
System
Generator for
DSP
User Guide

UG640 (v 12.2) July 23, 2010

System Generator for DSP User Guide www.xilinx.com UG640 (v 12.2) July 23, 2010

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective owners.

http://www.xilinx.com

System Generator for DSP User Guide www.xilinx.com 3
UG640 (v 12.2) July 23, 2010

Preface: About This Guide
Guide Contents . 9

System Generator PDF Doc Set . 9

Additional Resources . 9

Conventions . 10
Typographical . 10
Online Document . 10

Chapter 1: Hardware Design Using System Generator
A Brief Introduction to FPGAs . 14

Note to the DSP Engineer . 18
Note to the Hardware Engineer . 18

Design Flows using System Generator. 18
Algorithm Exploration . 19
Implementing Part of a Larger Design . 19
Implementing a Complete Design . 19

System-Level Modeling in System Generator . 20
System Generator Blocksets . 21
Signal Types . 23
Bit-True and Cycle-True Modeling . 24
Timing and Clocking . 24
Synchronization Mechanisms . 36
Block Masks and Parameter Passing . 37
Resource Estimation . 39

Automatic Code Generation . 39
Compiling and Simulating Using the System Generator Block 40
Viewing ISE Reports . 44
Compilation Results . 44
HDL Testbench . 50

Compiling MATLAB into an FPGA. 51
Simple Selector . 51
Simple Arithmetic Operations . 52
Complex Multiplier with Latency . 55
Shift Operations . 56
Passing Parameters into the MCode Block . 57
Optional Input Ports . 60
Finite State Machines . 62
Parameterizable Accumulator . 63
FIR Example and System Verification . 66
RPN Calculator . 69
Example of disp Function . 71

Importing a System Generator Design into a Bigger System. 73
HDL Netlist Compilation . 73
Integration Design Rules . 73
New Integration Flow between System Generator & Project Navigator 74

Table of Contents

http://www.xilinx.com

4 www.xilinx.com System Generator for DSP User Guide
UG640 (v 12.2) July 23, 2010

A Step-by-Step Example . 75

Configurable Subsystems and System Generator . 83
Defining a Configurable Subsystem . 83
Using a Configurable Subsystem . 85
Deleting a Block from a Configurable Subsystem . 86
Adding a Block to a Configurable Subsystem . 86
Generating Hardware from Configurable Subsystems . 87

Notes for Higher Performance FPGA Design . 89
Review the Hardware Notes Included in Block Dialog Boxes 89
Register the Inputs and Outputs of Your Design . 89
Insert Pipeline Registers . 89
Use Saturation Arithmetic and Rounding Only When Necessary 89
Use the System Generator Timing and Power Analysis Tools 89
Set the Data Rate Option on All Gateway Blocks . 89
Reduce the Clock Enable (CE) Fanout . 90

Processing a System Generator Design with FPGA Physical Design Tools. . . . 90
HDL Simulation . 90
Generating an FPGA Bitstream . 93

Resetting Auto-Generated Clock Enable Logic . 96
ce_clr and Rate Changing Blocks . 96
ce_clr Usage Recommendations . 98

Design Styles for the DSP48 . 99
About the DSP48 . 99
Designs Using Standard Components . 100
Designs Using Synthesizable Mult, Mux and AddSub Blocks 100
Designs that Use DSP48 and DSP48 Macro Blocks . 101
DSP48 Design Techniques . 106

Using FDATool in Digital Filter Applications . 109
Design Overview . 110
Open and Generate the Coefficients for this FIR Filter . 110
Parameterize the MAC-Based FIR Block . 111
Generate and Assign Coefficients for the FIR Filter . 112
Browse Through and Understand the Xilinx Filter Block . 114
Run the Simulation . 115

Generating Multiple Cycle-True Islands for Distinct Clocks 118
Multiple Clock Applications . 118
Clock Domain Partitioning . 119
Crossing Clock Domains . 120
Netlisting Multiple Clock Designs . 121
Step-by-Step Example . 122
Creating a Top-Level Wrapper . 126

Using ChipScope Pro Analyzer for Real-Time Hardware Debugging 130
ChipScope Pro Overview . 130
Tutorial Example: Using ChipScope in System Generator . 130
Real-Time Debug . 135
Tutorial Example: Using ChipScope Pro Analyzer with JTAG Hardware Co-Simulation140

Chapter 2: Hardware/Software Co-Design
Hardware/Software Co-Design in System Generator . 144

Black Box Block . 144
PicoBlaze Block . 144

http://www.xilinx.com

System Generator for DSP User Guide www.xilinx.com 5
UG640 (v 12.2) July 23, 2010

EDK Processor Block . 144

Integrating a Processor with Custom Logic. 144
Memory Map Creation . 146
Hardware Generation . 147
Hardware Co-Simulation . 147
The Software Driver . 148
Writing a Software Program. 151
Asynchronous Support . 154
Clock Wiring in the Hardware Co-Simulation Flow . 155

EDK Support . 163
Importing an EDK Processor . 163
Exposing Processor Ports to System Generator . 165
Exporting a pcore . 166

Designing with Embedded Processors and Microcontrollers 166
Designing PicoBlaze Microcontroller Applications . 166
Designing and Exporting MicroBlaze Processor Peripherals 173
Tutorial Example - Designing and Simulating MicroBlaze Processor Systems 178
Using XPS . 186
Using Platform Studio SDK . 191
Tutorial Example - Using System Generator and SDK to Co-Debug an Embedded DSP Design

200
Summary . 223

Chapter 3: Using Hardware Co-Simulation
Introduction . 225
M-Code Access to Hardware Co-Simulation . 225

Installing Your Hardware Board . 225
Ethernet-Based Hardware Co-Simulation . 225
JTAG-Based Hardware Co-Simulation . 226
Third-Party Hardware Co-Simulation . 226

