
MicroBlaze
Processor
Reference Guide
Embedded Development Kit
EDK 14.4

UG081 (v14.4)

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum
extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL
WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising
under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action
brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same.
Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are
subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be
subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-
safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical
Applications: http://www.xilinx.com/warranty.htm#critapps.

Automotive Applications Disclaimer
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-
SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE,
UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX
DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT
COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX
PRODUCTS IN SUCH APPLICATIONS.

© 2002 – 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein are
trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners. AMBA, AMBA
Designer, ARM, ARM1176JZ-S, CoreSight, Cortex, and PrimeCell are trademarks of ARM in the EU and other countries.

Revision History
The following table shows the revision history for this document.

Date Version Revision

10/01/02 1.0 Xilinx EDK 3.1 release

03/11/03 2.0 Xilinx EDK 3.2 release

09/24/03 3.0 Xilinx EDK 6.1 release

02/20/04 3.1 Xilinx EDK 6.2 release

08/24/04 4.0 Xilinx EDK 6.3 release

09/21/04 4.1 Minor corrections for EDK 6.3 SP1 release

11/18/04 4.2 Minor corrections for EDK 6.3 SP2 release

01/20/05 5.0 Xilinx EDK 7.1 release

04/02/05 5.1 Minor corrections for EDK 7.1 SP1 release

05/09/05 5.2 Minor corrections for EDK 7.1 SP2 release

10/05/05 5.3 Minor corrections for EDK 8.1 release

02/21/06 5.4 Corrections for EDK 8.1 SP2 release

06/01/06 6.0 Xilinx EDK 8.2 release
MicroBlaze Processor Reference Guide www.xilinx.com UG081 (v14.4)

http://www.xilinx.com/warranty.htm
http://www.xilinx.com
http://www.xilinx.com/warranty.htm#critapps

07/24/06 6.1 Minor corrections for EDK 8.2 SP1 release

08/21/06 6.2 Minor corrections for EDK 8.2 SP2 release

08/29/06 6.3 Minor corrections for EDK 8.2 SP2 release

09/15/06 7.0 Xilinx EDK 9.1 release

02/22/07 7.1 Minor corrections for EDK 9.1 SP1 release

03/27/07 7.2 Minor corrections for EDK 9.1 SP2 release

06/25/07 8.0 Xilinx EDK 9.2 release

10/12/07 8.1 Minor corrections for EDK 9.2 SP2 release

01/17/08 9.0 Xilinx EDK 10.1 release

03/04/08 9.1 Minor corrections for EDK 10.1 SP1 release

05/14/08 9.2 Minor corrections for EDK 10.1 SP2 release

07/14/08 9.3 Minor corrections for EDK 10.1 SP3 release

02/04/09 10.0 Xilinx EDK 11.1 release

04/15/09 10.1 Xilinx EDK 11.2 release

05/28/09 10.2 Xilinx EDK 11.3 release

10/26/09 10.3 Xilinx EDK 11.4 release

04/19/10 11.0 Xilinx EDK 12.1 release

07/23/10 11.1 Xilinx EDK 12.2 release

09/21/10 11.2 Xilinx EDK 12.3 release

11/15/10 11.3 Minor corrections for EDK 12.4 release

11/15/10 11.4 Xilinx EDK 12.4 release

03/01/11 12.0 Xilinx EDK 13.1 release

06/22/11 13.2 Xilinx EDK 13.2 release

10/19/11 13.3 Xilinx EDK 13.3 release

01/18/12 13.4 Xilinx EDK 13.4 release

04/24/12 14.1 Xilinx EDK 14.1 release

07/25/12 14.2 Xilinx EDK 14.2 release

10/16/12 14.3 Xilinx EDK 14.3 release

12/18/12 14.4 Minor corrections for Xilinx EDK 14.4 release

Date Version Revision
UG081 (v14.4) www.xilinx.com MicroBlaze Processor Reference Guide

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com UG081 (v14.4)

http://www.xilinx.com

Register Usage Conventions . 146

Stack Convention . 147

Memory Model . 149

Interrupt and Exception Handling . 150

Chapter 5: MicroBlaze Instruction Set Architecture
Notation . 153

Formats . 155

Instructions . 155

Appendix A: Additional Resources
EDK Documentation . 255

Additional Resources . 255
MicroBlaze Processor Reference Guide www.xilinx.com 6
UG081 (v14.4)

http://www.xilinx.com

Chapter 1

Introduction

The MicroBlaze™ Processor Reference Guide provides information about the 32-bit soft processor,
MicroBlaze, which is part of the Embedded Processor Development Kit (EDK). The document is
intended as a guide to the MicroBlaze hardware architecture.

Guide Contents
This guide contains the following chapters:

 Chapter 2, MicroBlaze Architecture, contains an overview of MicroBlaze features as well as
information on Big-Endian and Little-Endian bit-reversed format, 32-bit general purpose
registers, cache software support, and Fast Simplex Link interfaces.

 Chapter 3, MicroBlaze Signal Interface Description, describes the types of signal interfaces
that can be used to connect MicroBlaze.

 Chapter 4, MicroBlaze Application Binary Interface, describes the Application Binary
Interface important for developing software in assembly language for the soft processor.

 Chapter 5, MicroBlaze Instruction Set Architecture, provides notation, formats, and
instructions for the Instruction Set Architecture of MicroBlaze.

 Appendix A, Additional Resources, provides links to EDK documentation and additional
resources.
MicroBlaze Processor Reference Guide www.xilinx.com 7
UG081 (v14.4)

http://www.xilinx.com

Chapter 1: Introduction
8 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Chapter 2

MicroBlaze Architecture

This chapter contains an overview of MicroBlaze™ features and detailed information on
MicroBlaze architecture including Big-Endian or Little-Endian bit-reversed format, 32-bit general
purpose registers, virtual-memory management, cache software support, and Fast Simplex Link
(FSL) or AXI4-Stream interfaces.

Overview
The MicroBlaze™ embedded processor soft core is a reduced instruction set computer (RISC)
optimized for implementation in Xilinx® Field Programmable Gate Arrays (FPGAs). Figure 2-1
shows a functional block diagram of the MicroBlaze core.

