

236 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix B: Interrupt Management

Figure B-3: MicroBlaze Interrupt Flow without Interrupt Controller

Figure B-4: MicroBlaze Interrupt Flow with Interrupt Controller

INTR
…..
…..
…..
…..

Lookup the
interrupt handler
registered with

the OS and jump
to it.

Branch to OS
INTR handler

0x000_0008 microblaze_interrupt_handler.c
__interrupt_handler()

MB_InterruptVector
Table {
____________,

};

0x000_00 10

0x000_00 18

0x000_00 20

User Program

…..
…..

user or peripheral
interrupt handler

function

User or peripheral
interrupt handler

registered directly with
the OS layer

X11019

INTR
…..
…..
…..
….. Lookup the

interrupt handler
registered with

the OS and jump
to it.

Branch to OS
INTR handler

0x000_0008 microblaze_interrupt_handler.c
__interrupt_handler()

MB_InterruptVector
Table {
____________,
};

For each active
interrupt, call
the registered

interrupt
handler.

xintc.c
XIntc_DeviceInterruptHandler()0x000_00 10

0x000_00 18

0x000_00 20

User Program

…..
…..

user or peripheral
interrupt handler

function

HandlerTable {
____________,

};

XIntc_DeviceInterruptHandler()
registered with the

OS Layer
User or peripheral
interrupt handlers
registered with the
interrupt
controller driver

X11020

Embedded System Tools Reference Manual www.xilinx.com 237
UG111 (v14.3) October 16, 2012

Software Setup and Interrupt Flow

Interrupt Flow for PowerPC Systems
Interrupts on the PowerPC processors go through the following flow:

1. Interrupts must be enabled on the PowerPC processor by setting appropriate bits in
the Machine Status Registers (MSR). Depending on whether critical or non-critical (or
both) interrupts are being used, appropriate bits must be set.

2. Upon the external interrupt signal being raised, the processor first disables further
interrupts. The processor then calculates an address for the interrupt type and jumps
to that address. The calculation varies between the PowerPC 405 processor and the
PowerPC 440 processor.

• The PowerPC 405 processor consults the software-set value of the Exception
Vector Prefix Register (EVPR) and adds a constant offset to this value (depending
on the interrupt type) to determine the final physical address where the vector
code is placed.

• The PowerPC 440 processor has independent offset registers for each interrupt
type (labeled IVOR0-IVOR15). Each offset register contains a value that is
appended to the Interrupt Vector Prefix register (IVPR) to obtain the final physical
address of the interrupt vector code.

3. The processor jumps to the calculated interrupt vector code address.

4. Each interrupt vector location contains a platform interrupt handler that is appropriate
for the interrupt type:

• For external critical and non-critical interrupts, the handler saves all of the
processor registers (that could be clobbered further down) onto the current
application stack.

• The handler then transfers control to the next level handler. Because this can be
dependent on whether there is an interrupt controller in the system, the handler
consults an internal interrupt vectoring table to determine the function address of
the next level handler.

• The handler also consults the vectoring table for a callback value that it must pass
to the next level handler. Then, the handler makes the actual call.

• On systems with an interrupt controller, the next level handler is the handler
provided by the interrupt controller driver. This handler queries the interrupt
controller for all active interrupts in the system. For each active interrupt, it
consults its internal vector table, which contains the user-registered handler for
each interrupt line.
If no handler is registered, a default do-nothing handler is registered. The
registered handler for each interrupt gets invoked in turn (in interrupt priority
order).

• On systems without an interrupt controller, the next handler is the final interrupt
handler that is executed by the application.

5. The final interrupt handler for a particular interrupt typically queries the interrupting
peripheral and determines the cause for the interrupt. It usually does a series of actions
that are appropriate for the given peripheral and the cause for the interrupt. The
handler is also responsible for acknowledging the interrupt at the interrupting
peripheral. When the interrupt handler completes its activity, it returns back and the
interrupt stack gets unwound back to the software platform level interrupt handler.

The platform level interrupt handler restores the registers that it saved on the stack and
returns control back to the Program Counter (PC) location where the interrupt occurred.

http://www.xilinx.com

238 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix B: Interrupt Management

The return instruction also enables interrupts again on the PowerPC processor. The
application resumes normal execution at this point.

It is recommended that interrupt handlers be of a short duration and that the bulk of the
interrupt work be done by application. This prevents long lockouts of other (possibly
higher priority) interrupts and is considered good system design.

Figure B-5 shows a PowerPC processor interrupt flow without an interrupt controller.

Figure B-6 shows a PowerPC processor interrupt flow with an interrupt controller.

Figure B-5: PowerPC Processor Interrupt Flow without Interrupt Controller

Figure B-6: PowerPC Processor Interrupt Flow with Interrupt Controller

INTR
…..
…..
…..
….. Lookup the

interrupt handler
registered with
the OS for the
current interrupt

type and jump to it.

xvectors.S
section .vectors

Interrupt Vectoring Code

User Program

…..
…..

user or peripheral
interrupt handler

function

User or peripheral
interrupt handlers
registered directly
with the OS layer

critical intr

external intr

Branch to
vectoring code

Branch to
vectoring code

XExc_VectorTable {
____________,

};

others

others …

…

X11021

INTR …..

…..

…..

…..

xvectors.S
section .vectors

Interrupt Vectoring Code

For each active
interrupt, call
the registered

interrupt
handler.

xintc.c
XIntc_DeviceInterruptHandler()

User Program

…..

…..

user or peripheral
interrupt handler

function

HandlerTable {
____________,

};

XIntc_DeviceInterruptHandler()
registered with the

OS layer

User or peripheral
interrupt handlers

registered with the
interrupt

controller driver

critical intr

external intr

Branch to
vectoring code

Branch to
vectoring code

XExc_VectorTable {
____________,

___________ __

};

others

others …

…

Lookup the
interrupt handler
registered with
the OS for the

current interrupt
type and jump to it.

X11022

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 239
UG111 (v14.3) October 16, 2012

Software APIs

Software APIs
This section provides an overview of the software APIs involved in handling and
managing interrupts, lists the available Software APIs by processor type, and provides
examples of interrupt management code.

Note: This chapter is not meant to cover the APIs comprehensively. Refer to the interrupt controller
device driver documentation as well as the reference documentation for the Standalone platform to
for all the details of the APIs.

Interrupt Controller Driver
 The Xilinx interrupt controller supports the following features:

• Enabling and disabling specific individual interrupts

• Acknowledging specific individual interrupts

• Attaching specific callback function to handle interrupt source

• Enabling and disabling the master

• Sending a single callback per interrupt or handling all pending interrupts for each
interrupt of the processor

The acknowledgement of the interrupt within the interrupt controller is selectable, either
prior to calling the device handler or after the handler is called. Interrupt signal inputs are
either edge or level signal; consequently, support for those inputs is required:

• Edge-driven interrupt signals require that the interrupt is acknowledged prior to the
interrupt being serviced to prevent the loss of interrupts which are occurring close
together.

• Level-driven interrupt input signals require the interrupt to be acknowledged after
servicing the interrupt to ensure that the interrupt only generates a single interrupt
condition.

API Descriptions

int XIntc_Initialize (XIntc * InstancePtr, u16 DeviceId)

Description Initializes a specific interrupt controller instance or driver. All the fields of the XIntc
structure and the internal vectoring tables are initialized. All interrupt sources are disabled.

Parameters InstancePtr is a pointer to the XIntc instance.

DeviceId is the unique id of the device controlled by this XIntc instance (obtained from
xparameters.h). Passing in a DeviceId associates the generic XIntc instance to a
specific device, as chosen by the caller or application developer.

http://www.xilinx.com

240 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix B: Interrupt Management

int XIntc_Connect (XIntc * InstancePtr, u8 Id, XInterruptHandler
Handler, void * CallBackRef)

Description Makes the connection between the Id of the interrupt source and the associated handler that
is to be run when the interrupt occurs. The argument provided in this call as the
CallBackRef is used as the argument for the handler when it is called.

Parameters InstancePtr is a pointer to the XIntc instance.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the highest priority interrupt.

Handler is the handler for that interrupt.

CallBackRef is the callback reference, usually the instance pointer of the connecting driver

The handler provided as an argument overwrites any handler that was previously connected.

void XIntc_Disconnect (XIntc* InstancePtr, u8 Id)

Description Disconnects the XIntc instance.

Parameters InstancePtr is a pointer to the XIntc instance.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the highest priority interrupt.

Void XIntc_Enable (XIntc * InstancePtr, u8 Id)

Description Enables the interrupt source provided as the argument Id. Any pending interrupt condition for
the specified Id occurs after this function is called.

Parameters InstancePtr is a pointer to the XIntc instance.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the highest priority interrupt.

void XIntc_Disable (Xintc * InstancePtr, u8 Id)

Description Disables the interrupt source provided as the argument Id , such that the interrupt controller
does not cause interrupts for the specified Id. The interrupt controller continues to hold an
interrupt condition for the Id, but does not cause an interrupt.

Parameters InstancePtr is a pointer to the XIntc instance.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the highest priority interrupt.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 241
UG111 (v14.3) October 16, 2012

Software APIs

Hardware Abstraction Layer APIs
The following is a summary of exception functions, which can run on MicroBlaze,
PowerPC 405, and PowerPC 440 processors.

Header File

#include "xil_exception.h"

Typedef

typedef void(* Xil_ExceptionHandler)(void *Data)

This typedef is the exception handler function pointer.

int XIntc_Start (XIntc * InstancePtr, u8 Mode)

Description Starts the interrupt controller by enabling the output from the controller to the processor.
Interrupts can be generated by the interrupt controller after this function is called.

Parameters InstancePtr is a pointer to the XIntc instance.

Mode determines if software is allowed to simulate interrupts or if real interrupts are allowed
to occur. Modes are mutually exclusive. The interrupt controller hardware resets in a mode that
allows software to simulate interrupts until this mode is exited. It cannot be re-entered after it
has been exited. Mode is one of the following valued:

XIN_SIMULATION_MODE enables simulation of interrupts only.