Compiling a Model for Hardware Co-Simulation . 227
Choosing a Compilation Target . 227
Invoking the Code Generator . 227

Hardware Co-Simulation Blocks . 228

Hardware Co-Simulation Clocking . 231
Selecting the Target Clock Frequency . 231
Clocking Modes . 232
Selecting the Clock Mode . 232

Board-Specific I/O Ports . 233
I/O Ports in Hardware Co-simulation . 234

Ethernet Hardware Co-Simulation . 234
Point-to-Point Ethernet Hardware Co-Simulation . 235
Network-Based Ethernet Hardware Co-Simulation . 239
Remote JTAG Cable Support in JTAG Co-Simulation . 240

Shared Memory Support . 242
Compiling Shared Memories for Hardware Co-Simulation . 243
Co-Simulating Unprotected Shared Memories . 245
Co-Simulating Lockable Shared Memories . 246
Co-Simulating Shared Registers . 248
Co-Simulating Shared FIFOs . 249

http://www.xilinx.com

6 www.xilinx.com System Generator for DSP User Guide
UG640 (v 12.2) July 23, 2010

Restrictions on Shared Memories . 252

Specifying Xilinx Tool Flow Settings . 252

Frame-Based Acceleration using Hardware Co-Simulation 254
Shared Memories . 254
Adding Buffers to a Design . 256
Compiling for Hardware Co-simulation . 260
Using Vector Transfers . 262

Real-Time Signal Processing using Hardware Co-Simulation 267
Shared Memory I/O Buffering Example . 267
Applying a 5x5 Filter Kernel Data Path . 269
5x5 Filter Kernel Test Bench . 272
Reloading the Kernel . 276

Installing Your Board for Ethernet Hardware Co-Simulation 277
Installing Software on the Host PC . 277
Setting Up the Local Area Network on the PC . 277
Loading the Sysgen HW Co-Sim Configuration Files . 279
Installing the Proxy Executable for Linux Users . 281
Installing an ML402 Board for Ethernet Hardware Co-Simulation 281
Installing an ML506 Board for Ethernet Hardware Co-Simulation 286
Installing an ML605 Board for Ethernet Hardware Co-Simulation 291
Installing a Spartan-3A DSP 1800A Starter Board for Ethernet Hardware Co-Simulation293
Installing a Spartan-3A DSP 3400A Board for Ethernet Hardware Co-Simulation . 294
Installing an SP601/SP605 Board for Ethernet Hardware Co-Simulation 299

Installing Your Board for JTAG Hardware Co-Simulation. 301
Installing an ML402 Board for JTAG Hardware Co-Simulation 301
Installing an ML605 Board for JTAG Hardware Co-Simulation 303
Installing an SP601/SP605 Board for JTAG Hardware Co-Simulation 305

Supporting New Boards through JTAG Hardware Co-Simulation 307
Hardware Requirements . 307
Supporting New Boards . 307

Chapter 4: Importing HDL Modules
Black Box HDL Requirements and Restrictions . 322

Black Box Configuration Wizard . 323

Black Box Configuration M-Function . 324

HDL Co-Simulation . 335
Introduction . 335
Configuring the HDL Simulator . 335
Co-Simulating Multiple Black Boxes . 337

Black Box Examples . 338
Importing a Xilinx Core Generator Module . 338
Importing a VHDL Module . 352
Importing a Verilog Module . 359
Dynamic Black Boxes. 361
Simulating Several Black Boxes Simultaneously . 363
Advanced Black Box Example Using ModelSim. 365
Importing, Simulating, and Exporting an Encrypted VHDL File 370
Black Box Tutorial Exercise 9: Prompting a User for Parameters in a Simulink Model and

Passing Them to a Black Box . 374

http://www.xilinx.com

System Generator for DSP User Guide www.xilinx.com 7
UG640 (v 12.2) July 23, 2010

Chapter 5: System Generator Compilation Types
HDL Netlist Compilation . 378

NGC Netlist Compilation . 378

Bitstream Compilation . 379
XFLOW Option Files . 380
Additional Settings . 381
Re-Compiling EDK Processor Block Software Programs in Bitstreams 382

EDK Export Tool . 383
Creating a Custom Bus Interface for Pcore Export . 384
Export as Pcore to EDK . 385
System Generator Ports as Top-Level Ports in EDK . 386
Supported Processors and Current Limitations . 386
See Also: . 386

Hardware Co-Simulation Compilation . 387

Timing and Power Analysis Compilation . 387
Timing Analysis Concepts Review . 389
Timing Analyzer Features . 390

Creating Compilation Targets . 401
Defining New Compilation Targets . 402

Index . 407

http://www.xilinx.com

8 www.xilinx.com System Generator for DSP User Guide
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

Preface: About This Guide
Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Online Document
The following conventions are used in this document:

Convention Meaning or Use Example

Courier font Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold Literal commands that you
enter in a syntactical statement

ngdbuild design_name

Helvetica bold Commands that you select from
a menu

File → Open

Keyboard shortcuts Ctrl+C

Italic font Variables in a syntax statement
for which you must supply
values

ngdbuild design_name

References to other manuals See the Development System
Reference Guide for more
information.

Emphasis in text If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets [] An optional entry or parameter.
However, in bus specifications,
such as bus[7:0], they are
required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more

lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices

lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . . Repetitive material that has
been omitted

allow block block_name loc1
loc2 ... locn;
10 www.xilinx.com System Generator for DSP User Guide
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

Conventions
Convention Meaning or Use Example

Blue text Cross-reference link to a
location in the current
document

See the topic “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Red text Cross-reference link to a
location in another document

See Figure 2-5 in the Virtex-II
Platform FPGA User Guide.

