv_handle "xparameters.h" "XUartLite"
"NUM_INSTANCES" "C_BASEADDR" "C_HIGHADDR"
 }
 if {$level == 1} {
 xdefine_include_file $drv_handle "xparameters.h" "XUartLite"
"NUM_INSTANCES" "C_BASEADDR" "C_HIGHADDR" "DEVICE_ID" "C_BAUDRATE"
"C_USE_PARITY" "C_ODD_PARITY"
 xdefine_config_file $drv_handle "xuartlite_g.c" "XUartLite"
"DEVICE_ID" "C_BASEADDR" "C_BAUDRATE" "C_USE_PARITY" "C_ODD_PARITY"
 }
}

MDD Parameter Description
This section gives a detailed description of the constructs used in the MDD file.

Conventions
[] - Denotes optional values.

<> - Value substituted by the MDD writer.

Comments
Comments can be specified anywhere in the file. A pound (#) character denotes the
beginning of a comment, and all characters after it, right up to the end of the line, are
ignored. All white spaces are also ignored and semicolons with carriage returns act as
sentence delimiters.

http://www.xilinx.com

112 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 8: Microprocessor Driver Definition (MDD)

Driver Definition
The driver section includes the driver name, options, dependencies, and other global
parameters, using the following syntax:

OPTION psf_version = <psf version number>
BEGIN DRIVER <driver name>
[OPTION drc = <global drc name>]
[OPTION depends = <list of directories>]
[OPTION help = <help file>]
[OPTION requires_interface = <list of interface names>]
PARAM <parameter description>
[BEGIN BLOCK,dep = <condition>

END BLOCK]
[BEGIN INTERFACE <interface name>

END INTERFACE]

END DRIVER

MDD Keyword Summary

MDD Keyword Definitions

BEGIN

The BEGIN keyword begins with one of the following: library, drive, block,
category, or interface.

END

The END keyword signifies the end of a definition block.

PSF_VERSION

Specifies the PSF version of the library.

DRC

Specifies the DRC function name. This is the global DRC function, which is called by the
GUI configuration tool or the command line Libgen tool. This DRC function will be called
once you enter all the parameters and MLD or MDD writers can verify that a valid library
or driver can be generated with the given parameters.

BEGIN
END
PSF_VERSION
DRC
OPTION
COPYFILES
DEPENDS
SUPPORTED_PERIPHERALS
DRIVER_STATE

REQUIRES_INTERFACE
HELP
DEP
BLOCK
INTERFACE
HEADER
FUNCTION
PARAM
PROPERTY

NAME
DESC
TYPE
DEFAULT
GUI_PERMIT

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 113
UG642, April 19, 2010

MDD Parameter Description

OPTION

Specifies the name following the keyword OPTION is an option to the tool Libgen. The
following five Libgen options are supported: COPYFILES, DEPENDS,
SUPPORTED_PERIPHERALS, and DRIVER_STATE. These are described below.

COPYFILES

Specifies the list of files to be copied for the driver. If ALL is specified as the value, Libgen
copies all the driver files.

DEPENDS

Specifies the list of directories on which a driver depends for compilation.

SUPPORTED_PERIPHERALS

Specifies the list of peripherals supported by the driver. The values of this option can
be specified as a list or as a regular expression. The following example indicates that
the driver supports all versions of opb_jtag_uart and the
opb_uartlte_v1_00_b version:

option supported_peripherals = (xps_uartlite_v1_00_a, xps_uart16550)

Regular expressions can be used in specifying the peripherals and versions. The
regular expression (RE) is constructed as follows:

Single-character REs

Any character that is not a special character (to be defined) matches itself.

A backslash (followed by any special character) matches the literal character itself.
That is, it escapes the special character.

The special characters are: + * ? . [] ^ $

The period matches any character except the newline. For example, .umpty matches
either Humpty or Dumpty.

A set of characters enclosed in brackets ([]) is a one-character RE that matches any of
the characters in that set. For example, [akm] matches an a, k, or m. A range of
characters can be indicated with a dash. For example, [a-z] matches any lower-case
letter. However, if the first character of the set is the caret (^), then the RE matches any
character except those in the set. It does not match the empty string. Example: [^akm]
matches any character except a, k, or m. The caret loses its special meaning if it is not
the first character of the set.

Multi-character REs

A single-character RE followed by an asterisk (*) matches zero or more occurrences
of the RE. Therefore, [a-z]* matches zero or more lower-case characters.

A single-character RE followed by a plus (+) matches one or more occurrences of the
RE. Therefore, [a-z]+ matches one or more lower-case characters.

A question mark (?) is an optional element. The preceding RE can occur zero or once
in the string -- no more. For example, xy?z matches either xyz or xz.

The concatenation of REs is an RE that matches the corresponding concatenation of
strings. For example, [A-Z][a-z]* matches any capitalized word.

http://www.xilinx.com

114 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 8: Microprocessor Driver Definition (MDD)

The following example matches any version of xps_uartlite, xps_uart16550
and mdm.

OPTION supported_peripherals = (xps_uartlite_v[0-9]+_[1-9][0-9]_[a-z]
xps_uart16550 mdm);

DRIVER_STATE

Specifies the state of the driver. The following are the list of values that can be assigned to
DRIVER_STATE:

ACTIVE

This is an active driver. By default the value of DRIVER_STATE is ACTIVE.