Figure 2-1: MicroBlaze Core Block Diagram

DXCL_M

DXCL_S

Data-sideInstruction-side

IPLB

ILMB

bus interface bus interface

Instruction
Buffer

Program
Counter

Register File
32 X 32b

ALU

Instruction
Decode

Bus
IF

Bus
IF

IXCL_M

IXCL_S
I-C

ache

D
-C

ach
e

Shift

Barrel Shift

Multiplier

Divider

FPU

Special
Purpose
Registers

Optional MicroBlaze feature

M_AXI_IP

UTLBITLB DTLB

Memory Management Unit (MMU)

DPLB

DLMB

M_AXI_DP

MFSL 0..15
DWFSL 0..15
SFSL 0..15
DRFSL 0..15

or

or

M_AXI_IC M_AXI_DC

Branch
Target
Cache

M0_AXIS..

S0_AXIS..
M15_AXIS

S15_AXIS
MicroBlaze Processor Reference Guide www.xilinx.com 9
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Features
The MicroBlaze soft core processor is highly configurable, allowing you to select a specific set of
features required by your design.

The fixed feature set of the processor includes:

 Thirty-two 32-bit general purpose registers

 32-bit instruction word with three operands and two addressing modes

 32-bit address bus

 Single issue pipeline

In addition to these fixed features, the MicroBlaze processor is parameterized to allow selective
enabling of additional functionality. Older (deprecated) versions of MicroBlaze support a subset of
the optional features described in this manual. Only the latest (preferred) version of MicroBlaze
(v8.00) supports all options.

Xilinx recommends that all new designs use the latest preferred version of the MicroBlaze
processor.

Table 2-1, page 10 provides an overview of the configurable features by MicroBlaze versions.

Table 2-1: Configurable Feature Overview by MicroBlaze Version

Feature
MicroBlaze Versions

v7.30 v8.00 v8.10 v8.20 v8.30 v8.40

Version Status obsolete deprecated deprecated deprecated deprecated preferred

Processor pipeline depth 3/5 3/5 3/5 3/5 3/5 3/5

On-chip Peripheral Bus (OPB) data side interface No No No No No No

On-chip Peripheral Bus (OPB) instruction side
interface

No No No No No No

Local Memory Bus (LMB) data side interface option option option option option option

Local Memory Bus (LMB) instruction side
interface

option option option option option option

Hardware barrel shifter option option option option option option

Hardware divider option option option option option option

Hardware debug logic option option option option option option

Stream link interfaces 0-15
FSL

0-15
FSL/AXI

0-15
FSL/AXI

0-15
FSL/AXI

0-15
FSL/AXI

0-15
FSL/AXI

Machine status set and clear instructions option option option option option option

Instruction cache over IOPB interface No No No No No No

Data cache over DOPB interface No No No No No No

Instruction cache over Cache Link (IXCL)
interface

option option option option option option

Data cache over Cache Link (DXCL) interface option option option option option option

4 or 8-word cache line option option option option option option
10 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Overview
Hardware exception support option option option option option option

Pattern compare instructions option option option option option option

Floating point unit (FPU) option option option option option option

Disable hardware multiplier1 option option option option option option

Hardware debug readable ESR and EAR Yes Yes Yes Yes Yes Yes

Processor Version Register (PVR) option option option option option option

Area or speed optimized option option option option option option

Hardware multiplier 64-bit result option option option option option option

LUT cache memory option option option option option option

Processor Local Bus (PLB) data side interface option option option option option option

Processor Local Bus (PLB) instruction side
interface

option option option option option option

Floating point conversion and square root
instructions

option option option option option option

Memory Management Unit (MMU) option option option option option option

Extended stream instructions option option option option option option

Use Xilinx Cache Link for All I-Cache Memory
Accesses

option option option option option option

Use Xilinx Cache Link for All D-Cache Memory
Accesses

option option option option option option

Use Write-back Caching Policy for D-Cache option option option option option option

Cache Link (DXCL) protocol for D-Cache option option option option option option

Cache Link (IXCL) protocol for I-Cache option option option option option option

Branch Target Cache (BTC) option option option option option option

Streams for I-Cache option option option option option option

Victim handling for I-Cache option option option option option option

Victim handling for D-Cache option option option option option option

AXI4 (M_AXI_DP) data side interface - option option option option option

AXI4 (M_AXI_IP) instruction side interface - option option option option option

AXI4 (M_AXI_DC) protocol for D-Cache - option option option option option

AXI4 (M_AXI_IC) protocol for I-Cache - option option option option option

AXI4 protocol for stream accesses - option option option option option

Fault tolerant features - option option option option option

Tool selectable endianness - option option option option option

Force distributed RAM for cache tags - option option option option option

Table 2-1: Configurable Feature Overview by MicroBlaze Version

Feature
MicroBlaze Versions

v7.30 v8.00 v8.10 v8.20 v8.30 v8.40
MicroBlaze Processor Reference Guide www.xilinx.com 11
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Configurable cache data widths - option option option option option

Count Leading Zeros instruction - - option option option option

Memory Barrier instruction - - Yes Yes Yes Yes

Stack overflow and underflow detection - - option option option option

Allow stream instructions in user mode - - option option option option

Lockstep support option option option

Configurable use of FPGA primitives option option option

Low-latency interrupt mode option option

Swap instructions option option

Sleep mode and sleep instruction Yes

Relocatable base vectors option

1. Used in Virtex®-4 and subsequent families, for saving MUL18 and DSP48 primitives.

Table 2-1: Configurable Feature Overview by MicroBlaze Version

Feature
MicroBlaze Versions

v7.30 v8.00 v8.10 v8.20 v8.30 v8.40
12 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Data Types and Endianness
Data Types and Endianness
MicroBlaze uses Big-Endian or Little-Endian format to represent data, depending on the parameter
C_ENDIANNESS. The hardware supported data types for MicroBlaze are word, half word, and
byte. When using the reversed load and store instructions LHUR, LWR, SHR and SWR, the bytes in
the data are reversed, as indicated by the byte-reversed order.

The bit and byte organization for each type is shown in the following tables.