Blue, underlined text Hyperlink to a website (URL) Go to http://www.xilinx.com
for the latest speed files.
System Generator for DSP User Guide www.xilinx.com 11
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

Preface: About This Guide
12 www.xilinx.com System Generator for DSP User Guide
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

Chapter 1

Hardware Design Using System
Generator

System Generator is a system-level modeling tool that facilitates FPGA hardware design. It
extends Simulink in many ways to provide a modeling environment that is well suited to
hardware design. The tool provides high-level abstractions that are automatically
compiled into an FPGA at the push of a button. The tool also provides access to underlying
FPGA resources through low-level abstractions, allowing the construction of highly
efficient FPGA designs.

A Brief Introduction to FPGAs Provides background on FPGAs, and discusses
compilation, programming, and architectural
considerations in the context of System Generator.

Design Flows using System
Generator

Describes several settings in which constructing
designs in System Generator is useful.

System-Level Modeling in
System Generator

Discusses System Generator's ability to implement
device-specific hardware designs directly from a
flexible, high-level, system modeling environment.

Automatic Code Generation Discusses automatic code generation for System
Generator designs.

Compiling MATLAB into an
FPGA

Describes how to use a subset of the MATLAB
programming language to write functions that
describe state machines and arithmetic operators.
Functions written in this way can be attached to
blocks in System Generator and can be automatically
compiled into equivalent HDL.

Importing a System Generator
Design into a Bigger System

Discusses how to take the VHDL netlist from a System
Generator design and synthesize it in order to embed
it into a larger design. Also shows how VHDL created
by System Generator can be incorporated into a
simulation model of the overall system.

Configurable Subsystems and
System Generator

Explains how to use configurable subsystems in
System Generator. Describes common tasks such as
defining configurable subsystems, deleting and
adding blocks, and using configurable subsystems to
import compilation results into System Generator
designs.
System Generator for DSP User Guide www.xilinx.com 13
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator
A Brief Introduction to FPGAs
A field programmable gate array (FPGA) is a general-purpose integrated circuit that is
“programmed” by the designer rather than the device manufacturer. Unlike an
application-specific integrated circuit (ASIC), which can perform a similar function in an
electronic system, an FPGA can be reprogrammed, even after it has been deployed into a
system.

An FPGA is programmed by downloading a configuration program called a bitstream into
static on-chip random-access memory. Much like the object code for a microprocessor, this
bitstream is the product of compilation tools that translate the high-level abstractions
produced by a designer into something equivalent but low-level and executable. Xilinx
System Generator pioneered the idea of compiling an FPGA program from a high-level
Simulink model.

An FPGA provides you with a two-dimensional array of configurable resources that can
implement a wide range of arithmetic and logic functions. These resources include
dedicated DSP blocks, multipliers, dual port memories, lookup tables (LUTs), registers, tri-
state buffers, multiplexers, and digital clock managers. In addition, Xilinx FPGAs contain
sophisticated I/O mechanisms that can handle a wide range of bandwidth and voltage
requirements. The Virtex®-4 FPGAs include embedded microcontrollers (IBM PowerPC®
405), and multi-gigabit serial transceivers. The compute and I/O resources are linked
under the control of the bitstream by a programmable interconnect architecture that allows
them to be wired together into systems.

FPGAs are high performance data processing devices. DSP performance is derived from
the FPGA’s ability to construct highly parallel architectures for processing data. In contrast
with a microprocessor or DSP processor, where performance is tied to the clock rate at
which the processor can run, FPGA performance is tied to the amount of parallelism that
can be brought to bear in the algorithms that make up a signal processing system. A
combination of increasingly high system clock rates (current system frequencies of 100-200

Notes for Higher Performance
FPGA Design

Suggests design practices in System Generator that
lead to an efficient and high-performance
implementation in an FPGA.

Processing a System Generator
Design with FPGA Physical
Design Tools

Describes how to take the low-level HDL produced by
System Generator and use it in tools like Xilinx's
Project Navigator, ModelSim, and Synplicity's
Synplify.

Resetting Auto-Generated Clock
Enable Logic

Describes the behavior of rate changing blocks from
the System Generator library when the ce_clr signal
is used for re-synchronization.

Design Styles for the DSP48 Describes three ways to implement and configure a
DSP48 (Xtreme DSP Slice) in System Generator

Using FDATool in Digital Filter
Applications

Demonstrates one way to specify, implement and
simulate a FIR filter using the FDATool block.

Generating Multiple Cycle-True
Islands for Distinct Clocks

Describes how to implement multi-clock designs in
System Generator

Using ChipScope Pro Analyzer
for Real-Time Hardware
Debugging

Demonstrated how to connect and use the Xilinx
Debug Tool called ChipScope™ Pro within System
Generator
14 www.xilinx.com System Generator for DSP User Guide
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

A Brief Introduction to FPGAs
MHz are common today) and a highly-distributed memory architecture gives the system
designer an ability to exploit parallelism in DSP (and other) applications that operate on
data streams. For example, the raw memory bandwidth of a large FPGA running at a clock
rate of 150 MHz can be hundreds of terabytes per second.

There are many DSP applications (e.g., digital up/down converters) that can be
implemented only in custom integrated circuits (ICs) or in an FPGA; a von Neumann
processor lacks both the compute capability and the memory bandwidth required.
Advantages of using an FPGA include significantly lower non-recurring engineering costs
than those associated with a custom IC (FPGAs are commercial off-the-shelf devices),
shorter time to market, and the configurability of an FPGA, which allows a design to be
modified, even after deployment in an end application.

When working in System Generator, it is important to keep in mind that an FPGA has
many degrees of freedom in implementing signal processing functions. You have, for
example, the freedom to define data path widths throughout your system and to employ
many individual data processors (e.g., multiply-accumulate engines), depending on
system requirements. System Generator provides abstractions that allow you to design for
an FPGA largely by thinking about the algorithm you want to implement. However, the
more you know about the underlying FPGA, the more likely you are to exploit the unique
capabilities an FPGA provides in achieving high performance.

The remainder of this topic is a brief introduction to some of the logic resources available in
the FPGA, so that you gain some appreciation for the abstractions provided in System
Generator.