XIN_REAL_MODE enables hardware interrupts only.

This function must be called after Xintc initialization is completed.

void XIntc_Stop (XIntc * InstancePtr)

Description Stops the interrupt controller by disabling the output from the controller so that no interrupts
are caused by the interrupt controller.

Parameters InstancePtr is a pointer to the XIntc instance.

void Xil_ExceptionDisable()

Description Disable Exceptions. On PowerPC 405 and PowerPC 440 processors, this function only disables
non-critical exceptions.

void Xil_ExceptionEnable()

Description Enable Exceptions. On PowerPC 405 and PowerPC 440 processors, this function only enables
non-critical exceptions.

http://www.xilinx.com

242 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix B: Interrupt Management

Interrupt Setup Example
/***************************** Include Files ************************/

#include "xparameters.h"
#include "xtmrctr.h"
#include "xintc.h"
#include "xil_exception.h"

/********************** Constant Definitions ***********************/
/*
 * The following constants map to the XPAR parameters created in the
 * xparameters.h file. They are only defined here such that a user can
 * easily change all the needed parameters in one place.
 */
#define TMRCTR_DEVICE_IDXPAR_TMRCTR_0_DEVICE_ID
#define INTC_DEVICE_IDXPAR_INTC_0_DEVICE_ID
#define TMRCTR_INTERRUPT_IDXPAR_INTC_0_TMRCTR_0_VEC_ID

/*
 * The following constant determines which timer counter of the device
 * that is used for this example, there are currently 2 timer counters
 * in a device and this example uses the first one, 0, the timer numbers
 * are 0 based

void Xil_ExceptionInit()

Description Initialize exception handling for the processor. The exception vector table is set up with the stub
handler for all exceptions.

void Xil_ExceptionRegisterHandler(u32 Id, Xil_ExceptionHandler Han-
dler,void *Data)

Description Make the connection between the ID of the exception source and the associated handler that runs
when the exception is recognized. Data is used as the argument when the handler is called.

Parameters Parameters:

Id contains the identifier (ID) of the exception source. This should be XIL_EXCEPTION_INT
or be in the range of 0 to XIL_EXCEPTION_LAST. Refer to the xil_exception.h file for further
information.

Handler is the handler for that exception.

Data is a reference to data that is passed to the handler when it is called.

void Xil_ExceptionRemoveHandler(u32 Id)

Description Remove the handler for a specific exception ID. The stub handler is then registered for this
exception ID.

Parameters Id contains the ID of the exception source. It should be XIL_EXCEPTION_INT or in the range of
0 to XIL_EXCEPTION_LAST. Refer to the xil_exception.h file for further information.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 243
UG111 (v14.3) October 16, 2012

Software APIs

 */
#define TIMER_CNTR_0 0

/*
 * The following constant is used to set the reset value of the timer
 * counter, making this number larger reduces the amount of time this
 * example consumes because it is the value the timer counter is loaded
 * with when it is started
 */
#define RESET_VALUE 0xF0000000

/********************* Function Prototypes *************************/

int TmrCtrIntrExample(XIntc* IntcInstancePtr,
 XTmrCtr* InstancePtr,
 u16 DeviceId,
 u16 IntrId,
 u8 TmrCtrNumber);

void TimerCounterHandler(void *CallBackRef, u8 TmrCtrNumber);

/********************** Variable Definitions ************************/
XIntc InterruptController; /* The instance of the Interrupt Controller
*/

XTmrCtr TimerCounterInst; /* The instance of the Timer Counter */

/*
 * The following variables are shared between non-interrupt processing
 * and interrupt processing such that they must be global.
 */
volatile int TimerExpired;

/**/
/**
* This function is the main function of the Tmrctr example using
* Interrupts.
*
* @paramNone.
*
* @returnXST_SUCCESS to indicate success, else XST_FAILURE to indicate
* a Failure.
*
* @noteNone.
*
***/

int main(void)
{

int Status;

/*
 * Run the Timer Counter - Interrupt example.
 */
Status = TmrCtrIntrExample(&InterruptController,

 &TimerCounterInst,
 TMRCTR_DEVICE_ID,

http://www.xilinx.com

244 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix B: Interrupt Management

 TMRCTR_INTERRUPT_ID,
 TIMER_CNTR_0);

if (Status != XST_SUCCESS) {
return XST_FAILURE;

}

return XST_SUCCESS;

}

/**/
/**
* This function does a minimal test on the timer counter device and
* driver as a design example. The purpose of this function is to
* illustrate how to use the XTmrCtr component. It initializes a timer
* counter and then sets it up in compare mode with auto reload such that
* a periodic interrupt is generated.
*
* This function uses interrupt driven mode of the timer counter.
*
* @paramIntcInstancePtr is a pointer to the Interrupt Controller
* driver Instance
* @paramTmrCtrInstancePtr is a pointer to the XTmrCtr driver Instance
* @paramDeviceId is the XPAR_<TmrCtr_instance>_DEVICE_ID value from
* xparameters.h
* @paramIntrId is
XPAR_<INTC_instance>_<TmrCtr_instance>_INTERRUPT_INTR
* value from xparameters.h
* @paramTmrCtrNumber is the number of the timer to which this
* handler is associated with.
*
* @returnXST_SUCCESS if the Test is successful, otherwise XST_FAILURE
*
* @noteThis function contains an infinite loop such that if interrupts
* are not working it may never return.
*
***/
int TmrCtrIntrExample(XIntc* IntcInstancePtr,

 XTmrCtr* TmrCtrInstancePtr,
 u16 DeviceId,
 u16 IntrId,
 u8 TmrCtrNumber)

{
int Status;
int LastTimerExpired = 0;

/*
 * Initialize the timer counter so that it's ready to use,
 * specify the device ID that is generated in xparameters.h
 */
Status = XTmrCtr_Initialize(TmrCtrInstancePtr, DeviceId);
if (Status != XST_SUCCESS) {
return XST_FAILURE;

}

/*
 * Initialize the interrupt controller driver so that
 * it's ready to use, specify the device ID that is generated in
 * xparameters.h

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 245
UG111 (v14.3) October 16, 2012

Software APIs

 */
Status = XIntc_Initialize(IntcInstancePtr, INTC_DEVICE_ID);
if (Status != XST_SUCCESS) {
return XST_FAILURE;

}

/*
 * Connect a device driver handler that will be called when an
 * interrupt for the device occurs, the device driver handler performs
 * the specific interrupt processing for the device
 */
Status = XIntc_Connect(IntcInstancePtr, IntrId,

 (XInterruptHandler)XTmrCtr_InterruptHandler,
 (void *)TmrCtrInstancePtr);

if (Status != XST_SUCCESS) {
return XST_FAILURE;

}

/*
 * Start the interrupt controller such that interrupts are enabled for
 * all devices that cause interrupts, specific real mode so that
 * the timer counter can cause interrupts thru the interrupt
 * controller.
 */
Status = XIntc_Start(IntcInstancePtr, XIN_REAL_MODE);
if (Status != XST_SUCCESS) {
return XST_FAILURE;

}

/*
 * Enable the interrupt for the timer counter
 */
XIntc_Enable(IntcInstancePtr, IntrId);

/*
 * Initialize the exception table.
 */
Xil_ExceptionInit();

/*
 * Register the interrupt controller handler with the exception table.
 */
Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT,

 (Xil_ExceptionHandler)
 XIntc_InterruptHandler,
 IntcInstancePtr);

/*
 * Enable exceptions.
 */
Xil_ExceptionEnable();
if (Status != XST_SUCCESS) {
return XST_FAILURE;

}

/*
 * Setup the handler for the timer counter that will be called from the
 * interrupt context when the timer expires, specify a pointer to the

http://www.xilinx.com

246 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix B: Interrupt Management

 * timer counter driver instance as the callback reference so the
 * handler is able to access the instance data
 */
XTmrCtr_SetHandler(TmrCtrInstancePtr,

 TimerCounterHandler,
 TmrCtrInstancePtr);

/*
 * Enable the interrupt of the timer counter so interrupts will occur
 * and use auto reload mode such that the timer counter will reload
 * itself automatically and continue repeatedly, without this option
 * it would expire once only
 */
XTmrCtr_SetOptions(TmrCtrInstancePtr, TmrCtrNumber,

 XTC_INT_MODE_OPTION | XTC_AUTO_RELOAD_OPTION);

/*
 * Set a reset value for the timer counter such that it will expire
 * earlier than letting it roll over from 0, the reset value is loaded
 * into the timer counter when it is started
 */
XTmrCtr_SetResetValue(TmrCtrInstancePtr, TmrCtrNumber, RESET_VALUE);

/*
 * Start the timer counter such that it's incrementing by default,
 * then wait for it to timeout a number of times
 */
XTmrCtr_Start(TmrCtrInstancePtr, TmrCtrNumber);

while (1) {
/*
 * Wait for the first timer counter to expire as indicated by the
 * shared variable which the handler will increment
 */
while (TimerExpired == LastTimerExpired) {
}
LastTimerExpired = TimerExpired;

/*
 * If it has expired a number of times, then stop the timer counter
 * and stop this example
 */
if (TimerExpired == 3) {

XTmrCtr_Stop(TmrCtrInstancePtr, TmrCtrNumber);
break;

}
}

/*
 * Disable the interrupt for the timer counter
 */
XIntc_Disable(IntcInstancePtr, DeviceId);

return XST_SUCCESS;
}

/**/
/**

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 247
UG111 (v14.3) October 16, 2012

Software APIs

* This function is the handler which performs processing for the timer
* counter. It is called from an interrupt context such that the amount
* of processing performed should be minimized. It is called when the
* timer counter expires if interrupts are enabled.
*
* This handler provides an example of how to handle timer counter
* interrupts but is application specific.
*
* @paramCallBackRef is a pointer to the callback function
* @paramTmrCtrNumber is the number of the timer to which this
* handler is associated with.
*
* @returnNone.
*
* @noteNone.
*
***/
void TimerCounterHandler(void *CallBackRef, u8 TmrCtrNumber)
{
XTmrCtr *InstancePtr = (XTmrCtr *)CallBackRef;

/*
 * Check if the timer counter has expired, checking is not necessary
 * since that's the reason this function is executed, this just shows
 * how the callback reference can be used as a pointer to the instance
 * of the timer counter that expired, increment a shared variable so
 * the main thread of execution can see the timer expired
 */
if (XTmrCtr_IsExpired(InstancePtr, TmrCtrNumber)) {
TimerExpired++;
if(TimerExpired == 3) {
XTmrCtr_SetOptions(InstancePtr, TmrCtrNumber, 0);

}
}

}

http://www.xilinx.com

248 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix B: Interrupt Management

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 249
UG111 (v14.3) October 16, 2012

Appendix C

EDK Tcl Interface

This appendix describes the various Tool Command Language (Tcl) Application Program
Interfaces (APIs) available in EDK tools and methods for accessing information from EDK
tools using Tcl APIs.