Table 2-2: Word Data Type

Big-Endian Byte Address n n+1 n+2 n+3

Big-Endian Byte Significance MSByte LSByte

Big-Endian Byte Order n n+1 n+2 n+3

Big-Endian Byte-Reversed Order n+3 n+2 n+1 n

Little-Endian Byte Address n+3 n+2 n+1 n

Little-Endian Byte Significance MSByte LSByte

Little-Endian Byte Order n+3 n+2 n+1 n

Little-Endian Byte-Reversed Order n n+1 n+2 n+3

Bit Label 0 31

Bit Significance MSBit LSBit

Table 2-3: Half Word Data Type

Big-Endian Byte Address n n+1

Big-Endian Byte Significance MSByte LSByte

Big-Endian Byte Order n n+1

Big-Endian Byte-Reversed Order n+1 n

Little-Endian Byte Address n+1 n

Little-Endian Byte Significance MSByte LSByte

Little-Endian Byte Order n+1 n

Little-Endian Byte-Reversed Order n n+1

Bit Label 0 15

Bit Significance MSBit LSBit

Table 2-4: Byte Data Type

Byte Address n

Bit Label 0 7

Bit Significance MSBit LSBit
MicroBlaze Processor Reference Guide www.xilinx.com 13
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Instructions

Instruction Summary
All MicroBlaze instructions are 32 bits and are defined as either Type A or Type B. Type A
instructions have up to two source register operands and one destination register operand. Type B
instructions have one source register and a 16-bit immediate operand (which can be extended to 32
bits by preceding the Type B instruction with an imm instruction). Type B instructions have a single
destination register operand. Instructions are provided in the following functional categories:
arithmetic, logical, branch, load/store, and special. Table 2-6 lists the MicroBlaze instruction set.
Refer to Chapter 5, MicroBlaze Instruction Set Architecturefor more information on these
instructions. Table 2-5 describes the instruction set nomenclature used in the semantics of each
instruction.

Table 2-5: Instruction Set Nomenclature

Symbol Description

Ra R0 - R31, General Purpose Register, source operand a

Rb R0 - R31, General Purpose Register, source operand b

Rd R0 - R31, General Purpose Register, destination operand

SPR[x] Special Purpose Register number x

MSR Machine Status Register = SPR[1]

ESR Exception Status Register = SPR[5]

EAR Exception Address Register = SPR[3]

FSR Floating Point Unit Status Register = SPR[7]

PVRx Processor Version Register, where x is the register number = SPR[8192 + x]

BTR Branch Target Register = SPR[11]

PC Execute stage Program Counter = SPR[0]

x[y] Bit y of register x

x[y:z] Bit range y to z of register x

x Bit inverted value of register x

Imm 16 bit immediate value

Immx x bit immediate value

FSLx 4 bit Fast Simplex Link (FSL) or AXI4-Stream port designator, where x is the port number

C Carry flag, MSR[29]

Sa Special Purpose Register, source operand

Sd Special Purpose Register, destination operand

s(x) Sign extend argument x to 32-bit value

*Addr Memory contents at location Addr (data-size aligned)

:= Assignment operator
14 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Instructions
= Equality comparison

!= Inequality comparison

> Greater than comparison

>= Greater than or equal comparison

< Less than comparison

<= Less than or equal comparison

+ Arithmetic add

* Arithmetic multiply

/ Arithmetic divide

>> x Bit shift right x bits

<< x Bit shift left x bits

and Logic AND

or Logic OR

xor Logic exclusive OR

op1 if cond else op2 Perform op1 if condition cond is true, else perform op2

& Concatenate. E.g. “0000100 & Imm7” is the concatenation of the fixed field “0000100” and a 7 bit
immediate value.

signed Operation performed on signed integer data type. All arithmetic operations are performed on signed
word operands, unless otherwise specified

unsigned Operation performed on unsigned integer data type

float Operation performed on floating point data type

clz(r) Count leading zeros

Table 2-5: Instruction Set Nomenclature (Continued)

Symbol Description

Table 2-6: MicroBlaze Instruction Set Summary

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31

ADD Rd,Ra,Rb 000000 Rd Ra Rb 00000000000 Rd := Rb + Ra

RSUB Rd,Ra,Rb 000001 Rd Ra Rb 00000000000 Rd := Rb + Ra + 1

ADDC Rd,Ra,Rb 000010 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

RSUBC Rd,Ra,Rb 000011 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

ADDK Rd,Ra,Rb 000100 Rd Ra Rb 00000000000 Rd := Rb + Ra

RSUBK Rd,Ra,Rb 000101 Rd Ra Rb 00000000000 Rd := Rb + Ra + 1

ADDKC Rd,Ra,Rb 000110 Rd Ra Rb 00000000000 Rd := Rb + Ra + C
MicroBlaze Processor Reference Guide www.xilinx.com 15
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
RSUBKC Rd,Ra,Rb 000111 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

CMP Rd,Ra,Rb 000101 Rd Ra Rb 00000000001 Rd := Rb + Ra + 1

Rd[0] := 0 if (Rb >= Ra) else 
Rd[0] := 1

CMPU Rd,Ra,Rb 000101 Rd Ra Rb 00000000011 Rd := Rb + Ra + 1 (unsigned)
Rd[0] := 0 if (Rb >= Ra, unsigned) else
Rd[0] := 1

ADDI Rd,Ra,Imm 001000 Rd Ra Imm Rd := s(Imm) + Ra

RSUBI Rd,Ra,Imm 001001 Rd Ra Imm Rd := s(Imm) + Ra + 1

ADDIC Rd,Ra,Imm 001010 Rd Ra Imm Rd := s(Imm) + Ra + C

RSUBIC Rd,Ra,Imm 001011 Rd Ra Imm Rd := s(Imm) + Ra + C

ADDIK Rd,Ra,Imm 001100 Rd Ra Imm Rd := s(Imm) + Ra

RSUBIK Rd,Ra,Imm 001101 Rd Ra Imm Rd := s(Imm) + Ra + 1

ADDIKC Rd,Ra,Imm 001110 Rd Ra Imm Rd := s(Imm) + Ra + C

RSUBIKC Rd,Ra,Imm 001111 Rd Ra Imm Rd := s(Imm) + Ra + C

MUL Rd,Ra,Rb 010000 Rd Ra Rb 00000000000 Rd := Ra * Rb

MULH Rd,Ra,Rb 010000 Rd Ra Rb 00000000001 Rd := (Ra * Rb) >> 32 (signed)

MULHU Rd,Ra,Rb 010000 Rd Ra Rb 00000000011 Rd := (Ra * Rb) >> 32 (unsigned)

MULHSU Rd,Ra,Rb 010000 Rd Ra Rb 00000000010 Rd := (Ra, signed * Rb, unsigned) >> 32
(signed)

BSRA Rd,Ra,Rb 010001 Rd Ra Rb 01000000000 Rd := s(Ra >> Rb)

BSLL Rd,Ra,Rb 010001 Rd Ra Rb 10000000000 Rd := (Ra << Rb) & 0

MULI Rd,Ra,Imm 011000 Rd Ra Imm Rd := Ra * s(Imm)