DEPRECATED

This driver is deprecated and would be removed from the release soon.

OBSOLETE

This driver is obsolete and is not recognized by any tools. Tools error out on an
obsolete driver, and a new driver should be used instead.

REQUIRES_INTERFACE

Specifies the interfaces that must be provided by other libraries or drivers in the system.

HELP

Specifies the help file that describes the library or driver.

DEP

Specifies the condition that needs to be satisfied before processing an entity. For example to
enter into a BLOCK, the DEP condition should be satisfied. Conditions of the form
(operand1 OP operand2) are supported.

BLOCK

Specifies the block is to be entered into when the DEP condition is satisfied. Nested blocks
are not supported.

INTERFACE

Specifies the interfaces implemented by this library or driver and describes the interface
functions and header files used by the library or driver.

BEGIN INTERFACE <interface name>
OPTION DEP=<list of dependencies>;
PROPERTY HEADER=<name of header file where the function is declared>;
FUNCTION NAME=<name of interface function>, VALUE=<function name of

library/driver implementation> ;
END INTERFACE

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 115
UG642, April 19, 2010

MDD Parameter Description

HEADER

Specifies the header file in which the interface functions would be defined.

FUNCTION

Specifies the function implemented by the interface. This is a name-value pair where name
is the interface function name and value is the name of the function implemented by the
library or driver.

PARAM

The MLD/MDD file has a simple name = value format for most statements. The PARAM
keyword is required before every such NAME, VALUE pair. The format for assigning a
value to a parameter is param name = <name>, default= value. The PARAM
keyword specifies that the parameter can be overwritten in the MSS file.

PROPERTY

Specifies the various properties of the entity defined with a BEGIN statement

NAME

Specifies the name of the entity in which it was defined (example: PARAM, PROPERTY).

DESC

Describes the entity in which it was defined (example: PARAM, PROPERTY).

TYPE

Specifies the type for the entity in which it was defined (example: PARAM). The following
are the supported types:

bool

Boolean (true or false)

int

Integer

string

String value within " "

enum

List of possible values, that this parameter can take

library

Specify other library that is needed for building the library or driver.

peripheral_instance

Specify other hardware drivers needed for building the library or driver. Regular
expressions can be used to specify the peripheral instance. Refer to the section
“SUPPORTED_PERIPHERALS,” page 113 for more details on regular expressions.

http://www.xilinx.com

116 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 8: Microprocessor Driver Definition (MDD)

DEFAULT

Specifies the default value for the entity in which it was defined.

GUI_PERMIT

Specifies the permissions for modification of values. The following permissions exist:

NONE

The value cannot be modified at all

ADVANCED_USER

The value can be modified by all. The SDK GUI does not display this value by default.
It is displayed only as an advanced option in the GUI.

ALL_USERS

The value can be modified by all. The SDK GUI displays this value by default. This is
the default value for all the values.

If GUI_PERMIT = NONE, the category is always active.

Design Rule Check (DRC) Section
proc mydrc { handle }

The DRC function can be any Tcl code that checks your parameters for correctness. The
DRC procedures can access (read-only) the Platform Specification Format database (built
by the Libgen tool using the MHS and the MSS files) to read the parameter values you set.
The "handle" is a handle to the current driver in the database. The DRC procedure can get
the driver parameters from this handle. It can also get any other parameter from the
database, by first requesting a handle and using the handle to get the parameters.

For errors, DRC procedures would call the Tcl error command error "error msg" that
displays in an error dialog box.

For warnings, DRC procedures return a string value that can be printed on the console.

On success, DRC procedures just return without any value.

Driver Generation (Generate) Section
proc mygenerate { handle }

Generate could be any Tcl code that reads your parameters and generates configuration
files for the driver. The configuration files can be C files, Header files, or Makefiles. The
generate procedures can access (read-only) the Platform Specification Format database
(built by the Libgen tool using the MHS and the MSS files) to read the parameter values of
the driver that you set. The handle is a handle to the current driver in the database. The
generate procedure can get the driver parameters from this handle. It can also get any
other parameters from the database by requesting a handle and then using the handle to
get the parameter.

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 117
UG642, April 19, 2010

Chapter 9

Xilinx Board Description (XBD) Format

Overview
The Xilinx® Board Description (XBD) file defines the contents of a particular board and
how it interfaces with the FPGA devices on the board.

An XBD file has the following characteristics:

• Blocks that define the FPGA interfaces supported by the board

• Each block has list of attributes, parameters and ports

• Connectivity information between different ports or modules

• UCF Constraints information for each FPGA pin

This chapter includes the following sections:

• “Overview”

• “XBD Syntax”

• “Global Attribute Commands”

• “Local Attribute Commands”

• “Local Parameter Commands”

• “Local Parameter Subproperties”

• “Local Port Commands”

• “Local Port Subproperties”

• “Associating IPs with IO_INTERFACE in XBD”

• “Bridging IP with IO_INTERFACE”

• “XBD Load Path”

• “BSB Restrictions”

• “Existing Xilinx IO Types”

http://www.xilinx.com

118 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 9: Xilinx Board Description (XBD) Format

XBD Syntax
XBD file syntax is case insensitive.

Note: The current XBD version is 2.2.0. The version number is reflected in the names of the XBD
files read by the EDK tools.

Comments in XBD
You can insert comments in the XBD file without disrupting processing. Use the following
guidelines:

• Precede comments with the pound sign (#).