Introduction
Each time EDK tools run, they build a runtime data structure of your design. The data
structure contains information about user design files, such as Microprocessor Hardware
Specification (MHS), or library data files, such as Microprocessor Peripheral Definition
(MPD), Microprocessor Driver Definition (MDD), and Microprocessor library Definition
(MLD). Access to the data structure is given as Tcl APIs. Based on design requirements, IP,
driver, library, and OS writers that provide the corresponding data files can access the data
structure information to add some extra steps in the tools processing. EDK tools also use
Tool Command Language (Tcl) to perform various Design Rule Checks (DRCs), and to
update the design data structure in a limited manner.

Understanding Handles
The tools provide access points into the data structure through a set of API functions. Each
API function requires an argument in the form of system information, which is called a
handle.

For example, an IP defined in the Microprocessor Hardware Specification (MHS) file could
serve as a handle. Handles can be of various types, based on the kind of data to which they
are providing access. Data types include instance names, driver names, hardware
parameters, or hardware ports. From a given handle, you can get information associated
with that handle, or you can get other, associated handles.

http://www.xilinx.com

250 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix C: EDK Tcl Interface

Data Structure Creation
EDK tools provide access to two basic types of run-time information:

• The original design and library datafile data structure:

The original data structure provides access only to the information present in various
data files. You can get a handle to such files as the MHS, MPD, MDD, and MLD. These
handles allow you to query the contents of the files with which they are associated.

• The merged data structure:

When EDK tools run, the information in the design files (MHS) is combined with the
corresponding information from library files (MPD) to create merged data structures:
hardware merged datastructure (also referred to as the hardware merged object). During
the process of creating the merged data structure, the tools also analyze various design
characteristics (such as connectivity or address mapping), and that information is also
stored in the merged data structures. A merged data structure provides an easy way to
access this analyzed information. For example, an instance of an IP in the MHS file is
merged with its corresponding MPD. Using the merged instances, complete
information can be obtained from one handle; it is not necessary to access the IP
instance and MPD handles separately.

Figure C-1 shows a merged hardware data structure creation.
Figure X-Ref Target - Figure C-1

Figure C-1: Merged Hardware Data Structure Creation

MHS

MPD

Merged
DataStructure

X10582

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 251
UG111 (v14.3) October 16, 2012

Tcl Command Usage

Tcl Command Usage

General Conventions
There are two kinds of Tcl APIs, which differ based on the type of data they return. Tcl APIs
return either:

• A handle or a list of handles to some objects.

• A value or a list of values.

The common rules followed in all Tcl APIs are:

• An API returns a NULL handle when an expected handle to another object is not
found.

• An API returns an empty string when a value is either empty or that value cannot be
determined.

Before You Begin
When you use XPS in non-GUI mode (xps –nw), you must first initialize the internal tool
database (the runtime datastructure) by loading the project with the xload command:

xload <filetype> <filename>.{MHS/XMP}

Refer to Chapter 5, Command Line Mode for more detail regarding xload.

To gain access to either the MHS Handle or the merged MHS Handle, use one of the
following commands after loading the project:

XPS% set original_mhs_handle [xget_handle mhs]

or

XPS% set merged_mhs_handle [xget_handle merged_mhs]

The following section provides the nomenclature of the EDK Hardware Tcl commands in
more detail.

http://www.xilinx.com

252 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix C: EDK Tcl Interface

EDK Hardware Tcl Commands

Overview
This section provides a list of Tcl APIs available in the EDK hardware data structure. The
description of these commands uses certain terms, which are defined in the following
subsections.

Original MHS Handle (original_mhs_handle)

The handle that points to the MHS information only. This handle does not contain any
MPD information. If an IP parameter has not been specified in the MHS, this handle does
not contain that parameter.

Merged MHS Handle (merged_mhs_handle)

The handle that points to both the MHS and MPD information. A hardware datastructure/
merged object is formed when the tools merge the MHS and MPD information.

Note: Various Tcl procedures are also called within batch tools such as Platgen, Libgen, and
Simgen. Handles provided through batch tools always refer to the merged MHS handle. You do not
have access to the original MHS handle from the batch tools. The original MHS handle is needed only
when you must modify the design using the provided APIs so that the generated MHS design file can
be updated.

Original IP Instance Handle (original_IP_handle)

A handle to an IP instance obtained from the original MHS handle that contains
information present only in the MHS file.

Merged IP Instance Handle (merged_IP_handle)

Refers to the IP handle obtained from the merged MHS handle. The merged IP instance
handle contains both MHS and MPD information.

Note: Batch tools such as Platgen provide access to the merged IP instance handle only and not
the original IP instance handle. Consequently, the various property handles (the parameter and port
handles, for example) are merged handles and not the original handles.

Hardware Read Access APIs
The following sections contain a summary table and descriptions of defined hardware
read access APIs. To go to the API descriptions, which are provided in the following
section, click on a summary link.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 253
UG111 (v14.3) October 16, 2012

EDK Hardware Tcl Commands

API Summary

Hardware API Descriptions

xget_hw_busif_value <handle> <busif_name>

xget_hw_bus_slave_addrpairs <merged_bus_handle>
xget_hw_busif_handle <handle> <busif_name>

xget_hw_connected_busifs_handle <merged_mhs_handle> <businst_name> <busif_type>

xget_hw_connected_ports_handle <merged_mhs_handle> <connector_name> <port_type>

xget_hw_ioif_handle <handle> <ioif_name>
xget_hw_ioif_value <handle> <ioif_name>

xget_hw_ipinst_handle <mhs_handle> <ipinst_name>

xget_hw_mpd_handle <ipinst_handle>
xget_hw_name <handle>

xget_hw_option_handle <handle> <option_name>

xget_hw_option_value <handle> <option_name>
xget_hw_parameter_handle <handle> <parameter_name>

xget_hw_parameter_value <handle> <parameter_name>

xget_hw_pcore_dir_from_mpd <mpd_handle>
xget_hw_pcore_dir <ipinst_handle>

xget_hw_port_connectors_list <ipinst_handle> <portName>

xget_hw_parent_handle <handle>
xget_hw_port_connectors_list <ipinst_handle> <portName>

xget_hw_port_handle <handle> <port_name>

xget_hw_port_value <handle> <port_name>
xget_hw_proj_setting <prop_name>

xget_hw_proc_slave_periphs <merged_proc_handle>

xget_hw_subproperty_handle <property_handle> <subprop_name>
xget_hw_subproperty_value <property_handle> <subprop_name>

xget_hw_value <handle>

xget_hw_busif_handle <handle> <busif_name>

Description Returns a handle to the associated bus interface.

Arguments <handle> is the handle to the MPD, original IP instance, or merged IP instance.

<busif_name> is the name of the bus interface whose handle is required. If <busif_name> is
specified as an asterisk (*), the API returns a list of bus interface handles. To access an individual
bus interface handle, you can iterate over the list in Tcl.

http://www.xilinx.com

254 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix C: EDK Tcl Interface

xget_hw_busif_value <handle> <busif_name>

Description Returns the value of the specified bus interface. The value is typically the instance name of the
bus to which the bus interface is connected. For a transparent bus interface, the value is the
connector (which is not a bus instance name.)

Arguments <handle> the handle to the MPD, original IP instance or merged IP instance.

<busif_name> is the name of the bus interface whose value is required.

xget_hw_bus_slave_addrpairs <merged_bus_handle>

Description Returns a list of slave addresses associated with the specified bus handle. The returned value is
a list of integers where:

The first value is the base address of any connected peripherals.

The second value is the associated high address.

The following values are paired base and high addresses of other peripherals.

Arguments <merged_bus_handle> is a handle to a merged IP instance pointing to a bus instance.

xget_hw_connected_busifs_handle <merged_mhs_handle> <businst_name>
<busif_type>

Description Returns a list of handles to bus interfaces that are connected to a specified bus.

Arguments <merged_mhs_handle> is a handle to the merged MHS.

<businst_name> is the name of the connected bus instance.

<busif_type> is one of the following: MASTER, SLAVE, TARGET, INITIATOR, ALL.

xget_hw_connected_ports_handle <merged_mhs_handle> <connector_name>
<port_type>

Description Returns a list of handles to ports associated with a specified connector. The valid handle type is
the merged MHS.

Arguments <merged_mhs_handle> is the handle to the merged MHS.

<connector_name> is the name of the connector.

<port_type> is source, sink, or all.

This API returns a list of handles to ports based on the <port_type>, where:

source is a list of ports that are driving the given signal.

sink is a list of ports that are being driven by the given signal.

all is a list of all ports connected to the given signal.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 255
UG111 (v14.3) October 16, 2012

EDK Hardware Tcl Commands

xget_hw_ioif_handle <handle> <ioif_name>

Description Returns the handle to an I/O interface associated with the handle.