BSRLI Rd,Ra,Imm 011001 Rd Ra 00000000000 &
Imm5

Rd : = 0 & (Ra >> Imm5)

BSRAI Rd,Ra,Imm 011001 Rd Ra 00000010000 &
Imm5

Rd := s(Ra >> Imm5)

BSLLI Rd,Ra,Imm 011001 Rd Ra 00000100000 &
Imm5

Rd := (Ra << Imm5) & 0

IDIV Rd,Ra,Rb 010010 Rd Ra Rb 00000000000 Rd := Rb/Ra

IDIVU Rd,Ra,Rb 010010 Rd Ra Rb 00000000010 Rd := Rb/Ra, unsigned

TNEAGETD Rd,Rb 010011 Rd 00000 Rb 0N0TAE
00000

Rd := FSL Rb[28:31] (data read)
MSR[FSL] := 1 if (FSL_S_Control = 1)
MSR[C] := not FSL_S_Exists if N = 1

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
16 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Instructions
TNAPUTD Ra,Rb 010011 00000 Ra Rb 0N0TA0
00000

FSL Rb[28:31] := Ra (data write)
MSR[C] := FSL_M_Full if N = 1

TNECAGETD Rd,Rb 010011 Rd 00000 Rb 0N1TAE
00000

Rd := FSL Rb[28:31] (control read)
MSR[FSL] := 1 if (FSL_S_Control = 0)
MSR[C] := not FSL_S_Exists if N = 1

TNCAPUTD Ra,Rb 010011 00000 Ra Rb 0N1TA0
00000

FSL Rb[28:31] := Ra (control write)
MSR[C] := FSL_M_Full if N = 1

FADD Rd,Ra,Rb 010110 Rd Ra Rb 00000000000 Rd := Rb+Ra, float1

FRSUB Rd,Ra,Rb 010110 Rd Ra Rb 00010000000 Rd := Rb-Ra, float1

FMUL Rd,Ra,Rb 010110 Rd Ra Rb 00100000000 Rd := Rb*Ra, float1

FDIV Rd,Ra,Rb 010110 Rd Ra Rb 00110000000 Rd := Rb/Ra, float1

FCMP.UN Rd,Ra,Rb 010110 Rd Ra Rb 01000000000 Rd := 1 if (Rb = NaN or Ra = NaN, float1)
else 
Rd := 0

FCMP.LT Rd,Ra,Rb 010110 Rd Ra Rb 01000010000 Rd := 1 if (Rb < Ra, float1) else 
Rd := 0

FCMP.EQ Rd,Ra,Rb 010110 Rd Ra Rb 01000100000 Rd := 1 if (Rb = Ra, float1) else 
Rd := 0

FCMP.LE Rd,Ra,Rb 010110 Rd Ra Rb 01000110000 Rd := 1 if (Rb <= Ra, float1) else 
Rd := 0

FCMP.GT Rd,Ra,Rb 010110 Rd Ra Rb 01001000000 Rd := 1 if (Rb > Ra, float1) else 
Rd := 0

FCMP.NE Rd,Ra,Rb 010110 Rd Ra Rb 01001010000 Rd := 1 if (Rb != Ra, float1) else 
Rd := 0

FCMP.GE Rd,Ra,Rb 010110 Rd Ra Rb 01001100000 Rd := 1 if (Rb >= Ra, float1) else 
Rd := 0

FLT Rd,Ra 010110 Rd Ra 0 01010000000 Rd := float (Ra)1

FINT Rd,Ra 010110 Rd Ra 0 01100000000 Rd := int (Ra)1

FSQRT Rd,Ra 010110 Rd Ra 0 01110000000 Rd := sqrt (Ra)1

TNEAGET Rd,FSLx 011011 Rd 00000 0N0TAE000000 &
FSLx

Rd := FSLx (data read, blocking if N = 0)
MSR[FSL] := 1 if (FSLx_S_Control = 1)
MSR[C] := not FSLx_S_Exists if N = 1

TNAPUT Ra,FSLx 011011 00000 Ra 1N0TA0000000 &
FSLx

FSLx := Ra (data write, blocking if N = 0)
MSR[C] := FSLx_M_Full if N = 1

TNECAGET Rd,FSLx 011011 Rd 00000 0N1TAE000000 &
FSLx

Rd := FSLx (control read, blocking if N = 0)
MSR[FSL] := 1 if (FSLx_S_Control = 0)
MSR[C] := not FSLx_S_Exists if N = 1

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide www.xilinx.com 17
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
TNCAPUT Ra,FSLx 011011 00000 Ra 1N1TA0000000 &
FSLx

FSLx := Ra (control write, blocking if N = 0)
MSR[C] := FSLx_M_Full if N = 1

OR Rd,Ra,Rb 100000 Rd Ra Rb 00000000000 Rd := Ra or Rb

AND Rd,Ra,Rb 100001 Rd Ra Rb 00000000000 Rd := Ra and Rb

XOR Rd,Ra,Rb 100010 Rd Ra Rb 00000000000 Rd := Ra xor Rb

ANDN Rd,Ra,Rb 100011 Rd Ra Rb 00000000000 Rd := Ra and Rb

PCMPBF Rd,Ra,Rb 100000 Rd Ra Rb 10000000000 Rd := 1 if (Rb[0:7] = Ra[0:7]) else
Rd := 2 if (Rb[8:15] = Ra[8:15]) else
Rd := 3 if (Rb[16:23] = Ra[16:23]) else
Rd := 4 if (Rb[24:31] = Ra[24:31]) else
Rd := 0

PCMPEQ Rd,Ra,Rb 100010 Rd Ra Rb 10000000000 Rd := 1 if (Rd = Ra) else
Rd := 0

PCMPNE Rd,Ra,Rb 100011 Rd Ra Rb 10000000000 Rd := 1 if (Rd != Ra) else
Rd := 0

SRA Rd,Ra 100100 Rd Ra 0000000000000001 Rd := s(Ra >> 1)
C := Ra[31]

SRC Rd,Ra 100100 Rd Ra 0000000000100001 Rd := C & (Ra >> 1)
C := Ra[31]

SRL Rd,Ra 100100 Rd Ra 0000000001000001 Rd := 0 & (Ra >> 1) 
C := Ra[31]

SEXT8 Rd,Ra 100100 Rd Ra 0000000001100000 Rd := s(Ra[24:31])

SEXT16 Rd,Ra 100100 Rd Ra 0000000001100001 Rd := s(Ra[16:31])

CLZ Rd, Ra 100100 Rd Ra 0000000011100000 Rd = clz(Ra)

SWAPB Rd, Ra 100100 Rd Ra 0000000111100000 Rd = (Ra)[24:31, 16:23, 8:15, 0:7]

SWAPH Rd, Ra 100100 Rd Ra 0000000111100010 Rd = (Ra)[16:31, 0:15]

WIC Ra,Rb 100100 00000 Ra Rb 00001101000 ICache_Line[Ra >> 4].Tag := 0 if
(C_ICACHE_LINE_LEN = 4)

ICache_Line[Ra >> 5].Tag := 0 if
(C_ICACHE_LINE_LEN = 8)

WDC Ra,Rb 100100 00000 Ra Rb 00001100100 Cache line is cleared, discarding stored data.