• Comments continue to the end of the line.

• Comments can be anywhere on the line.

Format

Module Definitions

Use the following format at the beginning of a module definition:

BEGIN <block_type_keyword>

The BEGIN keyword signifies the beginning of a new module. There are three block types
currently identified in XBD files:

IO_INTERFACE

An IO_INTERFACE specifies a physical module on the board. This does not include the
FPGA itself. Each IO_INTERFACE also has a reference to soft IPs that you can use on the
FPGA to interface with that module on the board.

IO_ADAPTER

An IO_ADAPTER specifies any soft glue-logic that might be needed to bridge any
IO_INTERFACE pins with the ports of the soft-IP used for that IO_INTERFACE.

FPGA

An FPGA block represents the FPGA itself.

Use the following format to end a module definition:

END

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 119
UG642, April 19, 2010

XBD Syntax

Assignment Commands

Each BEGIN-END block contains multiple assignment commands. An assignment
command is a name-value pair and can have one of more subproperty name-value pairs
associated with it.

Use the following format for assignment commands:

<command> <name> = <value> {, <subproperty_name> = <subproperty_value>}

There are three assignment commands:

ATTRIBUTE

Names of all the ATTRIBUTEs are keywords. EDK tools perform certain actions or use the
value of the attribute in a particular manner. You can use the ATTRIBUTE assignment
command both inside or outside a BEGIN-END block.

PARAMETER

You can use any name for a PARAMETER. PARAMETER names specify values of PARAMETERs on
the IPs connected to the IO_INTERFACE. A PARAMETER can be specified inside
IO_INTERFACE blocks only.

PORT

Any name can be used for a PORT. PORT names specify connectivity between modules
(including the FPGA) on the board. A PORT can be specified only inside IO_INTERFACE and
IO_ADAPTER blocks.

Both PARAMETERs and PORTs can have subproperties associated with them. Each
subproperty is a name-value pair. You must specify subproperties on the same line as the
PARAMETER or the PORT. Subproperties must be comma-separated.

XBD Example
Your EDK installation directory contains XBD files shipped with EDK.

The board files can be found at:

$XILINX_EDK/board/Xilinx/boards/<board_name>/data/<board_name>_
<version>.xbd

In the example path above, <board_name> might be Xilinx_ML505, for example. The
current XBD version is 2.2.0, therefore, <version> would be 2_2_0.

http://www.xilinx.com

120 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 9: Xilinx Board Description (XBD) Format

Global Attribute Commands

Global Attribute Command Summary

The Global Attribute command has the following syntax:

ATTRIBUTE <name> = <value>

Global Attribute Command Definitions

VENDOR

Specifies the name of the vendor. Tools use this attribute to sort various board files based
on vendor name, using the following format:

ATTRIBUTE VENDOR= Xilinx

NAME

The NAME attribute is a string representing the name of the board. This is the name the tools
display for you when they select a board. It is expressed in the following format:

ATTRIBUTE NAME= AFX Virtex-II Pro fg456 Proto Board

REVISION

The REVISION attribute identifies the revision number of the board that the XBD file
represents. You must associate every board revision with an XBD file that is dedicated to
that board revision alone. Use the following format to specify the revision:

ATTRIBUTE REVISION = C

CONTACT_INFO_URL

Displays a web URL link that you can use to contact Xilinx if you need assistance. The
CONTACT_INFO_URL attribute is expressed in the following format:

ATTRIBUTE CONTACT_INFO_URL =
http://www.xilinx.com/support/techsup/tappinfo.htm

SPEC_URL

Displays a URL that takes you to the Xilinx website. The SPEC_URL attribute is expressed in
the following format:

ATTRIBUTE SPEC_URL = http://www.xilinx.com

VENDOR
NAME
REVISION
CONTACT_INFO_URL
SPEC_URL
DESC
LONG_DESC

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 121
UG642, April 19, 2010

Local Attribute Commands

DESC

Provides a short text description of the board. Base System Builder uses the DESC attribute
value and displays it in the GUI. The DESC attribute is expressed in the following format:

ATTRIBUTE DESC = some text

LONG_DESC

Specifies a long text description for the board. Base System Builder uses the LONG_DESC
attribute value and displays it in the GUI. If the description string contains embedded
commas, it must be enclosed in single quotes because the comma is a name-value delimiter.
The LONG_DESC attribute is expressed using the following format:

ATTRIBUTE TEXT= ‘some long text which gives an idea to user about the
board’

Local Attribute Commands

Local Attribute Command Summary
A local attribute is defined between a BEGIN-END block and expressed in the following
format:

ATTRIBUTE <name> = <value>

Local Attribute Command Definitions

INSTANCE

Distinguishes one module from another. The INSTANCE attribute is expressed in the
following format:

ATTRIBUTE INSTANCE = clk_module

CORENAME

Identifies the pcore that is instantiated in the MHS to represent the IO_ADAPTER. Use the
CORENAME attribute only with IO_ADAPTER blocks. The CORENAME attribute is expressed in
the following format:

ATTRIBUTE CORENAME = mypcore

INSTANCE
CORENAME
VERSION
IOTYPE
EXCLUSIVE
JTAG_POSITION

http://www.xilinx.com

122 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 9: Xilinx Board Description (XBD) Format

VERSION

Specifies the HW_VER of the pcore to be instantiated in the MHS file. Use the VERSION
attribute only with IO_ADAPTER blocks. The VERSION attribute is expressed in the following
format:

ATTRIBUTE VERSION= 1.00.a

IOTYPE

Specifies what type of IO_INTERFACE block is being used. Use the IOTYPE attribute to
match the pcore instantiated in the MHS. There are no versions for the IO_INTERFACE type.
Any version information must be embedded in the IOTYPE string itself. Use the IOTYPE
attribute with IO_INTERFACE blocks only. The IOTYPE attribute is expressed in the
following format:

ATTRIBUTE IOTYPE = XIL_GPIO_V1

EXCLUSIVE

Represents a group of IO_INTERFACEs that are exclusive to each other. If you use one
IO_INTERFACE in this group, you cannot use others, mainly because they share the same
ports with the FPGA on the board. The EXCLUSIVE attribute is expressed in the following
format:

ATTRIBUTE EXCLUSIVE = excl_group

JTAG_POSITION

Determines the position of the FPGA in the JTAG chain. Base System Builder uses this
information while creating the etc/download.cmd file for the project. The JTAG_POSITION
attribute is expressed in the following format:

ATTRIBUTE JTAG_POSITION = 1

Local Parameter Commands
A module can have any number of parameters. Parameters have a subproperty called
IO_IS. You can use the string value of the IO_IS subproperty to match the parameter
whose value is the same value of the XBD local parameter. This parameter is expressed in
the following format:

PARAMETER <name> = <value> {, <subprop_name> = <subprop_value>}

Note: The C_BASEADDR and C_HIGHADDR are normally used to define the location of a peripheral
in the processor memory map, as well as the size of the peripheral memory space. When used in an
XBD file, only the size of the peripheral memory space is used. The absolute location of the
peripheral in the processor memory map is specified by Base System Builder.

Local Parameter Subproperties
A subproperty on a local parameter is a name-value pair. A local parameter can have any
number of subproperty name-value pairs associated with it. All the subproperties have to
be specified on the same line as the parameter itself. Each name-value pair is separated by
a comma.

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 123
UG642, April 19, 2010

Local Port Commands

The value of the IO_IS subproperty matches parameters on the IP with the parameters on
the hardware component on the board. The IO_IS subproperty is expressed in the
following format:

PARAMETER MYPARAM = 3, IO_IS = myparam

MEMORY_TYPE

The only allowed value of the MEMORY_TYPE subproperty is FLASH. Use the MEMORY_TYPE
subproperty on the C_BASEADDR parameter of a flash memory module only. The following
is an example of MEMORY_TYPE:

PARAMETER C_BASEADDR = 0x00000000, IO_IS=C_BASEADDR, MEMORY_TYPE=FLASH
PARAMETER C_HIGHADDR = 0x0003FFFF, IO_IS=C_HIGHADDR

RANGE

The value of the RANGE subproperty is a comma-separated list of integers, intended for use
only on the clock module. These integers specify a list of possible clock frequencies on the
board. The following example shows a board with two clock frequencies of 66 and 100
MHz. The default frequency that BSB will use is 100 Mhz.

PARAMETER CLK_FREQ = 100000000, IO_IS=clk_freq, RANGE=(66000000,
100000000) # 66 Mhz or 100 Mhz

VALUE_NOTE

The value of the VALUE_NOTE subproperty provides a short text description of values
associated with this parameter. It is expressed in the following format:

PARAMETER RST_POLARITY = 0, IO_IS = polarity, VALUE_NOTE = Active LOW

Local Port Commands
A local port is defined between the BEGIN-END block of a module. XBD supports local ports
only; global ports are not supported. There are no reserved PORT names. You can specify
local ports in all three block types. Local port commands are formatted as follows:

PORT <name> = <connector_name> {,<subprop_name> = <subprop_value>}

Local Port Subproperties

Local Port Subproperty Summary
You can associate a local port with any number of subproperty name-value pairs. All the
subproperties must be specified on the same line as the port itself. Each name-value pair is
separated by a comma. The following list contains links to the local port subproperty
definitons.

DIR
INTERRUPT_PRIORITY
IO_IS
SENSITIVITY

SIGIS
UCF_NET_STRINGS
INITIALVAL

http://www.xilinx.com

124 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 9: Xilinx Board Description (XBD) Format

Local Port Subproperty Definitions

DIR

Specifies the FPGA port direction. The allowed value is IO, which designates the port as an
IO port.

INTERRUPT_PRIORITY

The value of the INTERRUPT_PRIORITY subproperty defines the priority of an interrupt
source. This affects the order in which various interrupts are connected to the interrupt
controller (and, consequently, their priority). Use the INTERRUPT_PRIORITY subproperty
only for those signals that are marked as SIGIS=INTERRUPT. The INTERRUPT_PRIORITY
subproperty is formatted as follows:

PORT Intr = CONN_Intr, IO_IS=intr, SIGIS=INTERRUPT,
INTERRUPT_PRIORITY=HIGH

IO_IS

The value of the IO_IS subproperty matches ports on the FPGA to ports of peripherals
instantiated in the MHS file. If the value of IO_IS on a port matches that on a port in the
MPD file of the IP which, in turn, matches the IO_IF, it is considered a match. If there is a
match, that particular port of the instantiated IP is defined as a global port in the MHS file
and connected to this port on the board. The IO_IS value is formatted as follows:

PORT LED1 = CONN_LED1, IO_IS=gpio_io<0>, VALUE=net_vcc

SENSITIVITY

For a signal of type SIGIS=INTERRUPT, the SENSITIVITY subproperty defines the signal
type to which this interrupt is sensitive. The global port created in MHS that corresponds
to this signal is marked with the SENSITIVITY property. This subproperty is formatted as
follows:

PORT Intr = CONN_Intr, SIGIS=INTERRUPT, SENSITIVITY=LEVEL_HIGH

SIGIS

SIGIS is a subproperty of PORT and designates a port as an interrupt port.