Arguments <handle> is the handle to an MPD or a merged IP instance.

If an original IP instance handle is provided, this API returns a NULL.

<ioif_name> is the name of the I/O interface whose handle is required. If <ioif_name> is
specified as an asterisk (*), the API returns a list of I/O interface handles. To access an individual
I/O interface handle, you can iterate over the list in Tcl.

xget_hw_ioif_value <handle> <ioif_name>

Description Returns the value of the I/O interface. The value is specified in the MPD file and cannot be
overwritten in MHS.

Arguments <handle> is the handle to an MPD or a merged IP instance.

<ioif_name> is the name of the I/O interface whose value is required.

xget_hw_ipinst_handle <mhs_handle> <ipinst_name>

Description Returns the handle of the specified IP instance.

Arguments <mhs_handle> is the handle to either an original MHS or a merged MHS.

<ipinst_name> is the name of the IP instance whose handle is required. If <ipinstf_name> is
specified as an asterisk (*), the API returns a list of IP instance handles. To access an individual IP
instance handle, you can iterate over the list in Tcl.

xget_hw_mpd_handle <ipinst_handle>

Description Returns a handle to the MPD object associated with the specified IP instance.

Arguments <ipinst_handle> is a handle to the merged IP instance.

xget_hw_name <handle>

Description Returns the name of the specified handle.

Arguments <handle> is of specified type.

If <handle> is of type IP instance, its name is the instance name of that IP. For example, if the
handle refers to an instance of MicroBlaze called mymb in the MHS file, the value the API returns
is mymb. Similarly, to get the name of a parameter from a parameter handle, you can use the same
command.

http://www.xilinx.com

256 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix C: EDK Tcl Interface

xget_hw_option_handle <handle> <option_name>

Description Returns a handle to the associated option.

Arguments <handle> is the associated option.

<option_name> is the name of the option whose value is required.

If specified as an asterisk (*), the API returns a list of option handles.

To access an individual option handle, you can iterate over the list in Tcl.

xget_hw_option_value <handle> <option_name>

Description Returns the value of the option. The value is specified in the MPD file and cannot be overwritten
in MHS

Arguments <handle> the handle to an MPD or a merged IP instance.

<option_name> is the name of the option whose value is required.

xget_hw_parameter_handle <handle> <parameter_name>

Description Returns the handle to an associated parameter

Arguments <handle> is the handle to the MPD, original IP instance, or merged IP instance.

<parameter_name> is the name of the associated parameter whose handle is required. If
<parameter_name> is specified as an asterisk (*), a list of parameter handles is returned. To
access an individual parameter handle, you can iterate over the list in Tcl.

xget_hw_parameter_value <handle> <parameter_name>

Description Returns the value of the specified parameter

Arguments <handle> is the handle to the MPD, original IP instance, or merged IP instance.

<parameter_name> is the name of the associated parameter whose value is required.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 257
UG111 (v14.3) October 16, 2012

EDK Hardware Tcl Commands

xget_hw_parent_handle <handle>

Description Returns the handle to the parent of the specified handle. The type of parent handle is determined
by the specified handle type. If the specified handle is a merged handle, the parent obtained
through this API will also be a merged handle.

Arguments <handle> is one of the following:

• PARAMETER, the parent is the MPD, IP instance, or the merged IP instance object.
• PORT, the parent is the MPD, IP instance, the merged IP instance, or the MHS object.
• BUS_INTERFACE, the parent is the MPD, IP instance, or the merged IP instance object.
• IO_INTERFACE, the parent is the MPD or the merged IP instance object.
• OPTION, the parent is the MPD or the merged IP instance object.
• IPINST, the parent is the MHS or the merged MHS object.
• For MHS or MPD, the parent is a NULL handle.

xget_hw_pcore_dir_from_mpd <mpd_handle>

Description Returns the pcore directory path for the MPD.

Arguments <mpd_handle> is the handle to the MPD.

xget_hw_pcore_dir <ipinst_handle>

Description Returns the pcore directory for the given IP instance.

Arguments <ipinst_handle> is the handle to the IP instance.

xget_hw_port_connectors_list <ipinst_handle> <portName>

Description If the value (connector) of the port is within an & separated list, this API splits that list and returns
a list of strings (connector names).

Arguments <ipinst_handle> is the handle to the IP instance (merged or original).

<portName> is the name of the port whose connectors are needed.

http://www.xilinx.com

258 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix C: EDK Tcl Interface

xget_hw_port_handle <handle> <port_name>

Description Returns the handle to a port associated with the handle. If a handle is of type MHS, the returned
handle points to a global port of the given name.

Arguments <handle> is the handle to the MPD, original IP instance, merged IP instance, original MHS or
merged MHS.

<port_name> is the name of the port whose handle is required.

If <port_name> is specified as an asterisk (*), a list of port handles is returned. To access an
individual port handle, you can iterate over the list in Tcl.

If a handle is of type MHS (original or merged), the returned handle points to a global port with
the given name.

xget_hw_port_value <handle> <port_name>

Description Returns the value of the specified port. The value of a port is the signal name connected to that
port.

Arguments <handle> is the handle to the MPD, original IP instance, merged IP instance, original MHS or
merged MHS.

<port_name> is the name of the port whose value is required.

xget_hw_proj_setting <prop_name>

Description Returns the value of the property specified by prop_name.

Arguments <prop_name> is the name of the property whose value is needed. Options are: fpga_family,
fpga_subfamily, fpga_partname, fpga_device, fpga_package, fpga_speedgrade

xget_hw_proc_slave_periphs <merged_proc_handle>

Description Returns a list of handles to slaves that can be addressed by the specified processor

Arguments <merged_proc_handle> is a handle to the merged IP instance, pointing to a processor instance.
This returned list includes slaves that are not directly connected to the processor, but are accessed
across a bus-to-bus bridge (for example, opb2plb_bridge).

The input handle must be an IP instance handle to a processor instance, obtained from the merged
MHS only (not from the original MHS).

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 259
UG111 (v14.3) October 16, 2012

EDK Hardware Tcl Commands

xget_hw_subproperty_handle <property_handle> <subprop_name>

Description Returns the handle to a subproperty associated with the specified <property_handle>.

Arguments <property_handle> is a handle to one of the following: PARAMETER, PORT, BUS_INTERFACE,
IO_INTERFACE, or OPTION.

<subprop_name> is the name of the subproperty whose handle is required. For a list of
sub-properties, please refer to “Microprocessor Peripheral Definition” “Microprocessor
Peripheral Definition (MPD)” in the Platform Specification Format Reference Manual (UG642)
and“Additional Keywords in the Merged Hardware Datastructure” on page 273.

xget_hw_subproperty_value <property_handle> <subprop_name>

Description Returns the value of a specified subproperty.

Arguments <property_handle> is one of the following: PARAMETER, PORT, BUS_INTERFACE,
IO_INTERFACE, or OPTION.

<subprop_name> is the name of the subproperty whose value is required. For a list of
sub-properties, refer to “Microprocessor Peripheral Definition (MPD)” in the Platform
Specification Format Reference Manual (UG642) and Additional Keywords in the Merged
Hardware Datastructure, page 273

xget_hw_value <handle>

Description Gets the value associated with the specified handle.

Arguments <handle> is of specified type.

If <handle> is of type IP instance, its value is the IP module name. For example, if the handle
refers to the MicroBlaze™ instance in the MHS file, the value the API returns is the name of the
IP, that is, microblaze. Similarly, to get the value of a parameter from a parameter handle, you
can use the same command.

http://www.xilinx.com

260 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix C: EDK Tcl Interface

Tcl Example Procedures
The following are example Tcl procedures that use some of the hardware API Tcl
commands.

Example 1
This procedure explains how to get a list of IPs of a particular IPTYPE. Each IP provided in
the EDK repository has a corresponding IP type specified by the IPTYPE option, in the
MPD file. The merged_mhs_instance has the information from both the MHS file and the
MPD file. The process for getting a list of IPs of a particular IPTYPE is:

1. Using the merged_mhs_handle, get a list of all IPs.

2. Iterate over this list and for each IP, get the value of the OPTION IPTYPE and compare
it with the given IP type.

The following code snippet illustrates how to get the IPTYPE of specific IPs.

Procedure to get a list of IPs of a particular IPTYPE
proc xget_ipinst_handle_list_for_iptype {merged_mhs_handle iptype}
{
##Get a list of all IPs
 set ipinst_list [xget_hw_ipinst_handle $merged_mhs_handle “*”]
 set ret_list “”
foreach ipinst $ipinst_list {
Get the value of the IPTYPE Option.
 set curiptype [xget_hw_option_value $ipinst “IPTYPE”]
##if curiptype matches the given iptype, then add it to ## the
list that this proc returns.

if {[string compare -nocase $curiptype $iptype] == 0}{
lappend ret_list $ipinst

}
 }
 return $ret_list
}

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 261
UG111 (v14.3) October 16, 2012

Tcl Example Procedures

Example 2
The following procedure explains how to get the list of cores that are memory controllers in
a design. Memory controller cores have the tag, ADDR_TYPE = MEMORY, in their address
parameter.

Procedure to get a list of memory controllers in a design.
proc xget_hw_memory_controller_handles { merged_mhs } {

set ret_list “”

 # Gets all MhsInsts in the system
 set mhsinsts [xget_hw_ipinst_handle $merged_mhs “*”]

Loop through each MhsInst and determine if it has
#"ADDR_TYPE = MEMORY” in the parameters.

 foreach mhsinst $mhsinsts {

 # Gets all parameters of the IP
 set params [xget_hw_parameter_handle $mhsinst “*”]

 # Loop through each param and find tag “ADDR_TYPE = MEMORY”
 foreach param $params {
 if {$param == 0} {
 continue
 } elseif {$param == “”} {
 continue
 }
 set addrTypeValue [xget_hw_subproperty_value $param”ADDR_TYPE”]

 # Found tag! Add MhsInst to list and break to go to next MhsInst
 if {[string compare -nocase $addrTypeValue “MEMORY”] == 0} {
 lappend ret_list $mhsinst
 break
 }
 }
 }

 return $ret_list
}

http://www.xilinx.com

262 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix C: EDK Tcl Interface

Advanced Write Access APIs
Advance Write Access APIs modify the MHS object in memory. These commands operate
on the original MHS handle and handles obtained from the MHS handle. The Write Access
APIs can be used to create the project only. They are disabled during the Platgen flow.