DCache_Line[Ra >> 4].Tag := 0 if
(C_DCACHE_LINE_LEN = 4)

DCache_Line[Ra >> 5].Tag := 0 if
(C_DCACHE_LINE_LEN = 8)

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
18 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Instructions
WDC.FLUSH Ra,Rb 100100 00000 Ra Rb 00001110100 Cache line is flushed, writing stored data to
memory, and then cleared. Used when
C_DCACHE_USE_WRITEBACK = 1.

WDC.CLEAR Ra,Rb 100100 00000 Ra Rb 00001110110 Cache line with matching address is cleared,
discarding stored data. Used when
C_DCACHE_USE_WRITEBACK = 1.

MBAR Imm 101110 Imm 00010 0000000000000100 PC := PC + 4; Wait for memory accesses.

MTS Sd,Ra 100101 00000 Ra 11 & Sd SPR[Sd] := Ra, where:

 SPR[0x0001] is MSR

 SPR[0x0007] is FSR

 SPR[0x0800] is SLR

 SPR[0x0802] is SHR

 SPR[0x1000] is PID

 SPR[0x1001] is ZPR

 SPR[0x1002] is TLBX

 SPR[0x1003] is TLBLO

 SPR[0x1004] is TLBHI

 SPR[0x1005] is TLBSX

MFS Rd,Sa 100101 Rd 00000 10 & Sa Rd := SPR[Sa], where:

 SPR[0x0000] is PC

 SPR[0x0001] is MSR

 SPR[0x0003] is EAR

 SPR[0x0005] is ESR

 SPR[0x0007] is FSR

 SPR[0x000B] is BTR

 SPR[0x000D] is EDR

 SPR[0x0800] is SLR

 SPR[0x0802] is SHR

 SPR[0x1000] is PID

 SPR[0x1001] is ZPR

 SPR[0x1002] is TLBX

 SPR[0x1003] is TLBLO

 SPR[0x1004] is TLBHI

 SPR[0x2000 to 0x200B] is PVR[0 to 11]

MSRCLR Rd,Imm 100101 Rd 00001 00 & Imm14 Rd := MSR
MSR := MSR and Imm14

MSRSET Rd,Imm 100101 Rd 00000 00 & Imm14 Rd := MSR
MSR := MSR or Imm14

BR Rb 100110 00000 00000 Rb 00000000000 PC := PC + Rb

BRD Rb 100110 00000 10000 Rb 00000000000 PC := PC + Rb

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide www.xilinx.com 19
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
BRLD Rd,Rb 100110 Rd 10100 Rb 00000000000 PC := PC + Rb
Rd := PC

BRA Rb 100110 00000 01000 Rb 00000000000 PC := Rb

BRAD Rb 100110 00000 11000 Rb 00000000000 PC := Rb

BRALD Rd,Rb 100110 Rd 11100 Rb 00000000000 PC := Rb
Rd := PC

BRK Rd,Rb 100110 Rd 01100 Rb 00000000000 PC := Rb
Rd := PC
MSR[BIP] := 1

BEQ Ra,Rb 100111 00000 Ra Rb 00000000000 PC := PC + Rb if Ra = 0

BNE Ra,Rb 100111 00001 Ra Rb 00000000000 PC := PC + Rb if Ra != 0

BLT Ra,Rb 100111 00010 Ra Rb 00000000000 PC := PC + Rb if Ra < 0

BLE Ra,Rb 100111 00011 Ra Rb 00000000000 PC := PC + Rb if Ra <= 0

BGT Ra,Rb 100111 00100 Ra Rb 00000000000 PC := PC + Rb if Ra > 0

BGE Ra,Rb 100111 00101 Ra Rb 00000000000 PC := PC + Rb if Ra >= 0

BEQD Ra,Rb 100111 10000 Ra Rb 00000000000 PC := PC + Rb if Ra = 0

BNED Ra,Rb 100111 10001 Ra Rb 00000000000 PC := PC + Rb if Ra != 0

BLTD Ra,Rb 100111 10010 Ra Rb 00000000000 PC := PC + Rb if Ra < 0

BLED Ra,Rb 100111 10011 Ra Rb 00000000000 PC := PC + Rb if Ra <= 0

BGTD Ra,Rb 100111 10100 Ra Rb 00000000000 PC := PC + Rb if Ra > 0

BGED Ra,Rb 100111 10101 Ra Rb 00000000000 PC := PC + Rb if Ra >= 0

ORI Rd,Ra,Imm 101000 Rd Ra Imm Rd := Ra or s(Imm)

ANDI Rd,Ra,Imm 101001 Rd Ra Imm Rd := Ra and s(Imm)

XORI Rd,Ra,Imm 101010 Rd Ra Imm Rd := Ra xor s(Imm)

ANDNI Rd,Ra,Imm 101011 Rd Ra Imm Rd := Ra and s(Imm)

IMM Imm 101100 00000 00000 Imm Imm[0:15] := Imm

RTSD Ra,Imm 101101 10000 Ra Imm PC := Ra + s(Imm)

RTID Ra,Imm 101101 10001 Ra Imm PC := Ra + s(Imm)
MSR[IE] := 1

RTBD Ra,Imm 101101 10010 Ra Imm PC := Ra + s(Imm)
MSR[BIP] := 0

RTED Ra,Imm 101101 10100 Ra Imm PC := Ra + s(Imm)
MSR[EE] := 1, MSR[EIP] := 0
ESR := 0

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
20 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Instructions
BRI Imm 101110 00000 00000 Imm PC := PC + s(Imm)

BRID Imm 101110 00000 10000 Imm PC := PC + s(Imm)