The figure above shows a physical view of a Virtex®-4 FPGA. To a signal DSP engineer, an
FPGA can be thought of as a 2-D array of logic slices striped with columns of hard macro
blocks (block memory and arithmetic blocks) suitable for implementing DSP functions,
embedded within a configurable interconnect mesh. In a Virtex®-4 FPGA, the DSP blocks
(shown in the next figure) can run in excess of 450 MHz, and are pitch-matched to dual
port memory blocks (BRAMs) whose ports can be configured to a wide range of word sizes
(18 Kb total per BRAM). The Virtex®-4 SX55 device contains 512 such DSP blocks and
BRAMs. In System Generator, you can access all of these resources through arithmetic and
System Generator for DSP User Guide www.xilinx.com 15
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator
logic abstractions to build very high performance digital filters, FFTs, and other arithmetic
and signal processing functions.

While the multiply-accumulate function supported by a Virtex®-4 DSP block is familiar to
a DSP engineer, it is instructive to take a closer look at the Virtex® FPGA family logic slice
(shown below), which is the fundamental unit of the logic fabric array.

Each logic slice contains two 4-input lookup tables (LUTs), two configurable D-flip flops,
multiplexers, dedicated carry logic, and gates used for creating slice-based multipliers.
Each LUT can implement an arbitrary 4-input Boolean function. Coupled with dedicated
logic for implementing fast carry circuits, the LUTs can also be used to build fast
adder/subtractors and multipliers of essentially any word size. In addition to
implementing Boolean functions, each LUT can also be configured as a 16x1 bit RAM or as
a shift register (SRL16). An SRL16 shift register is a synchronously clocked 16x1 bit delay
line with a dynamically addressable tap point.

In System Generator, these different memory options are represented with higher-level
abstractions. Instead of providing a D-flip flop primitive, System Generator provides a
register of arbitrary size. There are two blocks that provide abstractions of arbitrary
width, arbitrary depth delay lines that map directly onto the SRL16 configuration. The
delay block can be used for pipeline balancing, and can also be used as storage for time-
16 www.xilinx.com System Generator for DSP User Guide
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

A Brief Introduction to FPGAs
division multiplexed (TDM) data streams. The addressable shift register (ASR) block,
with a function depicted in the figure below, provides an arbitrary width, arbitrary depth
tapped delay line. This block is of particular interest to the DSP engineer, since it can be
used to implement tapped delay lines as well as sweeping through TDM data streams.

Although random access memories can be constructed either out of the BRAM or LUT
(RAM16x1) primitives, doing so can require considerable care to ensure most efficient
mappings, and considerable clerical attention to detail to correctly assemble the primitives
into larger structures. System Generator removes the need for such tasks.

For example, the dual port RAM (DPRAM) block shown in the figure below maps
efficiently onto as many BRAM or RAM16x1 components on the device as are necessary to
implement the desired memory. As can be seen from the mask dialog box for the DPRAM,
the interface allows you to specify a type of memory (BRAM or RAM16x1), depth (data
width is inferred from the Simulink signal driving a particular input port), initial memory
contents, and other characteristics.

In general, System Generator maps abstractions onto device primitives efficiently, freeing
you from worrying about interconnections between the primitives. System Generator
employs libraries of intellectual property (IP) when appropriate to provide efficient
implementations of functions in the block libraries. In this way, you don’t always have to
System Generator for DSP User Guide www.xilinx.com 17
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator
have detailed knowledge of the underlying FPGA details. However, when it makes sense
to implement an algorithm using basic functions (e.g., adder, register, memory), System
Generator allows you to exploit your FPGA knowledge while reducing the clerical tasks of
managing all signals explicitly.

System Generator library blocks and the mapping from Simulink to hardware are
described in detail in subsequent topics of this documentation. There is a wealth of
detailed information about FPGAs that can be found online at http://support.xilinx.com,
including data books, application notes, white papers, and technical articles.

Note to the DSP Engineer
System Generator extends Simulink to enable hardware design, providing high-level
abstractions that can be automatically compiled into an FPGA. Although the arithmetic
abstractions are suitable to Simulink (discrete time and space dynamical system
simulation), System Generator also provides access to features in the underlying FPGA.

The more you know about a hardware realization (e.g., how to exploit parallelism and
pipelining), the better the implementation you’ll obtain. Using IP cores makes it possible to
have efficient FPGA designs that include complex functions like FFTs. System Generator
also makes it possible to refine a model to more accurately fit the application.

Scattered throughout the System Generator documentation are notes that explain ways in
which system parameters can be used to exploit hardware capabilities.

Note to the Hardware Engineer
System Generator does not replace hardware description language (HDL)-based design,
but does makes it possible to focus your attention only on the critical parts. By analogy,
most DSP programmers do not program exclusively in assembler; they start in a higher-
level language like C, and write assembly code only where it is required to meet
performance requirements.

A good rule of thumb is this: in the parts of the design where you must manage internal
hardware clocks (e.g., using the DDR or phased clocking), you should implement using
HDL. The less critical portions of the design can be implemented in System Generator, and
then the HDL and System Generator portions can be connected. Usually, most portions of
a signal processing system do not need this level of control, except at external interfaces.
System Generator provides mechanisms to import HDL code into a design (see Importing
HDL Modules) that are of particular interest to the HDL designer.

Another aspect of System Generator that is of interest to the engineer who designs using
HDL is its ability to automatically generate an HDL testbench, including test vectors. This
aspect is described in the topic HDL Testbench.

Finally, the hardware co-simulation interfaces described in the topic Using Hardware Co-
Simulation allow you to run a design in hardware under the control of Simulink, bringing
the full power of MATLAB and Simulink to bear for data analysis and visualization.