Advance Write Access Hardware API Summary

The following table provides a summary of the Advance Write Access APIs. To go to the
API descriptions, which are provided in the following section, click on a summary link.

Table C-1: Hardware Advanced Write Access APIs

Add Commands

xadd_hw_hdl_srcfile <ipinst_handle> <fileuse> <filename> <hdllang>
xadd_hw_ipinst_busif <ipinst_handle> <busif_name> <busif_value>

xadd_hw_ipinst_port <ipinst_handle> <port_name> <connector_name>

xadd_hw_ipinst <mhs_handle> <inst_name> <ip_name> <hw_ver>
xadd_hw_ipinst_parameter <ipinst_handle> <param_name> <param_value>

xadd_hw_subproperty <prop_handle> <subprop_name> <subprop_value>

xadd_hw_toplevel_port <mhs_handle> <port_name> <connector_name> <direction>

Delete Commands

xdel_hw_ipinst <mhs_handle> <inst_name>

xdel_hw_ipinst_busif <ipinst_handle> <busif_name>

xdel_hw_ipinst_port <ipinst_handle> <port_name>
xdel_hw_ipinst_parameter <ipinst_handle> <param_name>

xdel_hw_subproperty <prop_handle> <subprop_name>

xdel_hw_toplevel_port <mhs_handle> <port_name>

Modify Commands

xset_hw_parameter_value <busif_handle> <busif_value>

xset_hw_port_value <port_handle> <port_value>

xset_hw_busif_value <busif_handle> <busif_value>

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 263
UG111 (v14.3) October 16, 2012

Tcl Example Procedures

Advance Write Access Hardware API Descriptions

Add Commands

xadd_hw_hdl_srcfile <ipinst_handle> <fileuse> <filename> <hdllang>

Description Adds HDL files on the fly to the PAO. This API should only be used in batch tools like platgen/
simgen and not in xps batch as a design entry mechanism.

When adding VHDL files, those files are expected to be an instance-specific customization and,
consequently are added to a logical library called <instname>_<wrapper>_<hwver>.

VHDL files must be generated in the <projdir>/hdl/elaborate/
<instname>_<wrapper>_<hwver> directory.

While Verilog does not use libraries, the files must still be generated in the specified directory
structure and location.

Arguments <ipinst_handle> is the handle of the IP instance.

<fileuse> is {lib|synlib|simlib}.

<filename> is the specified filename.

<hdllang> is {vhdl|verilog}.

Example xadd_hw_hdl_srcfile $ipinst_handle lib xps_central_dma.vhd vhdl

xadd_hw_ipinst_busif <ipinst_handle> <busif_name> <busif_value>

Description Creates and adds a bus interface specified by <busif_name> and <busif_value> to the IP
instance specified by the <ipinst_handle>. This API returns a handle to the newly created
bus interface, if successful, and NULL otherwise.

Arguments <ipinst_handle> is the handle to the IP instance to which the bus interface has to be added.

<busif_name> is the name of the bus interface.

<busif_value> is the value of the bus interface.

Example Connect the ILMB bus interface from MicroBlaze to the ilmb_0 bus:

xadd_hw_ipinst_busif $mb_handle ILMB ilmb_0

http://www.xilinx.com

264 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix C: EDK Tcl Interface

xadd_hw_ipinst <mhs_handle> <inst_name> <ip_name> <hw_ver>

Description Adds a new MHS instance to the MHS specified by <mhs_handle>. Returns a handle to the
newly created instance if successful, and NULL otherwise.

Arguments <mhs_handle> is the handle to the MHS in which this mhs instance has to be added.

<inst_name> is the instance name of the IP instance that needs to be added.

<ip_name> is the name of the IP that needs to be added.

<hw_ver> is the version of the IP that needs to be added.

Example Add a MicroBlaze v7.00.a IP with the instance name mblaze to the MHS:

xadd_hw_ipinst $mhs_handle mblaze microblaze 7.00.a

xadd_hw_ipinst_port <ipinst_handle> <port_name> <connector_name>

Description Creates and adds a port specified by <port_name> and <connector_name> to the IP instance
specified by the <ipinst_handle>.

This API returns a handle to the newly created port, if successful, and NULL otherwise.

Arguments <inst_handle> is the handle to the IP instance to which the port has to be added.

<port_name> is the name of the port.

<connector_name> is the name of the connector.

Example Add a clock port on a MicroBlaze instance and connect it to the sys_clk_s signal:

xadd_hw_ipinst_port $mb_handle Clk sys_clk_s

xadd_hw_ipinst_parameter <ipinst_handle> <param_name> <param_value>

Description Creates and adds a parameter specified by <param_name> and <param_value> to the IP
instance specified by the <ipinst_handle>. This API returns a handle to the newly created
parameter, if successful, and NULL otherwise.

Arguments <ipinst_handle> is the handle to the IP instance to which the parameter is to be added.

<param_name> is the name of the parameter.

<param_value> is the parameter value.

Example Add the C_DEBUG_ENABLED parameter to a MicroBlaze instance and set its value to 1:

xadd_hw_ipinst_parameter $mb_handle C_DEBUG_ENABLED 1

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 265
UG111 (v14.3) October 16, 2012

Tcl Example Procedures

Delete Commands

xadd_hw_subproperty <prop_handle> <subprop_name> <subprop_value>

Description Adds a subproperty to a property (parameter, port or bus interface).

Arguments <prop_handle> is a handle to the parameter, port or bus interface.

<subprop_name> is the name of the sub-property.

<subprop_value> is the value of the sub-property. For a list of sub-properties, refer to
“Microprocessor Peripheral Definition (MPD)” in the Platform Specification Format Reference
Manual (UG642) and“Additional Keywords in the Merged Hardware Datastructure” on page
273.

Example Add DIR to a port:

xadd_hw_subproperty $port_handle DIR I

xadd_hw_toplevel_port <mhs_handle> <port_name> <connector_name>
<direction>

Description Adds a new top-level port to the MHS specified by <mhs_handle>. Returns a handle to the
newly created port if successful, and NULL otherwise.

Arguments <mhs_handle> is the handle to the MHS in which this top-level port has to be added.

<port_name> is the name of the port that needs to be added.

<connector_name> is the name of the connector.

<direction> is the direction of the port (I, O, or IO).

Example Add a top-level input port sys_clk_pin with connector dcm_clk_s:

xadd_hw_toplevel_port $mhs_handle sys_clk_pin dcm_clk_s I

xdel_hw_ipinst <mhs_handle> <inst_name>

Description deletes the IP instance with a specified instance name.

Arguments <mhs_handle> is the handle to the original MHS.

<inst_name> is the name of the instance to be deleted.

Example Delete an instance called mymb:

xdel_hw_ipinst $mhs_handle mymb

http://www.xilinx.com

266 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix C: EDK Tcl Interface

xdel_hw_ipinst_busif <ipinst_handle> <busif_name>

Description Deletes a specified bus interface on an IP instance handle.

Arguments <ipinst_handle> is the handle of the IP instance.

<busif_name> is the name of the bus interface that is to be deleted.

Example Delete the ILMB bus interface from a MicroBlaze instance:

xdel_hw_ipinst_busif $mb_handle ILMB

xdel_hw_ipinst_port <ipinst_handle> <port_name>

Description Deletes a specified port on an IP instance handle.

Arguments <ipinst_handle> is the handle of the IP instance.

<port_name> is the name of the port to be deleted.

Example Delete a Clk port on a given MicroBlaze instance:

xdel_hw_ipinst_port $mb_handle Clk

xdel_hw_ipinst_parameter <ipinst_handle> <param_name>

Description Deletes a specified parameter on an IP instance handle.

Arguments <ipinst_handle> is a handle to the IP instance.

<param_name> is the name of the parameter to be deleted.

Example Delete the C_DEBUG_ENABLED parameter from a MicroBlaze instance:

xdel_hw_ipinst_parameter $mb_handle C_DEBUG_ENABLED

xdel_hw_subproperty <prop_handle> <subprop_name>

Description Deletes a specified subproperty from a property handle

Arguments <prop_handle> is a handle to a parameter, port, or bus interface.

<subprop_name> is the name of the subproperty.

Example Delete SIGIS subproperty from a given port:

xdel_hw_subproperty $port_handle SIGIS

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 267
UG111 (v14.3) October 16, 2012

Tcl Example Procedures

Modify Commands

xdel_hw_toplevel_port <mhs_handle> <port_name>

Description Deletes a top-level port with the specified name.

Arguments <mhs_handle> is the handle to the original MHS.

<port_name> is the name of the port to be deleted.

Example Delete a top-level port called sys_clk_pin:

xdel_hw_toplevel_port $mhs_handle sys_clk_pin

xset_hw_parameter_value <busif_handle> <busif_value>

Description Sets the value of the parameter to the given value.

Arguments <port_handle> is the handle to the port whose value must be set.

<port_value> is the value to be set.

Example Set the value of a parameter to 2:

xset_hw_parameter_value $param_handle 2

xset_hw_port_value <port_handle> <port_value>

Description Sets the value of the port to the given value.

Arguments <port_handle> is the handle to the port whose value must be set.

<port_value> is the value to be set.

Example Set the value of a port to “my_connection:”

xset_hw_port_value $port_handle my_connection

xset_hw_busif_value <busif_handle> <busif_value>

Description Sets the value of the bus interface to the given value.

Arguments <busif_handle> is the handle to the bus interface whose value must be set.

<busif_value> is the value to be set.