BRLID Rd,Imm 101110 Rd 10100 Imm PC := PC + s(Imm)
Rd := PC

BRAI Imm 101110 00000 01000 Imm PC := s(Imm)

BRAID Imm 101110 00000 11000 Imm PC := s(Imm)

BRALID Rd,Imm 101110 Rd 11100 Imm PC := s(Imm)
Rd := PC

BRKI Rd,Imm 101110 Rd 01100 Imm PC := s(Imm)
Rd := PC
MSR[BIP] := 1

BEQI Ra,Imm 101111 00000 Ra Imm PC := PC + s(Imm) if Ra = 0

BNEI Ra,Imm 101111 00001 Ra Imm PC := PC + s(Imm) if Ra != 0

BLTI Ra,Imm 101111 00010 Ra Imm PC := PC + s(Imm) if Ra < 0

BLEI Ra,Imm 101111 00011 Ra Imm PC := PC + s(Imm) if Ra <= 0

BGTI Ra,Imm 101111 00100 Ra Imm PC := PC + s(Imm) if Ra > 0

BGEI Ra,Imm 101111 00101 Ra Imm PC := PC + s(Imm) if Ra >= 0

BEQID Ra,Imm 101111 10000 Ra Imm PC := PC + s(Imm) if Ra = 0

BNEID Ra,Imm 101111 10001 Ra Imm PC := PC + s(Imm) if Ra != 0

BLTID Ra,Imm 101111 10010 Ra Imm PC := PC + s(Imm) if Ra < 0

BLEID Ra,Imm 101111 10011 Ra Imm PC := PC + s(Imm) if Ra <= 0

BGTID Ra,Imm 101111 10100 Ra Imm PC := PC + s(Imm) if Ra > 0

BGEID Ra,Imm 101111 10101 Ra Imm PC := PC + s(Imm) if Ra >= 0

LBU Rd,Ra,Rb

LBUR Rd,Ra,Rb

110000 Rd Ra Rb 00000000000

01000000000

Addr := Ra + Rb
Rd[0:23] := 0
Rd[24:31] := *Addr[0:7]

LHU Rd,Ra,Rb

LHUR Rd,Ra,Rb

110001 Rd Ra Rb 00000000000

01000000000

Addr := Ra + Rb
Rd[0:15] := 0
Rd[16:31] := *Addr[0:15]

LW Rd,Ra,Rb
LWR Rd,Ra,Rb

110010 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
Rd := *Addr

LWX Rd,Ra,Rb 110010 Rd Ra Rb 10000000000 Addr := Ra + Rb
Rd := *Addr
Reservation := 1

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide www.xilinx.com 21
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Semaphore Synchronization
The LWX and SWX. instructions are used to implement common semaphore operations, including
test and set, compare and swap, exchange memory, and fetch and add. They are also used to
implement spinlocks.

These instructions are typically used by system programs and are called by application programs as
needed. Generally, a program uses LWX to load a semaphore from memory, causing the reservation
to be set (the processor maintains the reservation internally). The program can compute a result
based on the semaphore value and conditionally store the result back to the same memory location
using the SWX instruction. The conditional store is performed based on the existence of the
reservation established by the preceding LWX instruction. If the reservation exists when the store is
executed, the store is performed and MSR[C] is cleared to 0. If the reservation does not exist when
the store is executed, the target memory location is not modified and MSR[C] is set to 1.

If the store is successful, the sequence of instructions from the semaphore load to the semaphore
store appear to be executed atomically—no other device modified the semaphore location between

SB Rd,Ra,Rb

SBR Rd,Ra,Rb

110100 Rd Ra Rb 00000000000

01000000000

Addr := Ra + Rb
*Addr[0:8] := Rd[24:31]

SH Rd,Ra,Rb

SHR Rd,Ra,Rb

110101 Rd Ra Rb 00000000000

01000000000

Addr := Ra + Rb
*Addr[0:16] := Rd[16:31]

SW Rd,Ra,Rb
SWR Rd,Ra,Rb

110110 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
*Addr := Rd

SWX Rd,Ra,Rb 110110 Rd Ra Rb 10000000000 Addr := Ra + Rb
*Addr := Rd if Reservation = 1
Reservation := 0

LBUI Rd,Ra,Imm 111000 Rd Ra Imm Addr := Ra + s(Imm)
Rd[0:23] := 0
Rd[24:31] := *Addr[0:7]

LHUI Rd,Ra,Imm 111001 Rd Ra Imm Addr := Ra + s(Imm)
Rd[0:15] := 0
Rd[16:31] := *Addr[0:15]

LWI Rd,Ra,Imm 111010 Rd Ra Imm Addr := Ra + s(Imm)
Rd := *Addr

SBI Rd,Ra,Imm 111100 Rd Ra Imm Addr := Ra + s(Imm)
*Addr[0:7] := Rd[24:31]

SHI Rd,Ra,Imm 111101 Rd Ra Imm Addr := Ra + s(Imm)
*Addr[0:15] := Rd[16:31]

SWI Rd,Ra,Imm 111110 Rd Ra Imm Addr := Ra + s(Imm)
*Addr := Rd

1. Due to the many different corner cases involved in floating point arithmetic, only the normal behavior is described. A full description of the
behavior can be found in Chapter 5, “MicroBlaze Instruction Set Architecture.”

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
22 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Instructions
the read and the update. Other devices can read from the semaphore location during the operation.
For a semaphore operation to work properly, the LWX instruction must be paired with an SWX
instruction, and both must specify identical addresses. The reservation granularity in MicroBlaze is
a word. For both instructions, the address must be word aligned. No unaligned exceptions are
generated for these instructions.

The conditional store is always performed when a reservation exists, even if the store address does
not match the load address that set the reservation.

Only one reservation can be maintained at a time. The address associated with the reservation can be
changed by executing a subsequent LWX instruction. The conditional store is performed based upon
the reservation established by the last LWX instruction executed. Executing an SWX instruction
always clears a reservation held by the processor, whether the address matches that established by
the LWX or not.

Reset, interrupts, exceptions, and breaks (including the BRK and BRKI instructions) all clear the
reservation.

The following provides general guidelines for using the LWX and SWX instructions:

 The LWX and SWX instructions should be paired and use the same address.

 An unpaired SWX instruction to an arbitrary address can be used to clear any reservation held
by the processor.

 A conditional sequence begins with an LWX instruction. It can be followed by memory
accesses and/or computations on the loaded value. The sequence ends with an SWX
instruction. In most cases, failure of the SWX instruction should cause a branch back to the
LWX for a repeated attempt.