UCF_NET_STRINGS

Specifies the constraints associated with the NET for this PORT. The UCF_NET_STRINGS
subproperty takes as value a comma separated list of strings. Each string in the list creates
a separate line in the UCF file related to that net. This subproperty is formatted as follows:

PORT SDRAM_BA0 = CONN_SDRAM_8Mx32BA1, UCF_NET_STRINGS=("LOC = L4",
"IOSTANDARD=LVDCI_25")

The above line in an XBD file would lead to the following lines in the UCF file:

NET “CONN_SDRAM_8Mx32BA1” LOC = L4
NET “CONN_SDRAM_8Mx32BA1” IOSTANDARD=LVDCI_25

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 125
UG642, April 19, 2010

Associating IPs with IO_INTERFACE in XBD

INITIALVAL

A subproperty of VALUE, INITIALVAL specifies the value to which a port must be driven if
there is no corresponding port on the IP core connected to the device. In this case, a
top-level output port for the system is created and driven with this constant value. This
subproperty is formatted as follows:

PORT LED1 = CONN_LED1, IO_IS=gpio_io<0>, INITIALVAL = net_vcc

Associating IPs with IO_INTERFACE in XBD
As previously described, an XBD file contains a number of BEGIN-END blocks, each
corresponding to a hardware module on the board. The type of the module is specified
using the attribute IOTYPE, as in the following example:

BEGIN <iotype>

The IOTYPE string is used to match an IP that can communicate with this module. Refer to
Chapter 3, “Microprocessor Peripheral Definition (MPD)” for more information. An MPD
file describes the behavior of an IP. Each IP can have a number of IO_INTERFACEs. Each
IO_INTERFACE has a subproperty called IOTYPE. The value of this subproperty determines
whether or not an IP can communicate with a particular hardware module on the board.

For example, consider the following line in the MPD file for IP xps_ethernetlite:

IO_INTERFACE NAME = Ethernet_0, iotype = XIL_Ethernet_V1

This IO_INTERFACE indicates that this particular IP can communicate with a module of
type Ethernet. Similarly, the XBD file for any board that has an Ethernet module should
define a block as follows:

BEGIN IO_INTERFACE
ATTRIBUTE INSTANCE = myEthernet
ATTRIBUTE IOTYPE = XIL_Ethernet_V1
PARAMETER ...
PORT ...

END

When tools try to find an IP that can communicate with this module on the board, they
search for MPDs that have an IO_INTERFACE with IOTYPE and that match the IOTYPE of the
IO_INTERFACE module in the XBD file. If there are several such IPs, users can select any of
them.

Once an IP has been selected for communicating with that particular module on the board,
tools use the IO_IS subproperty to connect ports of the IP to the module on the board.

Generally, an IP is designed to be parametric (in terms of VHDL, the IP has generics).
When used with a particular board, you can specify some parameter values based on
board characteristics. The matching of parameters in the XBD module with that of
parameters on the IP is also done using the IO_IS block.

For example, consider the MPD snippet for xps_gpio:

######## MPD Snippet ###########

BEGIN xps_gpio

Peripheral Options
OPTION ...

IO_INTERFACE NAME = gpio_0, iotype = XIL_GPIO_V1

http://www.xilinx.com

126 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 9: Xilinx Board Description (XBD) Format

Bus Interfaces
BUS_INTERFACE BUS = SPLB, BUS_STD = PLBV46, BUS_TYPE = SLAVE

Generics for VHDL or Parameters for Verilog
PARAMETER C_GPIO_WIDTH = 32, DT=integer, IO_IF=gpio_0, IO_IS=num_bits
PARAMETER C_ALL_INPUTS = 0, DT=integer, IO_IF=gpio_0, IO_IS=all_inputs
PARAMETER ...

Ports
PORT GPIO_IO = "", DIR = INOUT, IO_IF = gpio_0, IO_IS = gpio_io, ...
PORT ...

END

The MPD file defines an IO interface, gpio_0 of IOTYPE XIL_GPIO_V1. The gpio_0 IO
interface has two parameters associated with it, C_GPIO_WIDTH and C_ALL_INPUTS. This
parameter-IO interface association is specified with the IO_IF subproperty on the
parameter. Similarly, PORT GPIO_IO is also associated with the gpio_0 IO interface, using
the IO_IF subproperty.