Design Flows using System Generator
System Generator can be useful in many settings. Sometimes you may want to explore an
algorithm without translating the design into hardware. Other times you might plan to use
a System Generator design as part of something bigger. A third possibility is that a System
Generator design is complete in its own right, and is to be used in FPGA hardware. This
topic describes all three possibilities.
18 www.xilinx.com System Generator for DSP User Guide
UG640 (v 12.2) July 23, 2010

http://support.xilinx.com
http://www.xilinx.com

Design Flows using System Generator
Algorithm Exploration
System Generator is particularly useful for algorithm exploration, design prototyping, and
model analysis. When these are the goals, you can use the tool to flesh out an algorithm in
order to get a feel for the design problems that are likely to be faced, and perhaps to
estimate the cost and performance of an implementation in hardware. The work is
preparatory, and there is little need to translate the design into hardware.

In this setting, you assemble key portions of the design without worrying about fine points
or detailed implementation. Simulink blocks and MATLAB M-code provide stimuli for
simulations, and for analyzing results. Resource estimation gives a rough idea of the cost
of the design in hardware. Experiments using hardware generation can suggest the
hardware speeds that are possible.

Once a promising approach has been identified, the design can be fleshed out. System
Generator allows refinements to be done in steps, so some portions of the design can be
made ready for implementation in hardware, while others remain high-level and abstract.
System Generator's facilities for hardware co-simulation are particularly useful when
portions of a design are being refined.

Implementing Part of a Larger Design
Often System Generator is used to implement a portion of a larger design. For example,
System Generator is a good setting in which to implement data paths and control, but is
less well suited for sophisticated external interfaces that have strict timing requirements. In
this case, it may be useful to implement parts of the design using System Generator,
implement other parts outside, and then combine the parts into a working whole.

A typical approach to this flow is to create an HDL wrapper that represents the entire
design, and to use the System Generator portion as a component. The non-System
Generator portions of the design can also be components in the wrapper, or can be
instantiated directly in the wrapper.

Implementing a Complete Design
Many times, everything needed for a design is available inside System Generator. For such
a design, pressing the Generate button instructs System Generator to translate the design
into HDL, and to write the files needed to process the HDL using downstream tools. The
files written include the following:

• HDL that implements the design itself;

• A clock wrapper that encloses the design. This clock wrapper produces the clock and
clock enable signals that the design needs.

• A HDL testbench that encloses the clock wrapper. The testbench allows results from
Simulink simulations to be compared against ones produced by a logic simulator.

• Project files and scripts that allow various synthesis tools, such as XST and Synplify
Pro to operate on System Generator HDL

• Files that allow the System Generator HDL to be used as a project in Project
Navigator.

For details concerning the files that System Generator writes, see the topic Compilation
Results.
System Generator for DSP User Guide www.xilinx.com 19
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator
System-Level Modeling in System Generator
System Generator allows device-specific hardware designs to be constructed directly in a
flexible high-level system modeling environment. In a System Generator design, signals
are not just bits. They can be signed and unsigned fixed-point numbers, and changes to the
design automatically translate into appropriate changes in signal types. Blocks are not just
stand-ins for hardware. They respond to their surroundings, automatically adjusting the
results they produce and the hardware they become.

System Generator allows designs to be composed from a variety of ingredients. Data flow
models, traditional hardware design languages (VHDL, Verilog, and EDIF), and functions
derived from the MATLAB programming language, can be used side-by-side, simulated
together, and synthesized into working hardware. System Generator simulation results are
bit and cycle-accurate. This means results seen in simulation exactly match the results that
are seen in hardware. System Generator simulations are considerably faster than those
from traditional HDL simulators, and results are easier to analyze.

System Generator Blocksets Describes how System Generator's blocks are
organized in libraries, and how the blocks can be
parameterized and used.

Signal Types Describes the data types used by System Generator
and ways in which data types can be automatically
assigned by the tool.

Bit-True and Cycle-True
Modeling

Specifies the relationship between the Simulink-based
simulation of a System Generator model and the
behavior of the hardware that can be generated from
it.

Timing and Clocking Describes how clocks are implemented in hardware,
and how their implementation is controlled inside
System Generator. Explains how System Generator
translates a multirate Simulink model into working
clock-synchronous hardware.

Synchronization Mechanisms Describes mechanisms that can be used to
synchronize data flow across the data path elements
in a high-level System Generator design, and
describes how control path functions can be
implemented.

Block Masks and Parameter
Passing

Explains how parameterized systems and subsystems
are created in Simulink.

Resource Estimation Describes how to generate estimates of the hardware
needed to implement a System Generator design.
20 www.xilinx.com System Generator for DSP User Guide
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

System-Level Modeling in System Generator
System Generator Blocksets
A Simulink blockset is a library of blocks that can be connected in the Simulink block editor
to create functional models of a dynamical system. For system modeling, System
Generator blocksets are used like other Simulink blocksets. The blocks provide
abstractions of mathematical, logic, memory, and DSP functions that can be used to build
sophisticated signal processing (and other) systems. There are also blocks that provide
interfaces to other software tools (e.g., FDATool, ModelSim) as well as the System
Generator code generation software.

System Generator blocks are bit-accurate and cycle-accurate. Bit-accurate blocks produce
values in Simulink that match corresponding values produced in hardware; cycle-accurate
blocks produce corresponding values at corresponding times.
System Generator for DSP User Guide www.xilinx.com 21
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator
Xilinx Blockset

The Xilinx Blockset is a family of libraries that contain basic System Generator blocks.
Some blocks are low-level, providing access to device-specific hardware. Others are high-
level, implementing (for example) signal processing and advanced communications
algorithms. For convenience, blocks with broad applicability (e.g., the Gateway I/O
blocks) are members of several libraries. Every block is contained in the Index library. The
libraries are described below.

Note: More information concerning blocks can be found in the topic Xilinx Blockset.