 An LWX instruction can be left unpaired when executing certain synchronization primitives if
the value loaded by the LWX is not zero. An implementation of Test and Set exemplifies this:

loop: lwx r5,r3,r0 ; load and reserve
bnei r5,next ; branch if not equal to zero
addik r5,r5,1 ; increment value
swx r5,r3,r0 ; try to store non-zero value
addic r5,r0,0 ; check reservation
bnei r5,loop ; loop if reservation lost

next:

 Performance can be improved by minimizing looping on an LWX instruction that fails to
return a desired value. Performance can also be improved by using an ordinary load instruction
to do the initial value check. An implementation of a spinlock exemplifies this:

loop: lw r5,r3,r0 ; load the word
bnei r5,loop ; loop back if word not equal to 0
lwx r5,r3,r0 ; try reserving again
bnei r5,loop ; likely that no branch is needed
addik r5,r5,1 ; increment value
swx r5,r3,r0 ; try to store non-zero value
addic r5,r0,0 ; check reservation
bnei r5,loop ; loop if reservation lost

 Minimizing the looping on an LWX/SWX instruction pair increases the likelihood that forward
progress is made. The old value should be tested before attempting the store. If the order is
reversed (store before load), more SWX instructions are executed and reservations are more
likely to be lost between the LWX and SWX instructions.
MicroBlaze Processor Reference Guide www.xilinx.com 23
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Self-modifying Code
When using self-modifying code software must ensure that the modified instructions have been
written to memory prior to fetching them for execution. There are several aspects to consider:

 The instructions to be modified may already have been fetched prior to modification:

 into the instruction prefetch buffer,

 into the instruction cache, if it is enabled,

 into a stream buffer, if instruction cache stream buffers are used,

 into the instruction cache, and then saved in a victim buffer, if victim buffers are used.

To ensure that the modified code is always executed instead of the old unmodified code,
software must handle all these cases.

 If one or more of the instructions to be modified is a branch, and the branch target cache is
used, the branch target address may have been cached.

To avoid using the cached branch target address, software must ensure that the branch target
cache is cleared prior to executing the modified code.

 The modified instructions may not have been written to memory prior to execution:

 they may be en route to memory, in temporary storage in the interconnect or the memory
controller,

 they may be stored in the data cache, if write-back cache is used,

 they may be saved in a victim buffer, if write-back cache and victim buffers are used.

Software must ensure that the modified instructions have been written to memory before being
fetched by the processor.

The annotated code below shows how each of the above issues can be addressed. This code assumes
that both instruction cache and write-back data cache is used. If not, the corresponding instructions
can be omitted.

The following code exemplifies storing a modified instruction, when using AXI interconnect:

swi r5,r6,0 ; r5 = new instruction
; r6 = physical instruction address

wdc.flush r6,r0 ; flush write-back data cache line
mbar 1 ; ensure new instruction is written to memory
wic r7,r0 ; invalidate line, empty stream & victim buffers

; r7 = virtual instruction address
mbar 2 ; empty prefetch buffer, clear branch target cache

The following code exemplifies storing a modified instruction, when using XCL:

swi r5,r6,0 ; r5 = new instruction
; r6 = physical instruction address

wdc.flush r6,r0 ; flush write-back data cache line
lwi r0,r6,0 ; read back new instruction from memory to ensure it

; has been written to memory
wic r7,r0 ; invalidate line, empty stream & victim buffers

; r7 = virtual instruction address
mbar 2 ; empty prefetch buffer, clear branch target cache

The physical and virtual addresses above are identical, unless MMU virtual mode is used. If the
MMU is enabled, the code sequences must be executed in real mode, since WIC and WDC are
privileged instructions.

The first instruction after the code sequences above must not be modified, since it may have been
prefetched.
24 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Registers
Registers
MicroBlaze has an orthogonal instruction set architecture. It has thirty-two 32-bit general purpose
registers and up to eighteen 32-bit special purpose registers, depending on configured options.

General Purpose Registers
The thirty-two 32-bit General Purpose Registers are numbered R0 through R31. The register file is
reset on bit stream download (reset value is 0x00000000). Figure 2-2 is a representation of a General
Purpose Register and Table 2-7 provides a description of each register and the register reset value (if
existing).

Note: The register file is not reset by the external reset inputs: Reset, MB_Reset and Debug_Rst.

Refer to Table 4-2 for software conventions on general purpose register usage.

0 31


R0-R31

Figure 2-2: R0-R31

Table 2-7: General Purpose Registers (R0-R31)

Bits Name Description Reset Value

0:31 R0 Always has a value of zero. Anything written to
R0 is discarded

0x00000000

0:31 R1 through R13 32-bit general purpose registers -

0:31 R14 32-bit register used to store return addresses
for interrupts.

-

0:31 R15 32-bit general purpose register. Recommended
for storing return addresses for user vectors.

-

0:31 R16 32-bit register used to store return addresses
for breaks.

-

0:31 R17 If MicroBlaze is configured to support
hardware exceptions, this register is loaded
with the address of the instruction following
the instruction causing the HW exception,
except for exceptions in delay slots that use
BTR instead (see “Branch Target Register
(BTR)”); if not, it is a general purpose register.

-

0:31 R18 through R31 R18 through R31 are 32-bit general purpose
registers.

-

MicroBlaze Processor Reference Guide www.xilinx.com 25
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Special Purpose Registers

Program Counter (PC)

The Program Counter (PC) is the 32-bit address of the execution instruction. It can be read with an
MFS instruction, but it cannot be written with an MTS instruction. When used with the MFS
instruction the PC register is specified by setting Sa = 0x0000. Figure 2-3 illustrates the PC and
Table 2-8 provides a description and reset value.

Machine Status Register (MSR)

The Machine Status Register contains control and status bits for the processor. It can be read with an
MFS instruction. When reading the MSR, bit 29 is replicated in bit 0 as the carry copy. MSR can be
written using either an MTS instruction or the dedicated MSRSET and MSRCLR instructions.

When writing to the MSR using MSRSET or MSRCLR, the Carry bit takes effect immediately and
the remaining bits take effect one clock cycle later. When writing using MTS, all bits take effect one
clock cycle later. Any value written to bit 0 is discarded.

When used with an MTS or MFS instruction, the MSR is specified by setting Sx = 0x0001.
Figure 2-4 illustrates the MSR register and Table 2-9 provides the bit description and reset values.