Consider the following XBD snippet from a hypothetical board that includes LEDs. These
LEDs are of IOTYPE GPIO:

XBD Snippet

BEGIN IO_INTERFACE
 ATTRIBUTE INSTANCE = LEDs_4Bit
ATTRIBUTE IOTYPE= XIL_GPIO_V1
 PARAMETER num_bits =4, IO_IS=num_bits
 PARAMETER all_inputs =0, IO_IS=all_inputs# All outputs

 PORT LED1 = CONN_LED1, IO_IS=gpio_io[0], VALUE = net_vcc,
UCF_NET_STRINGS = (“N1”)
 PORT LED2 = CONN_LED2, IO_IS=gpio_io[1], VALUE=net_vcc,
UCF_NET_STRINGS = (“N2”)
 PORT LED3 = CONN_LED3, IO_IS=gpio_io[2], VALUE=net_vcc,
UCF_NET_STRINGS = (“P1”)
 PORT LED4 = CONN_LED4, IO_IS=gpio_io[3], VALUE=net_vcc,
UCF_NET_STRINGS = (“P2”)
END

As explained above, the IOTYPE XIL_GPIO_V1 of the IO_INTERFACE in the MPD file is
matched with the IOTYPE XIL_GPIO_V1 of the module LEDs_4Bit in the XBD file. As a
result, the IO_IS subproperty on ports in the MPD file and ports in the XBD file determine
which ports connect to which. The following MHS instantiation results:

MHS File Snippet

Global Ports
PORT LEDs_4Bit_GPIO_IO = LEDs_4Bit_GPIO_IO, VEC = [0:3], DIR = INOUT

GPIO instance
BEGIN xps_gpio
ATTRIBUTE INSTANCE = LEDs_4Bit
PARAMETER HW_VER = 1.00.a
PARAMETER C_GPIO_WIDTH = 4 ## IO_IS = num_bits
PARAMETER C_ALL_INPUTS = 0 ## IO_IS = all_inputs

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 127
UG642, April 19, 2010

Bridging IP with IO_INTERFACE

PORT GPIO_IO = LEDs_4Bit_GPIO_IO ## IO_IS = gpio_io
...

END

The output UCF snippet is as follows:

############ UCF Snippet ########

Net LEDs_4Bit_GPIO_IO<0> LOC=N1;
Net LEDs_4Bit_GPIO_IO<1> LOC=N2;
Net LEDs_4Bit_GPIO_IO<2> LOC=P1;
Net LEDs_4Bit_GPIO_IO<3> LOC=P2;

Bridging IP with IO_INTERFACE
Each IP that communicates with modules outside the FPGA (on the board) has its ports
connected to pins on the FPGA. The FPGA, in turn, is connected to the pins on the board
module. For standard IPs and modules, there is usually a one-to-one correspondence
between ports on the IP and the pins on the external modules. However, on some boards,
the external modules might have slightly different requirements. In such cases, a small
amount of logic might need to be used before the IP ports can be connected to the external
module. XBD allows you to specify such glue logic in the board file.

When creating the XBD file, you must be aware of parameter and port connection
requirements for the board module. You must also associate at least one compatible soft-IP
with that external module. (This is done by using the specific IOTYPE in IO_INTERFACE
block.) If there is any mismatch, users can specify IO_ADAPTER in the XBD file to map the
IO_INTERFACE on the board with the desired soft IP on the FPGA.

XBD Load Path
Refer to Figure 9-1 for an illustration of the library directory structure. The SDK tools
search the PSF files across libraries, and they search in the <library_name>/boards
directory for boards.

Each of these libraries contains the /boards directory, which identifies where various
boards are located. This is equivalent to the /pcores directory in the IP search mechanism.

The directory name for a board must be the same as the name of the board itself. Each
board directory should contain a /data directory. The XBD file must reside in this data
directory and must be called <board_name>_v2_2_0.xbd.

The directory called edk_user_repository appears at the same level as the EDK
installation ($XILINX_EDK) and is automatically searched by all EDK tools for libraries.
This feature is deprecated in in EDK 10.1. It is recommended that you explicitly specify
repositories that apply to projects. You can do this in SDK using
Edit >Preferences >Application Preferences >Global Peripheral Repository.

For example, to make a hypothetical board called myboard “visible” to the EDK tools,
create a library of boards, for example, MyEDKBoards, in a library search directory. Your
directory structure must appear as follows:

<Peripheral Repository Directory>/MyEDKBoards/boards/myboard_rev1/data/
myboard_rev1_v2_2_0.xbd

http://www.xilinx.com

128 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 9: Xilinx Board Description (XBD) Format

The $XILINX_EDK/board directory is added as a default library search path for board files.
Each library contains several boards. In SDK, you can specify a library search path that
enables tools to locate additional board files.

Board-specific IP Constraints
Some IP have board-specific constraints. BSB can pick up the constraints when it delivers
the IP on the board. The constraint file needs to have a naming path of
<instance name>_<core name>.ucf. This file must be in the same directory as the
board XBD file. BSB does not modify the content of this file but copies it into the final
system.ucf file.

BSB Restrictions
While most of the BSB is data-driven, there are some exceptions. Special processing is done
inside the BSB for these. Some of the restrictions are listed below:

• BSB clock module generation is not data-driven. BSB can only handle certain input
clock frequencies and can only produce certain multiples of the input clocks. BSB does
not support multiple DDR and PCI™ interfaces because they require special clock
generation.

• The parameter customization of instantiated pcores is not data-driven. For each
known type of IO interface, BSB presents certain selectable parameters. If there is an
IO_INTERFACE in the XBD file but no matching soft IP, BSB does not display the
configuration of parameters on that IP.