Xilinx Reference Blockset

The Xilinx Reference Blockset contains composite System Generator blocks that implement
a wide range of functions. Blocks in this blockset are organized by function into different
libraries. The libraries are described below.

Each block in this blockset is a composite, i.e., is implemented as a masked subsystem, with
parameters that configure the block.

You can use blocks from the Reference Blockset libraries as is, or as starting points when
constructing designs that have similar characteristics. Each reference block has a

Library Description

Index Every block in the Xilinx Blockset.

Basic Elements ElementsStandard building blocks for digital logic

Communication Forward error correction and modulator blocks, commonly used in
digital communications systems

Control Logic Blocks for control circuitry and state machines

Data Types Blocks that convert data types (includes gateways)

DSP Digital signal processing (DSP) blocks

Math Blocks that implement mathematical functions

Memory Blocks that implement and access memories

Shared Memory Blocks that implement and access Xilinx shared memories

Tools “Utility” blocks, e.g., code generation (System Generator block),
resource estimation, HDL co-simulation, etc

Library Description

Communication Blocks commonly used in digital communications systems

Control Logic LogicBlocks used for control circuitry and state machines

DSP Digital signal processing (DSP) blocks

Imaging Image processing blocks

Math Blocks that implement mathematical functions
22 www.xilinx.com System Generator for DSP User Guide
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

System-Level Modeling in System Generator
description of its implementation and hardware resource requirements. Individual
documentation for each block is also provided in the topic Xilinx Reference Blockset.

Signal Types
In order to provide bit-accurate simulation of hardware, System Generator blocks operate
on Boolean and arbitrary precision fixed-point values. By contrast, the fundamental scalar
signal type in Simulink is double precision floating point. The connection between Xilinx
blocks and non-Xilinx blocks is provided by gateway blocks. The gateway in converts a
double precision signal into a Xilinx signal, and the gateway out converts a Xilinx signal into
double precision. Simulink continuous time signals must be sampled by the Gateway In
block.

Most Xilinx blocks are polymorphic, i.e., they are able to deduce appropriate output types
based on their input types. When full precision is specified for a block in its parameters
dialog box, System Generator chooses the output type to ensure no precision is lost. Sign
extension and zero padding occur automatically as necessary. User-specified precision is
usually also available. This allows you to set the output type for a block and to specify how
quantization and overflow should be handled. Quantization possibilities include unbiased
rounding towards plus or minus infinity, depending on sign, or truncation. Overflow
options include saturation, truncation, and reporting overflow as an error.

Note: System Generator data types can be displayed by selecting Format > Port Data Types in
Simulink. Displaying data types makes it easy to determine precision throughout a model. If, for
example, the type for a port is Fix_11_9, then the signal is a two's complement signed 11-bit number
having nine fractional bits. Similarly, if the type is Ufix_5_3, then the signal is an unsigned 5-bit
number having three fractional bits.
System Generator for DSP User Guide www.xilinx.com 23
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator
In the System Generator portion of a Simulink model, every signal must be sampled.
Sample times may be inherited using Simulink's propagation rules, or set explicitly in a
block customization dialog box. When there are feedback loops, System Generator is
sometimes unable to deduce sample periods and/or signal types, in which case the tool
issues an error message. Assert blocks must be inserted into loops to address this problem.
It is not necessary to add assert blocks at every point in a loop; usually it suffices to add an
assert block at one point to “break” the loop.

Note: Simulink can display a model by shading blocks and signals that run at different rates with
different colors (Format > Sample Time Colors in the Simulink pulldown menus). This is often useful
in understanding multirate designs

Bit-True and Cycle-True Modeling
Simulations in System Generator are bit-true and cycle-true. To say a simulation is bit-true
means that at the boundaries (i.e., interfaces between System Generator blocks and non-
System Generator blocks), a value produced in simulation is bit-for-bit identical to the
corresponding value produced in hardware. To say a simulation is cycle-true means that at
the boundaries, corresponding values are produced at corresponding times. The
boundaries of the design are the points at which System Generator gateway blocks exist.
When a design is translated into hardware, Gateway In (respectively, Gateway Out) blocks
become top-level input (resp., output) ports.

Timing and Clocking

Discrete Time Systems

Designs in System Generator are discrete time systems. In other words, the signals and the
blocks that produce them have associated sample rates. A block’s sample rate determines
how often the block is awoken (allowing its state to be updated). System Generator sets
most sample rates automatically. A few blocks, however, set sample rates explicitly or
implicitly.

Note: For an in-depth explanation of Simulink discrete time systems and sample times, consult the
Using Simulink reference manual from the MathWorks, Inc.

A simple System Generator model illustrates the behavior of discrete time systems.
Consider the model shown below. It contains a gateway that is driven by a Simulink source
(Sine Wave), and a second gateway that drives a Simulink sink (Scope).

The Gateway In block is configured with a sample period of one second. The Gateway Out
block converts the Xilinx fixed-point signal back to a double (so it can analyzed in the
24 www.xilinx.com System Generator for DSP User Guide
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

System-Level Modeling in System Generator
Simulink scope), but does not alter sample rates. The scope output below shows the
unaltered and sampled versions of the sine wave.

Multirate Models

System Generator supports multirate designs, i.e., designs having signals running at
several sample rates. System Generator automatically compiles multirate models into
hardware. This allows multirate designs to be implemented in a way that is both natural
and straightforward in Simulink.

Rate-Changing Blocks

System Generator includes blocks that change sample rates. The most basic rate changers
are the Up Sample and Down Sample blocks. As shown in the figure below, these blocks
explicitly change the rate of a signal by a fixed multiple that is specified in the block’s
dialog box.

Other blocks (e.g., the Parallel To Serial and Serial To Parallel converters) change rates
implicitly in a way determined by block parameterization.