Example Set the value of a bus interface to “my_bus:”

xset_hw_busif_value $busif_handle my_bus

http://www.xilinx.com

268 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix C: EDK Tcl Interface

Tcl Flow During Hardware Platform Generation

Input Files
Platgen, Simgen, Libgen and other tools that create the hardware platform work with the
MHS design file and the IP data files (MPD). Internally, the tools create the system view
based on these files. Each of the IP in the design has an MPD associated with it. Optionally,
it can have an associated Tcl file. Tcl files can contain DRC procedures, procedures to
automate calculation of parameters, or they can perform other tasks. The Tcl files that are
used during the hardware platform generation are present in the individual core
directories along with the MPD files. For Xilinx-supplied cores, the Tcl files are in the
<EDK install area>/hw/XilinxProcessorIPLib/pcores/<corename>/data/
directory.

Tcl Procedures Called During Hardware Platform Generation
Platgen (and many EDK batch tools, such as Libgen, Simgen, and Bitinit) run a few
predefined Tcl procedures related to each IP to perform DRCs and to compute values of
certain parameters on the IP. For information on the Tcl file for a given IP, see the Platform
Format Specification Reference Manual (UG642). A link to the document is supplied in
Appendix E, Additional Resources.

This section lists the Tcl procedures and describes how they can be called for user IP. Tcl
procedures can be classified based on:

• The action performed in that Tcl procedure.

• DRC

These procedures perform DRCs on the system but do not modify the state of the
system itself. The return code provided by these procedures is captured by
Platgen. Hence, if there is any error status returned by a DRC procedure, Platgen
captures the error and stops execution at an appropriate time.

• UPDATE

These procedures assume the system to be in a correct state and query the design
data structure using Tcl APIs to compute the values of certain parameters. The
tool uses the string these procedures return to update the design with the
Tcl-computed value.

• The stage during hardware platform creation at which they are invoked.

• IPLEVEL

These procedures are invoked early in processing performed within the tools.
These procedures assume that no design analysis has been performed and,
therefore, none of the system-level information is available.

• SYSLEVEL

These procedures are invoked later in processing, when the tool has performed
some system-level analysis of the design and has updated certain parameters. For
a list of such parameters, refer to the “Reserved Parameters” section of Chapter 2,
“Platform Specification Utility (PsfUtility).” Also note that some parameters may
be updated by Tcl procedures of IPs. Such parameters are governed solely by IP
Tcl and are therefore not listed in the MPD documentation.

Each Tcl procedure takes one argument. The argument is a handle of a certain type
in the data structure. The handle type depends on the object type with which the
Tcl procedure is associated. Tcl procedures associated with parameters are
provided with a handle to that parameter as an argument.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 269
UG111 (v14.3) October 16, 2012

Tcl Flow During Hardware Platform Generation

Tcl procedures associated with the IP itself are provided with a handle to a
particular instance of the IP used in the design as an argument. The following is a
list of the Tcl procedures that can be called for an IP instance.

Note: The MPD tag name that specifies the Tcl procedure name indicates the category to
which the Tcl procedure belongs.

Each of the following tags is a name-value pair in the MPD file, where the value
specifies the Tcl procedure associated with that tag. You must ensure that such a
Tcl procedure exists in the Tcl file for that IP.

• Tool-specific Tcl calls

• You can specify calls specific to either Platgen or Simgen.

Order of Execution for Tcl Procedures in the MPD

The Tcl procedures specified in the MPD are executed in the following order during
hardware platform generation:

1. IPLEVEL_UPDATE_VALUE_PROC (on parameters)

2. IPLEVEL_DRC_PROC (on parameters)

3. IPLEVEL_DRC_PROC (on the IP, specified on options)

4. SYSLEVEL_UPDATE_VALUE_PROC (on parameters)

5. SYSLEVEL_UPDATE_PROC (on the IP, specified on options)

6. SYSLEVEL_DRC_PROC (on parameters, ports)

7. SYSLEVEL_DRC_PROC (on the IP, specified on options)

8. FORMAT_PROC (on parameters)

9. Helper core Tcl Procedures

UPDATE Procedure for a Parameter Before System Level Analysis

You can use the parameter subproperty IPLEVEL_UPDATE_VALUE_PROC to specify the Tcl
procedure that computes the parameter value, based on other parameters on the same IP.
The input handle associates with the parameter object of a particular instance of that IP.

MPD snippet
PARAMETER C_PARAM1 = 4, …,
PARAMETER C_PARAM2 = 0, ..., IPLEVEL_UPDATE_VALUE_PROC = update_param2

Tcl computes value based on other parameters on the IP
Argument param_handle points to C_PARAM2 because the Tcl is
associated with C_PARAM2
proc update_param2 {param_handle} {
set retval 0;
set mhsinst [xget_hw_parent_handle $param_handle]
set param1val [xget_hw_param_value $mhsinst “C_PARAM1”]
if {$param1val >= 4} {
set retval 1;

}
return $retval

}

http://www.xilinx.com

270 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix C: EDK Tcl Interface

DRC Procedure for a Parameter Before System Level Analysis

You can use the parameter subproperty IPLEVEL_DRC_PROC to specify the Tcl procedure
that performs DRCs specific to that parameter. These DRCs should be independent of
other PARAMETER values on that IP.

For example, this DRC can be used to ensure that only valid values are specified for that
parameter. The input handle is a handle to the parameter object for a particular instance of
that IP.

MPD snippet
PARAMETER C_PARAM1 = 0, ..., IPLEVEL_DRC_PROC = drc_param1

Tcl snippet
Argument param_handle points to C_PARAM1 since the Tcl is
associated with C_PARAM1
proc drc_param1 {param_handle} {
set param1val [xget_hw_value $param_handle
if {$param1val >= 5} {
error “C_PARAM1 value should be less 5”
return 1;

} else {
return 0;

}
}

DRC Procedure for the IP Before System Level Analysis

You can use the OPTION IPLEVEL_DRC_PROC to specify the Tcl procedure that performs this
DRC. The procedure should be used to perform DRCs at IPLEVEL (for example,
consistency between two parameter values). The DRCs performed here should be
independent of how that IP has been used in the system (MHS) and should only use
parameter, bus interface, and port settings used on that IP. The input handle is a handle to
an instance of the IP.

MPD Snippet
OPTION IPLEVEL_DRC_PROC = iplevel_drc
BUS_INTERFACE BUS = SPLB, BUS_STD = PLB, BUS_TYPE = SLAVE
PORT MYPORT = “”, DIR = I

Tcl snippet
proc iplevel_drc {ipinst_handle} {
set splb_handle [xget_hw_busif_handle $ipinst_handle “SPLB”]
set splb_conn [xget_hw_value $splb_handle]
set myport_handle [xget_hw_port_handle “MYPORT”]
set myport_conn [xget_hw_value $myport_handle]
if {$splb_conn == “” || $myport_conn == “”} {
error “Either busif SPLB or port MYPORT must be connected in the

design”
return 1;

}
else {
return 0;

}
}

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 271
UG111 (v14.3) October 16, 2012

Tcl Flow During Hardware Platform Generation

UPDATE Procedure for a Parameter After System Level Analysis

You can use the parameter subproperty SYSLEVEL_UPDATE_VALUE_PROC to specify the Tcl
procedure that computes the parameter value, based on other parameters of the same IP.
The input handle is a handle to the parameter object of a particular instance of that IP. Note
that when this procedure is called, system level parameters computed by Platgen (for
example, C_NUM_MASTERS on a bus) are already updated with the correct values.

MPD snippet
PARAMETER C_PARAM1 = 5, ..., SYSLEVEL_UPDATE_VALUE_PROC =
sysupdate_param1

Tcl snippet
proc sysupdate_param1 {param_handle} {
set retval [somehow_compute_param1]
return $reetval;

}

UPDATE Procedure for the IP Instance After System-Level Analysis

You can use the OPTION SYSLEVEL_UPDATE_PROC to perform certain actions associated
with a specific IP. This procedure is associated with the complete IP and not with a specific
parameter, so it cannot be used to update the value of a specific parameter.

For example, you can use this procedure to copy certain files associated with the IP in a
particular directory. The input handle is a handle to an instance of the IP:

MPD Snippet
OPTION SYSLEVEL_UPDATE_PROC = syslevel_update_proc
Tcl snippet
Proc myip_syslevel_update_proc {ipinst_handle} {
do something
return 0;

}

DRC Procedure for a Parameter After System Level Analysis

Use the tag SYSLEVEL_DRC_PROC to specify Tcl procedure that performs DRC on the
complete IP, based on how the IP has been used in the system. Input is a handle to the
parameter object of a particular instance of that IP.

PARAMETER C_MYPARAM = 5, ..., SYSLEVEL_DRC_PROC = sysdrc_myparam

http://www.xilinx.com

272 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix C: EDK Tcl Interface

DRC Procedure for the IP After System Level Analysis

Use the OPTION SYSLEVEL_DRC_PROC to specify the Tcl procedure that performs DRC after
Platgen updates system level information. The input handle is a handle to an instance of
the IP. For example, if this particular IP has been instantiated, the procedure can check to
limit the number of instances of this IP, check that this IP is always used in conjunction
with another IP, or check that this IP is never used along with another IP.

MPD Snippet
OPTION SYSLEVEL_DRC_PROC = syslevel_drc
BUS_INTERFACE BUS = SPLB, BUS_STD = PLB, BUS_TYPE = SLAVE
PORT MYPORT = “”, DIR = O
Tcl snippet
proc syslevel_drc {ipinst_handle} {
set myport_conn [xget_hw_port_value $ipinst_handle “MYPORT”]
set mhs_handle [xget_hw_parent_handle $ipinst_handle]
set sink_ports [xget_hw_connected_ports_handle $mhs_handle

$myport_conn “SINK”]
if {[llength $sink_ports] > 5} {
error “MYPORT should not drive more than 5 signals”
return 1;

}
else {
return 0;

}
}

Platgen-specific Call

The OPTION PLATGEN_SYSLEVEL_UPDATE_PROC is called after all the common Tcl
procedures have been invoked. If you want certain actions to occur only when Platgen
runs and not when other tools run, this procedure can be used.