• The following DDR2 timing parameters on the Virtex-5 “fxt” design have no mapping
parameters on DDR2 controller core; instead they are on the PPC440_Virtex5 core:

- PARAMETER C_DDR_BANK_MASK = <some value>,

- IO_IS = C_PPC440MC_BANK_CONFLICT_MASK

- PARAMETER C_DDR_ROW_MASK = <some value>

- IO_IS = C_PPC440MC_ROW_CONFLICT_MASK

- PARAMETER C_PPC440MC_CONTROL = <some value>

- IO_IS = C_PPC440MC_CONTROL

X-Ref Target - Figure 9-1

Figure 9-1: Library Directory Structure

X10066

<Library Name>

-lp <library_path>

boards drivers pcores sw_services

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 129
UG642, April 19, 2010

Existing Xilinx IO Types

Existing Xilinx IO Types
Establishing a match between an MPD IO_INTERFACE and an IOTYPE module in XBD is
accomplished solely through string comparison. The table below shows a list of IO
interfaces implemented by various Xilinx IPs. For a new board that includes a module that
communicates with the FPGA using a Xilinx-provided IP, module and IO interface names
must be the same. This is required to enable automatic connection between the board
module and IP.

Table 9-1: List of IO INTERFACES Supported by Xilinx IPs

IOTYPE/
IO_INTERFACE

Supporting IPs

XIL_CPUDEBUG_V1 ppc405, ppc440

XIL_EMC_V1 xps_mch_emc

XIL_EPC_V1 xps_epc

XIL_Ethernet_V1 xps_ethernetlite

XIL_GPIO_V1 xps_gpio

XIL_IIC_V1 xps_iic

XIL_MEMORY mpmc (supports DDR/DDR2)

ppc440mc_ddr2 (DDR2)

XIL_MGT_PROTECTOR_V1 mgt_protector

XIL_PCI32_V1 plbv46_pci

XIL_PCI_ARBITER_V1 pci_arbiter

XIL_PCIE_V1 plbv46_pcie

XIL_PS2_V1 xps_ps2

XIL_SPI_V1 xps_spi

XIL_SYSACE_V1 xps_sysace

XIL_TEMAC_V1 xps_ll_temac

XIL_TFT_V1 xps_tft

XIL_TRACE_V1 ppc405, ppc440

XIL_UART_V1 xps_uartlite

xps_uartns550

XIL_CLOCK_V1 None. Used by tools internally.

XIL_RESET_V! None. Used by tools internally.

http://www.xilinx.com

130 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

Chapter 9: Xilinx Board Description (XBD) Format

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 131
UG642, April 19, 2010

Appendix A

Glossary

B

BBD file
Black Box Definition file. The BBD file lists the netlist files used by a
peripheral.

BFL
Bus Functional Language.

BFM
Bus Functional Model.

BIT File
Xilinx® Integrated Software Environment (ISE™) Bitstream file.

BitInit
The Bitstream Initializer tool. It initializes the instruction memory of
processors on the FPGA and stores the instruction memory in
blockRAMs in the FPGA.

block RAM (BRAM)
A block of random access memory built into a device, as distinguished
from distributed, LUT based random access memory.

BMM file
Block Memory Map file. A BMM file is a text file that has syntactic
descriptions of how individual block RAMs constitute a contiguous
logical data space. Data2MEM uses BMM files to direct the translation
of data into the proper initialization form. Since a BMM file is a text
file, it is directly editable.

BSB
Base System Builder. A wizard for creating a complete design in Xilinx
Platform Studio (XPS). BSB is also the file type used in the Base System
Builder.

http://www.xilinx.com

132 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

BSP
See Standalone BSP.

C

CFI
Common Flash Interface

D

DCM
Digital Clock Manager

DCR
Device Control Register.

DLMB
Data-side Local Memory Bus. See also: LMB.

DMA
Direct Memory Access.

DOPB
Data-side On-chip Peripheral Bus. See also: OPB.

DRC
Design Rule Check.

DSPLB
Data-side Processor Local Bus. See also: ISPLB.

E

EDIF file
Electronic Data Interchange Format file. An industry standard file
format for specifying a design netlist.

EDK
Xilinx Embedded Development Kit.

ELF file
Executable and Linkable Format file.

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 133
UG642, April 19, 2010

EMC
External Memory Controller.

EST
Embedded System Tools.

F

FATfs (XilFATfs)
LibXil FATFile System. The XilFATfs file system access library
provides read/write access to files stored on a Xilinx SystemACE
CompactFlash or IBM microdrive device.

Flat View
Flat view provides information in the Name column of the IP Catalog
and System Assembly Panel as directly visible and not organized in
expandable lists.

FPGA
Field Programmable Gate Array.

FSL
MicroBlaze™ processor Fast Simplex Link. Unidirectional point-to-
point data streaming interfaces ideal for hardware acceleration. The
MicroBlaze processor has FSL interfaces directly to the processor.

G

GDB
GNU Debugger.

GPIO
General Purpose Input and Output. A 32-bit peripheral that attaches
to the on-chip peripheral bus.

H

Hardware Platform
Xilinx FPGA technology allows you to customize the hardware logic
in your processor subsystem. Such customization is not possible using
standard off-the-shelf microprocessor or controller chips. Hardware
platform is a term that describes the flexible, embedded processing
subsystem you are creating with Xilinx technology for your
application needs.

http://www.xilinx.com

134 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

HDL
Hardware Description Language.