Consider the simple multirate example below. This model has two sample periods, SP1
and SP2. The Gateway In dialog box defines the sample period SP1. The Down Sample
block causes a rate change in the model, creating a new rate SP2 which is half as fast as SP1.
System Generator for DSP User Guide www.xilinx.com 25
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator
Hardware Oversampling

Some System Generator blocks are oversampled, i.e., their internal processing is done at a
rate that is faster than their data rates. In hardware, this means that the block requires more
than one clock cycle to process a data sample. In Simulink such blocks do not have an
observable effect on sample rates.

One block that can be oversampled is the DAFIR FIR filter. An oversampled DAFIR
processes samples serially, thus running at a higher rate, but using less hardware.

Although blocks that are oversampled do not cause an explicit sample rate change in
Simulink, System Generator considers the internal block rate along with all other sample
rates when generating clocking logic for the hardware implementation. This means that
you must consider the internal processing rates of oversampled blocks when you specify
the Simulink system period value in the System Generator block dialog box.

Asynchronous Clocking

System Generator focuses on the design of hardware that is synchronous to a single clock.
It can, under some circumstances, be used to design systems that contain more than one
clock. This is possible provided the design can be partitioned into individual clock
domains with the exchange of information between domains being regulated by dual port
memories and FIFOs. System Generator fully supports such multi-clock designs, including
the ability to simulate them in Simulink and to generate complete hardware descriptions.
Details are discussed in the topic Generating Multiple Cycle-True Islands for Distinct
Clocks. The remainder of this topic focuses exclusively on the clock-synchronous aspects
of System Generator. This discussion is relevant to both single-clock and multiple-clock
designs.

Synchronous Clocking

As shown in the figure below, when you use the System Generator token to compile a
design into hardware, there are three clocking options for Multirate implementation: (1)
Clock Enables (the default), (2) Hybrid DCM-CE, and (3) Expose Clock Ports.
26 www.xilinx.com System Generator for DSP User Guide
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

System-Level Modeling in System Generator
The Clock Enables Option

When System Generator compiles a model into hardware with the Clock Enable option
selected, System Generator preserves the sample rate information of the design in such a
way that corresponding portions in hardware run at appropriate rates. In hardware,
System Generator generates related rates by using a single clock in conjunction with clock
enables, one enable per rate. The period of each clock enable is an integer multiple of the
period of the system clock.

Inside Simulink, neither clocks nor clock enables are required as explicit signals in a
System Generator design. When System Generator compiles a design into hardware, it
uses the sample rates in the design to deduce what clock enables are needed. To do this, it
employs two user-specified values from the System Generator block: the Simulink system
period and FPGA clock period. These numbers define the scaling factor between time in a
Simulink simulation, and time in the actual hardware implementation. The Simulink
system period must be the greatest common divisor (gcd) of the sample periods that
appear in the model, and the FPGA clock period is the period, in nanoseconds, of the
system clock. If p represents the Simulink system period, and c represents the FPGA
system clock period, then something that takes kp units of time in Simulink takes k ticks of
the system clock (hence kc nanoseconds) in hardware.

To illustrate this point, consider a model that has three Simulink sample periods 2, 3, and
4. The gcd of these sample periods is 1, and should be specified as such in the Simulink
System Period field for the model. Assume the FPGA Clock Period is specified to be 10ns.
With this information, the corresponding clock enable periods can be determined in
hardware.

In hardware, we refer to the clock enables corresponding to the Simulink sample periods 2,
3, and 4 as CE2, CE3, and CE4, respectively. The relationship of each clock enable period to
the system clock period can be determined by dividing the corresponding Simulink
sample period by the Simulink System Period value. Thus, the periods for CE2, CE3, and
CE4 equal 2, 3, and 4 system clock periods, respectively. A timing diagram for the example
clock enable signals is shown below:

The Hybrid DCM-CE Option

If the implementation target is an FPGA with a Digital Clock Manager (DCM), you can
choose to drive the clock tree with a DCM. The DCM option is desirable when high fanout
on clock enable nets make it difficult to achieve timing closure.

System Generator instantiates the DCM in a top-level HDL clock wrapper and configures
the DCM to provide up to three clock ports at different rates for Virtex®-4 and Virtex®-5 and
up to two clock ports for Spartan-3A DSP. If the design has more clock ports than the DCM
can support, the remaining clocks are supported with the CE (clock enable) configuration.
The mapping of rates to the DCM outputs is done according to the following priority
scheme:
CLK0 > CLK2x > CLKdv > CLKfx. The DCM supports the higher clock rates first.
System Generator for DSP User Guide www.xilinx.com 27
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator
A dcm_reset input port is exposed on the top-level wrapper to allow the external design
to reset the DCM after bitstream configuration. A dcm_locked output port is also exposed
to help the external design synchronize the input data with the single clk input port.

Known Limitations: The following System Generator blocks are not supported by the
Hybrid DCM-CE Option:

• Clock Enable Probe

• Clock Probe

• DAFIR

• Downsample - when the Sample option First value of the frame is selected

• FIR Compiler - when the core rate is not equal to the input sample rate

• Parallel to Serial- when the Latency option is specified as 0 (zero)

• Time Division De-Multiplexer

• Time Division Multiplexer

• Upsample - when the Copy samples (otherwise zeros are inserted) option is not
selected.

The Expose Clock Ports Option

When you select this option, System Generator creates a top-level wrapper that exposes a
clock port for each rate. You can then manually instantiate a clock generator outside the
design to drive the clock ports.

Known Limitations: The following System Generator blocks are not supported by the
Expose Clock Ports Option:

• Clock Enable Probe

• Clock Probe

• DAFIR

• Downsample - when the Sample option First value of the frame is selected

• FIR Compiler - when the core rate is not equal to the input sample rate

• Parallel to Serial- when the Latency option is specified as 0 (zero)

• Time Division De-Multiplexer

• Time Division Multiplexer

• Upsample - when the Copy samples (otherwise zeros are inserted) option is not
selected.