MPD Snippet
OPTION PLATGEN_SYSLEVEL_UPDATE_PROC = platgen_syslevel_update

Simgen-specific Call

The OPTION SIMGEN_SYSLEVEL_UPDATE_PROC is called after all the common Tcl procedures
have been invoked. If you want certain actions to occur when Simgen runs and not when
other tools run, this procedure can be used.

MPD Snippet
OPTION SIMGEN_SYSLEVEL_UPDATE_PROC = simgen_syslevel_update

FORMAT_PROC

The FORMAT_PROC keyword defines the Tcl entry point that allows you to provide a
specialized formatting procedure to format the value of the parameter.

The EDK tools deliver output files of two HDL types: Verilog and VHDL. Each format
semantic requires that the parameter values be normalized to adhere to a stylized
representation suitable for processing. For example, Verilog is case-sensitive and does not
have string manipulation functions. When developing an IP, you can use this Tcl entry
point to specify procedures to format string values based on the HDL requirements. Refer
to the Platform Specification Format Reference Manual (UG642) for further details, and
examples. Appendix E, Additional Resources contains a link to the document.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 273
UG111 (v14.3) October 16, 2012

Additional Keywords in the Merged Hardware Datastructure

Helper Core Tcl Procedures

All the illustrated Tcl procedures must be specified in the top-level cores. If a top-level core
is using helper or library cores, you can execute Tcl procedures specific to those helper
cores, by using one of two procedures: SYSLEVEL_GENERIC_PROC and
SYSLEVEL_ARCHSUPPORT_PROC. These tcl procedures must be specified in the /data
directory of the helper core and must follow the same naming conventions as the other PSF
files. (For example: a Tcl file for the proc_common_v1_00_a core, must be named in a
corresponding nomenclature - proc_common_v2_1_0.tcl.)

• The SYSLEVEL_GENERIC_PROC procedure is a generic procedure used to print any
message.

• The SYSLEVEL_ARCHSUPPORT_PROC procedure is used to notify users of deprecated
helper cores.

For example, if the proc_common_v1_00_a core is deprecated, the core developer can print
a message in the tools every time this core is used within a non-deprecated top-level core,
by including this procedure in the tcl file of the helper core in the
proc_common_v2_1_0.tcl file of the proc_common_v1_00_a core as follows:

proc syslevel_archsupport_proc { mhsinst } {
print_deprecated_helper_core_message $mhsinst proc_common_v1_00_a

}

The PRINT_DEPRECATED_HELPER_CORE_MESSAGE procedure is provided by EDK tools to
generate a standard message for deprecated cores. It takes the handle to the top-level core
and the name of deprecated helper core as arguments.

Additional Keywords in the Merged Hardware Datastructure
Some keywords (sub-properties) that are created optionally on parameters, ports, and bus
interfaces in the merged hardware datastructure. These are used internally by tools and
can also be used by Tcl for DRCs. These additional keywords are:

• MHS_VALUE: When the merged object is created, it combines information from both
MHS and MPD. The default value is present in the MPD. However, these properties
can be overridden in the MHS. The tools have conditions when some values are
auto-computed and that auto-computed value will override the values in MHS also.
The original value specified in MHS is then stored in the MHS_VALUE sub-property.

• MPD_VALUE: When the merged object is created, it combines information from both
MHS and MPD. The default value is present in the MPD. However, these properties
can be overridden in the MHS. The tools have conditions when some values are
auto-computed and that auto-computed value will override the values in MHS also.
The value specified in MPD is consequently stored in the MPD_VALUE sub-property.

• CLK_FREQ_HZ: The frequency of every clock port in the merged hardware
datastructure, if available, is stored in a sub-property called CLK_FREQ_HZ on that
port. This is an internal sub-property and the frequency value is always in Hz.

• RESOLVED_ISVALID: If a parameter, port, or bus interface has the sub-property
ISVALID defined in the MPD, then the tools evaluate the expression to true (1) or false
(0) and store the value in an internal sub-property called RESOLVED_ISVALID on that
property.

• RESOLVED_BUS: If a port or parameter in an IP has a colon separated list of buses
(specified in the BUS tag) that it can be associated with in the MPD file, the tools
analyze the connectivity of that IP and determine to which of those buses the IP is
connected, and store the name of that bus interface in the RESOLVED_BUS tag..

http://www.xilinx.com

274 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix C: EDK Tcl Interface

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 275
UG111 (v14.3) October 16, 2012

Appendix D

Interconnect Settings and Parameter
Automations for AXI Designs

The MPD and MHS Chapters of the Platform Specification Format Reference Manual(UG642)
describe the INTERCONNECT-related parameters that are captured on the end-point
master and slave bus interfaces. These parameters usually contain the
C_INTERCONNECT_<BusIf>_ prefix, where <BusIf> is the actual name of the bus
interface (such as "M_AXI_DP" in MicroBlaze).

Allowed Parameters in Master and Slave Interfaces
The following parameters are allowed in Master and Slave interfaces. These are described
in more detail in the MPD chapter of the Platform Specification Format Reference Manual.

For Master Interfaces, the allowed parameters are:

• C_INTERCONNECT_<BusIf>_BASE_ID

• C_INTERCONNECT_<BusIf>_IS_ACLK_ASYNC

• C_INTERCONNECT_<BusIf>_ACLK_RATIO

• C_INTERCONNECT_<BusIf>_ARB_PRIORITY

• C_INTERCONNECT_<BusIf>_AW_REGISTER

• C_INTERCONNECT_<BusIf>_AR_REGISTER

• C_INTERCONNECT_<BusIf>_W_REGISTER

• C_INTERCONNECT_<BusIf>_R_REGISTER

• C_INTERCONNECT_<BusIf>_B_REGISTER

• C_INTERCONNECT_<BusIf>_WRITE_FIFO_DEPTH

• C_INTERCONNECT_<BusIf>_READ_FIFO_DEPTH

• C_INTERCONNECT_<BusIf>_WRITE_ISSUING

• C_INTERCONNECT_<BusIf>_READ_ISSUING

For Slave Interfaces, the allowed parameters are:

• C_INTERCONNECT_<BusIf>_MASTERS

• C_INTERCONNECT_<BusIf>_IS_ACLK_ASYNC

• C_INTERCONNECT_<BusIf>_ACLK_RATIO

• C_INTERCONNECT_<BusIf>_SECURE

• C_INTERCONNECT_<BusIf>_AW_REGISTER

• C_INTERCONNECT_<BusIf>_AR_REGISTER

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.2&topic=sw+manuals&sub=psf_rm.pdf
http://www.xilinx.com

276 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix D: Interconnect Settings and Parameter Automations for AXI Designs

• C_INTERCONNECT_<BusIf>_W_REGISTER

• C_INTERCONNECT_<BusIf>_R_REGISTER

• C_INTERCONNECT_<BusIf>_B_REGISTER

• C_INTERCONNECT_<BusIf>_WRITE_FIFO_DEPTH

• C_INTERCONNECT_<BusIf>_READ_FIFO_DEPTH

• C_INTERCONNECT_<BusIf>_WRITE_ACCEPTANCE

• C_INTERCONNECT_<BusIf>_READ_ACCEPTANCE

These parameters are:

• NON_HDL parameters, meaning that they do not affect the behavior of the end point
IP.

• Not present in the MPD of the IPs.

However, XPS tools allow these parameters to be specified as parameters in the MHS
instances of the peripherals connected to the AXI Interconnect (end point IPs) in the MHS
file.

In the context of the system as a whole, the AXI Interconnect needs to know about certain
properties of the IP interfaces to which that are connected. It is simpler to capture these
values on the end-point IPs. The main advantages to this approach are:

• The AXI Interconnect has vectored parameters to capture the values of parameters.
Because the interconnect allows up to 16 masters and 16 slaves to be connected to it,
the value of each forms part of a vectored value. Although it is possible to design a
smart interface to capture the values of these parameters in a non-vectored fashion, it
is inefficient to enter vectored values in the MHS by hand.

• IP information resides in a single location, so you can view core details, including
some system-level settings, at one place in the MHS.

• When you need to move a core from one AXI Interconnect to another, you need only
to change the bus interface name on the core. All AXI Interconnect-related settings are
preserved by the tools. As long as the other AXI Interconnect is an AXI Interconnect
with the same version, you do not need to specify the settings again.

The IP Configuration dialog boxes of the end point IPs include the Interconnect Settings
for BUSIF tab, which captures the values of these parameters. At runtime, the XPS tools
gather the values of these parameters from all the end-point IPs and transfer them onto the
AXI Interconnect.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 277
UG111 (v14.3) October 16, 2012

Building Vectors

Building Vectors
The AXI Interconnect allows a connection maximum of 16 masters and 16 slaves.
Additionally, parameters on the interconnect that capture the values of the masters/slaves
connected to it have vectored values. The tools capture these values on the end-point IPs,
and at run-time, and gather these values and build the necessary vectors that can be set as
the value of the parameters on the AXI Interconnect.

The tools also make some type-conversions, such as string-to-hex, to make it easier for you
and the AXI Interconnect to understand the values.

For example, you can specify the value of the AXI protocol of the peripherals that are
connected to the interconnect as “AXI4”, “AXI3” or “AXI4LITE”. These values are encoded
as 0, 1, and 2, respectively. In a design that has four slaves connected to the interconnect,
with protocol values and positions as shown below, the value of the protocol parameter is
constructed and set by the tools:

Slave at position 0 - protocol = axi4
Slave at position 1 - protocol = axi3
Slave at position 2 - protocol = axi4lite
Slave at position 3 - protocol = axi4lite
Value (256 bit) set on the interconnect is C_M_AXI_PROTOCOL =
"0x000
0000000000000000000000000000000000002000000020000000100000000"

Parameter Automations
The EDK tool automatically compute certain parameters in AXI designs to enable ease of
use and to optimize the designs. The following subsections list the auto-computed
parameters.