Hierarchical View
This is the default view for both the IP Catalog and System Assembly
panel, grouped by IP instance. The IP instance ordering is based on
classification (from top to bottom: processor, bus, bus bridge,
peripheral, and general IP). IP instances of the same classification are
ordered alphabetically by instance name. When grouped by IP, it is
easier to identify all data relevant to an IP instance. This is especially
useful when you add IP instances to your hardware platform.

I

IBA
Integrated Bus Analyzer.

IDE
Integrated Design Environment.

ILA
Integrated Logic Analyzer.

ILMB
Instruction-side Local Memory Bus. See also: LMB.

IOPB
Instruction-side On-chip Peripheral Bus. See also: OPB.

IPIC
Intellectual Property Interconnect.

IPIF
Intellectual Property Interface.

ISA
Instruction Set Architecture. The ISA describes how aspects of the
processor (including the instruction set, registers, interrupts,
exceptions, and addresses) are visible to the programmer.

ISC
Interrupt Source Controller.

ISE File
Xilinx ISE Project Navigator project file.

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 135
UG642, April 19, 2010

ISPLB
Instruction-side Peripheral Logical Bus. See also: DSPLB.

ISS
Instruction Set Simulator.

ISOCM
Instruction-side On-Chip Memory.

J

JTAG
Joint Test Action Group.

L

Libgen
Library Generator sub-component of the Xilinx Platform Studio
technology.

LMB
Local Memory Bus. A low latency synchronous bus primarily used to
access on-chip block RAM. The MicroBlaze processor contains an
instruction LMB bus and a data LMB bus.

M

MDD File
Microprocessor Driver Description file.

MDM
Microprocessor Debug Module.

MFS File
LibXil Memory File System. The MFS provides user capability to
manage program memory in the form of file handles.

MHS File
Microprocessor Hardware Specification file. The MHS file defines the
configuration of the embedded processor system including
buses,peripherals, processors, connectivity, and address space.

http://www.xilinx.com

136 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

MLD File
Microprocessor Library Definition file.

MPD File
Microprocessor Peripheral Definition file. The MPD file contains all
the available ports and hardware parameters for a peripheral.

MSS file
Microprocessor Software Specification file.

MVS file
Microprocessor Verification Specification file.

MOST®

Media Oriented Systems Transport. A developing standard in
automotive network devices.

MPD File
Microprocessor Peripheral Definition file. The MPD file contains all of
the available ports and hardware parameters for a peripheral.

MSS File
Microprocessor Software Specification file.

N

NGC file
The NGC file is a netlist file that contains both logical design data and
constraints. This file replaces both EDIF and NCF files.

NGD file
Native Generic Database file. The NGD file is a netlist file that
represents the entire design.

NCF file
Netlist Constraints file.

NGO File
A Xilinx-specific format binary file containing a logical description of
the design in terms of its original components and hierarchy.

NPI
Native Port Interface.

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 137
UG642, April 19, 2010

NPL File
Xilinx® Integrated Software Environment (ISE®) Project Navigator
project file.

O

OCM
On Chip Memory.

OPB
On-chip Peripheral Bus.

P

PACE
Pinout and Area Constraints Editor.

PAO file
Peripheral Analyze Order file. The PAO file defines the ordered list of
HDL files needed for synthesis and simulation.

PBD file
Processor Block Diagram file.

Platgen
Hardware Platform Generator sub-component of the Platform Studio
technology.

PLB
Processor Local Bus.

PROM
Programmable ROM.

PSF
Platform Specification Format. The specification for the set of data
files that drive the EDK tools.

S

SDF file
Standard Data Format file. A data format that uses fields of fixed
length to transfer data between multiple programs.

http://www.xilinx.com

138 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

SDK
Software Development Kit.

SDMA
Soft Direct Memory Access

Simgen
The Simulation Generator sub-component of the Platform Studio
technology.

Software Platform
A software platform is a collection of software drivers and, optionally,
the operating system on which to build your application. Because of
the fluid nature of the hardware platform and the rich Xilinx and
Xilinx third-party partner support, you may create several software
platforms for each of your hardware platforms.

SPI
Serial Peripheral Interface.

Standard C Libraries
EDK libraries and device drivers provide standard C library functions,
as well as functions to access peripherals. Libgen automatically
configures the EDK libraries for every project based on the MSS file.

Standalone Library
Standalone library. A set of software modules that access processor-
specific functions.

SVF File
Serial Vector Format file.

U

UART
Universal Asynchronous Receiver-Transmitter.

UCF
User Constraints File.

V

VHDL
VHSIC Hardware Description Language.

http://www.xilinx.com

Platform Specification Format Reference Manual www.xilinx.com 139
UG642, April 19, 2010

X

XBD File
Xilinx Board Definition file.

XCL
Xilinx CacheLink. A high performance external memory cache
interface available on the MicroBlaze processor.

Xilkernel
The Xilinx Embedded Kernel, shipped with EDK. A small, extremely
modular and configurable RTOS for the Xilinx embedded software
platform.

XMD
Xilinx Microprocessor Debugger.

XMP File
Xilinx Microprocessor Project file. This is the top-level project file for
an EDK design.

XPS
Xilinx Platform Studio. The environment in which you can develop
the hardware portion of your embedded design.

XST
Xilinx Synthesis Technology.

Z

ZBT
Zero Bus Turnaround™.

http://www.xilinx.com

140 www.xilinx.com Platform Specification Format Reference Manual
UG642, April 19, 2010

http://www.xilinx.com