Tutorial Example: Using the Hybrid DCM-CE Option

The following step-by-step example will show you how to select the Hybrid DCM-CE
option, netlist the HDL design, implement the design in ISE®, simulate the design and
examine the files and reports to verify that the DCM is properly instantiated and
configured.

The hybrid_dcm_ce_case1.mdl design example is located at the following pathname
...<ISE_Design_Suite_tree>/sysgen>/examples/clocking_options/hybri
d_dcm_ce_case1/hybrid_dcm_ce_case1.mdl

1. Open the model in MATLAB and observe the following blocks:
28 www.xilinx.com System Generator for DSP User Guide
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

System-Level Modeling in System Generator
• Addressable Shift Register (ASR): used to implement the input delay buffer. The
address port runs n times faster than the data port, where n is the number of the filter
taps (5 for this example)

• Coefficient ROM: used to store the filter coefficients

• Counter: used to generate addresses for the ROM and ASR

• Comparator: used to generate the reset and enable signals

• MAC Engine: used as a Multiply-Accumulator operator for the filter
System Generator for DSP User Guide www.xilinx.com 29
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator
2. Double-click on the System Generator token to bring up the following dialog box:

As shown, select Hybrid DCM-CE, then click Generate. After a few moments, a sub-
directory named hdl_netlist_dcm is created in the current working directory containing
the generated files.

3. In the MATLAB Current Directory window, double-click on the file
hybrid_dcm_ce_case1_sysgen.log. As shown below, the DCM clocks are listed
first (highest rates first), followed by the CE driven clocks.

4. Launch ISE, then load the ISE project at pathname
./hdl_netlist_dcm/hybrid_dcm_ce_case1_dcm_mcw.ise

5. Under the Project Navigator Processes view, double-click on Implement Design.

6. From the Project Navigator Design Sources Hierarchy view, do the following:
30 www.xilinx.com System Generator for DSP User Guide
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

System-Level Modeling in System Generator
a. Double-click on the file hybrid_dcm_ce_case1_dcm_mcw.vhd, then scroll
down to view the DCM component declaration as shown below by the VHDL
code snippet:

b. Observe that System Generator automatically infers and instantiates the DCM
instance and its parameters according to the required clock outputs.

c. Close the VHDL file.

Next, you are going to examine the clock propagation by examining the ISE timing report.
First, you must generate the report.

7. Open the following folder: Processes view > Implement Design > Place & Route >
Generate Post-Place & Route Static Timing

8. Double -click on Analyze Post-Place & Route Static Timing and you should see the
information in the figure below:
System Generator for DSP User Guide www.xilinx.com 31
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator
This design is comprised of six clock rates – 1, 2, 4, 8, 20, 40 with respect to the 10 ns
global clock constraint. The timing report validates the correct clock generation and
propagation by System Generator as follows:

♦ DCM-based clocks: clk_1 (CLK0 ->10 ns), clk_2 (CLKFX ->20 ns) , clk_4 (CLKDIV
->40 ns) generated by the DCM based on the 10 ns global clock input

♦ Clock Enable-based clocks: ce_8 (80 ns), ce_20 (200 ns), ce_40 (400 ns) generated
by clock enables based on the clk_4 clock input

Next you want to perform a behavior simulation using the ModelSim.

9. As shown in the following figure, move to the Sources for dialog box in the Sources
window, then select Behavioral Simulation

Note: System Generator automatically creates the top-wrapper VHDL testbench, script file and
input/output stimulus data files. The Processes tab changes and displays according to the
Sources type being selected.

10. Simulate the design, as shown above, by double-click on Simulate Behavioral Model
in the Processes window

1. Select

2. Double Click
32 www.xilinx.com System Generator for DSP User Guide
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

System-Level Modeling in System Generator
11. After the simulation is finished, you should be able to observe the simulation
waveforms as shown in the figure below:

All DCM clocks are included in the top-level wrapper testbench file
(hybrid_dcm_ce_case1_dcm_mcw_tb.vhd) – clk_1, clk_2 and clk_4.

Summary

When you select the Hybrid DCM-CE option, System Generator automatically infers and
instantiates a DCM without further manual intervention. In addition, the tool intelligently
generates different clock rates by using a combination of DCM and CE clock generation
algorithms and by assigning appropriate clock rates to either the DCM or CE in order to
obtain optimal Quality of Results and low power consumption. You do not have to set
attributes or specify DCM clock outputs. You should expect minimal clock skew when
selecting the Hybrid DCM-CE option compared to the Clock Enables option alone.

Tutorial Example: Using the Expose Clock Ports Option

The following step-by-step example will show you how to select the Expose Clock Ports
option, netlist the HDL design, implement the design in ISE, simulate the design, then
examine the files and reports to verify the design.

The expose_clock_ports_case1 design example is located at the following pathname
<ISE_Design_Suite_tree>/sysgen>/examples/clocking_options/expose_c
lock_ports_case1/expose_clock_ports_case1.mdl

1. Open the model in MATLAB and observe the following blocks:

• Addressable Shift Register (ASR): used to implement the input delay buffer. The
address port runs n times faster than the data port, where n is the number of the filter
taps (5 for this example)

• Coefficient ROM: used to store the filter coefficients

• Counter: used to generate addresses for the ROM and ASR

• Comparator: used to generate the reset and enable signals
System Generator for DSP User Guide www.xilinx.com 33
UG640 (v 12.2) July 23, 2010

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator
• MAC Engine: used as a Multiply-Accumulator operator for the filter

2. Double-click on the System Generator token to bring up the following dialog box:

As shown above, select Expose Clock Ports, then click Generate. After a few moments, a
sub-directory named hdl_netlist is created in the current working directory containing the
generated files.

3. Launch ISE, then load the ISE project at pathname
./hdl_netlist/expose_clock_ports_case1_mcw.ise
34 www.xilinx.com System Generator for DSP User Guide
UG640 (v 12.2) July 23, 2010