C_INTERCONNECT_<BusIf>_BASE_ID
This parameter is used to specify the unique Base ID for each master interface that is
connected to the interconnect. The master interfaces specify the number of variable
low-order ID bits using the C_<BusIf>_THREAD_ID_WIDTH parameter. The tools then
take into account the value of THREAD_ID_WIDTH of all the interfaces and generate unique
Base IDs for each interface.

The interconnect does some bookkeeping to enable the master interfaces connected to it to
issue multiple transactions at once, and ensures that they are returned in order. It appends
the Base ID value to all the transactions that the master issues, and it informs the slave
about the number of bits that it appended. The slave then ignores those bits in processing
the transaction. When the response from the slave reaches the interconnect, it strips off
those bits that it appended before sending the response to the master.

Ideally, the number of bits that the interconnect appends to make the master interfaces
unique should be as low as possible to minimize the packet size. The tools follow a general
algorithm to generate the BASE ID values and the values that the tools generate may not
always be optimal. To optimize it further, you can override the values generated by the
tools by specifying the BASE IDs in the MHS. However, if you chooses to override even a
single BASE ID, you must specify the BASE ID values for all the master interfaces in the
design.

http://www.xilinx.com

278 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix D: Interconnect Settings and Parameter Automations for AXI Designs

C_<BusIf>_AXI_ID_WIDTH
The AXI Interconnect appends the BASE ID bits to transactions. The slaves must know
how many bits are appended by the AXI Interconnect, which is specified in the
C_<BusIf>_AXI_ID_WIDTH parameter. Regardless of whether the tools computed the
BASE ID values or you specified them, the tools compute the maximum number of bits
necessary to make the masters unique and set that value as the AXI_ID_WIDTH on the AXI
Interconnect and the connected slaves.

C_INTERCONNECT_<BusIf>_ACLK_RATIO
This parameter determines whether the frequency of the clock port of the master/slave
interface is at an integer ratio with respect to the frequency of the clock port of the
interconnect.

The tools trace the IP clocks in the design to identify the value of the frequency of the clock
port. They do this based on the CLK_FREQ_HZ sub-property on the clock port (identified
by SIGIS = CLK tag in the MPD). If this sub-property does not exist, the tools create the
sub-property by tracing the clock port connection through bus interfaces, clock generator,
external ports, etc.

Once the clock frequencies are determined, the tools then compute the values of
C_INTERCONNECT_<BusIf>_ACLK_RATIO parameters. To compute this parameter, the
tools look at each interconnect in the design and identify the lowest clock frequency of all
the masters and slaves connected to that interconnect. That lowest frequency is then
considered as base 1. All the ratios are then computed with respect to that frequency.

For example, consider an AXI Interconnect (axi_0) with the following:

• Three masters, M1, M2, and M3 with frequencies of 200 MHz, 100 MHz, and 100
MHz, respectively, on their M_AXI interfaces

• Two slaves, S1 and S2, with frequencies of 100 MHz and 50 MHz, respectively, on their
S_AXI interfaces

• A clock frequency of 100 MHz on the AXI Interconnect

In this case, the tools compute the ratios to be:

• Lowest clock frequency is on S2 => ratio = 1

• Ratio of M1 with respect to S2 = 200:50 => 4

• Ratio of axi_0 with respect to S2 = 100:50 => 2 and so on.

The C_INTERCONNECT_<BusIf>_ACLK_RATIO parameters in the above example have
the values as shown below:

• For M1 (Master) - parameter C_INTERCONNECT_M_AXI_ACLK_RATIO = 4

• For M2 (Master) - parameter C_INTERCONNECT_M_AXI_ACLK_RATIO = 2

• For M3 (Master) - parameter C_INTERCONNECT_M_AXI_ACLK_RATIO = 2

• For axi_0 - parameter C_INTERCONNECT_ACLK_RATIO = 2

• For S1 (Slave) - parameter C_INTERCONNECT_S_AXI_ACLK_RATIO = 2

• For S2 (Slave) - parameter C_INTERCONNECT_S_AXI_ACLK_RATIO = 1

These values are automatically updated by the tools and you cannot override them.

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 279
UG111 (v14.3) October 16, 2012

Parameter Automations

C_INTERCONNECT_<BusIf>_IS_ACLK_ASYNC
This parameter is used to specify whether the frequency of the clock port of the bus
interface (master/slave) is asynchronous with respect to the frequency of the clock port of
the interconnect. Whenever the interface is asynchronous with respect to the interconnect,
the interconnect inserts some additional logic to handle that situation.

As mentioned in the MHS Chapter of the Platform Specification Format Reference Manual
(UG642), tools require that all IPs in the design be connected to a clock port. So, when tools
identify the clock frequencies of different interfaces, they compute the ratio parameters. If
the ratio is a non-integer ratio, the IS_ACLK_ASYNC parameter is set to 1. Otherwise, if the
ratio is an integer ratio, the tools set the value of that parameter to 0.

To make a particular clock asynchronous with respect to the interconnect, you can override
the value of this parameter in the MHS. The tools will not update that parameter.

Note: If you override the C_INTERCONNECT_<BusIf>_IS_ACLK_ASYNC parameter for any
interface, the tools ignore that frequency when trying to identify the lowest clock for determining clock
ratios. Also, tools do not compute the ratio for that particular interface, as it is marked asynchronous.

C_<BusIf>_SUPPORTS_NARROW_BURST
If this parameter is present on the AXI slave interfaces, the tools automatically update it to
optimize the design. The tools analyze the design at run time. When there are no masters
connected to the interconnect that can generate narrow bursts, they set this parameter (on
the slave to '0') to disable narrow burst support logic and save resources.

C_<BusIf>_SUPPORTS_READ
If this parameter is present on the AXI slave interfaces, the tools automatically update it to
optimize the design. The tools analyze the design at run time. If there are no masters
connected to the interconnect that use the AR and R channels, they set this parameter (on
the slave to 0) to disable AR and R channels and save resources.

C_<BusIf>_SUPPORTS_WRITE
If this parameter is present on the AXI slave interfaces, it is automatically updated by the
tools to optimize the design. The tools analyze the design at run time. If there are no
masters connected to the interconnect that use the AW and W channels, they set this
parameter (on the slave to '0') to disable AW and W channels and save resources.

User Signal Width parameters on the AXI interconnect
The tools analyze the design at runtime and check the value of the user signal widths of
masters and slaves connected to the AXI Interconnect, then compute the maximum value
of the channel width for the AW, AR, and W channels between the masters and set those
values on the AXI Interconnect. Similarly, they compute the maximum value of the channel
width for the R and B channels between the slaves and set those values on the AXI
Interconnect.

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.2&topic=sw+manuals&sub=psf_rm.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.2&topic=sw+manuals&sub=psf_rm.pdf
http://www.xilinx.com

280 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix D: Interconnect Settings and Parameter Automations for AXI Designs

http://www.xilinx.com

Embedded System Tools Reference Manual www.xilinx.com 281
UG111 (v14.3) October 16, 2012

Appendix E

Additional Resources
Xilinx Resources

• Device User Guides:
http://www.xilinx.com/support/documentation/user_guides.htm

• Glossary of Terms: http://www.xilinx.com/company/terms.htm

• Xilinx Design Tools: Installation and Licensing Guide (UG798):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/iil.pdf

• Xilinx Design Tools: Release Notes Guide (UG631):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3s/irn.pdf

• Product Support and Documentation: http://www.xilinx.com/support

EDK Documentation
You can also access the entire documentation set online at:
http://www.xilinx.com/support/documentation/dt_edk_edk14-3.htm

Individual documents are linked below.

• EDK Concepts, Tools, and Techniques (UG683):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/edk_ctt.pdf

• EDK Profiling Guide (UG448):
http://www.xilinx.com/support/documentation/xilinx14_3/edk_prof.pdf

• MicroBlaze Processor User Guide (UG081):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/
mb_ref_guide.pdf

• Platform Specification Format Reference Manual (UG642):
http://www.xilinx.com/support/documentation/xilinx14_3/psf_rm.pdf

• PowerPC 405 Processor Block Reference Guide (UG018):
http://www.xilinx.com/support/documentation/user_guides/ug018.pdf

• PowerPC 405 Processor Reference Guide (UG011):
http://www.xilinx.com/support/documentation/user_guides/ug011.pdf

• PowerPC 440 Embedded Processor Block in Virtex-5 FPGAs (UG200):
http://www.xilinx.com/support/documentation/user_guides/ug200.pdf

• Zynq™-7000 All Programmable SoC Concepts, Tools, and Techniques Guide (UG873):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/
ug873_zynq_ctt.pdf

• Zynq-7000 All Programmable SoC Software Developers Guide (UG821):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/
ug821-zynq-7000-swdev.pdf

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=glossary
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;d=iil.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;d=irn.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=support
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=edk
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;d=edk_ctt.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;d=edk_prof.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;t=user+guide;d=mb_ref_guide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;d=psf_rm.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide;d=ug018.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide;d=ug011.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide;d=ug200.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;d=ug873_zynq_ctt.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;d=ug821-zynq-7000-swdev.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;d=ug821-zynq-7000-swdev.pdf

282 www.xilinx.com Embedded System Tools Reference Manual
UG111 (v14.3) October 16, 2012

Appendix E: Additional Resources

EDK Additional Resources
• EDK Tutorials website:

http://www.xilinx.com/support/documentation/dt_edk_edk14-3_tutorials.htm

• Platform Studio and EDK website:
http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm

• XPS/EDK Supported IP website:
http://www.xilinx.com/ise/embedded/edk_ip.htm

http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;t=edk+tutorials
http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm
http://www.xilinx.com/ise/embedded/edk_ip.htm
http://www.xilinx.com