0 31


PC

Figure 2-3: PC

Table 2-8: Program Counter (PC)

Bits Name Description Reset Value

0:31 PC Program Counter

Address of executing instruction, that is, “mfs r2 0” stores
the address of the mfs instruction itself in R2.

0x00000000

0 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

                
CC RESERVED VMS VM UMS UM PVR EIP EE DCE DZO ICE FSL BIP C IE RES

Figure 2-4: MSR
26 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Registers
Table 2-9: Machine Status Register (MSR)

Bits Name Description Reset Value

0 CC Arithmetic Carry Copy

Copy of the Arithmetic Carry (bit 29). CC is always the
same as bit C.

0

1:16 Reserved

17 VMS Virtual Protected Mode Save

Only available when configured with an MMU 
(if C_USE_MMU > 1 and C_AREA_OPTIMIZED = 0)

Read/Write

0

18 VM Virtual Protected Mode

0 = MMU address translation and access protection
disabled, with C_USE_MMU = 3 (Virtual). Access protection
disabled with C_USE_MMU = 2 (Protection)

1 = MMU address translation and access protection enabled,
with C_USE_MMU = 3 (Virtual). Access protection enabled,
with C_USE_MMU = 2 (Protection).

Only available when configured with an MMU 
(if C_USE_MMU > 1 and C_AREA_OPTIMIZED = 0)

Read/Write

0

19 UMS User Mode Save

Only available when configured with an MMU 
(if C_USE_MMU > 0 and C_AREA_OPTIMIZED = 0)

Read/Write

0

20 UM User Mode

0 = Privileged Mode, all instructions are allowed

1 = User Mode, certain instructions are not allowed

Only available when configured with an MMU 
(if C_USE_MMU > 0 and C_AREA_OPTIMIZED = 0)

Read/Write

0

21 PVR Processor Version Register exists

0 = No Processor Version Register
1 = Processor Version Register exists

Read only

Based on
parameter
C_PVR

22 EIP Exception In Progress

0 = No hardware exception in progress
1 = Hardware exception in progress

Only available if configured with exception support
(C_*_EXCEPTION or C_USE_MMU > 0)

Read/Write

0

MicroBlaze Processor Reference Guide www.xilinx.com 27
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
23 EE Exception Enable

0 = Hardware exceptions disabled1
1 = Hardware exceptions enabled

Only available if configured with exception support
(C_*_EXCEPTION or C_USE_MMU > 0)

Read/Write

0

24 DCE Data Cache Enable

0 = Data Cache disabled
1 = Data Cache enabled

Only available if configured to use data cache
(C_USE_DCACHE = 1)

Read/Write

0

25 DZO Division by Zero or Division Overflow2

0 = No division by zero or division overflow has occurred
1 = Division by zero or division overflow has occurred

Only available if configured to use hardware divider
(C_USE_DIV = 1)

Read/Write

0

26 ICE Instruction Cache Enable

0 = Instruction Cache disabled
1 = Instruction Cache enabled

Only available if configured to use instruction cache
(C_USE_ICACHE = 1)

Read/Write

0

27 FSL Stream (FSL or AXI) Error

0 = get or getd had no error
1 = get or getd control type mismatch

This bit is sticky, i.e. it is set by a get or getd instruction
when a control bit mismatch occurs. To clear it an mts or
msrclr instruction must be used.

Only available if configured to use stream links
(C_FSL_LINKS > 0)

Read/Write

0

28 BIP Break in Progress

0 = No Break in Progress
1 = Break in Progress

Break Sources can be software break instruction or hardware
break from Ext_Brk or Ext_NM_Brk pin.

Read/Write

0

Table 2-9: Machine Status Register (MSR) (Continued)

Bits Name Description Reset Value
28 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Registers
29 C Arithmetic Carry

0 = No Carry (Borrow)
1 = Carry (No Borrow)

Read/Write

0

30 IE Interrupt Enable

0 = Interrupts disabled
1 = Interrupts enabled

Read/Write

0

31 - Reserved 0

1. The MMU exceptions (Data Storage Exception, Instruction Storage Exception, Data TLB Miss Exception,
Instruction TLB Miss Exception) cannot be disabled, and are not affected by this bit.

2. This bit is only used for integer divide-by-zero or divide overflow signaling. There is a floating point equivalent
in the FSR. The DZO-bit flags divide by zero or divide overflow conditions regardless if the processor is
configured with exception handling or not.

Table 2-9: Machine Status Register (MSR) (Continued)

Bits Name Description Reset Value
MicroBlaze Processor Reference Guide www.xilinx.com 29
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Exception Address Register (EAR)

The Exception Address Register stores the full load/store address that caused the exception for the
following:

 An unaligned access exception that means the unaligned access address

 A DPLB or M_AXI_DP exception that specifies the failing PLB or AXI4 data access address

 A data storage exception that specifies the (virtual) effective address accessed

 An instruction storage exception that specifies the (virtual) effective address read

 A data TLB miss exception that specifies the (virtual) effective address accessed

 An instruction TLB miss exception that specifies the (virtual) effective address read

The contents of this register is undefined for all other exceptions. When read with the MFS
instruction, the EAR is specified by setting Sa = 0x0003. The EAR register is illustrated in
Figure 2-5 and Table 2-10 provides bit descriptions and reset values.

0 31


EAR

Figure 2-5: EAR

Table 2-10: Exception Address Register (EAR)

Bits Name Description Reset Value

0:31 EAR Exception Address Register 0x00000000
30 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Registers
Exception Status Register (ESR)

The Exception Status Register contains status bits for the processor. When read with the MFS
instruction, the ESR is specified by setting Sa = 0x0005. The ESR register is illustrated in
Figure 2-6, Table 2-11 provides bit descriptions and reset values, and Table 2-12 provides the
Exception Specific Status (ESS).

19 20 26 27 31

  ¦ 
RESERVED DS ESS EC

Figure 2-6: ESR

Table 2-11: Exception Status Register (ESR)

Bits Name Description Reset Value

0:18 Reserved

19 DS Delay Slot Exception.

0 = not caused by delay slot instruction
1 = caused by delay slot instruction

Read-only

0

20:26 ESS Exception Specific Status

For details refer to Table 2-12.

Read-only

See Table 2-12

27:31 EC Exception Cause

00000 = Stream exception
00001 = Unaligned data access exception
00010 = Illegal op-code exception
00011 = Instruction bus error exception
00100 = Data bus error exception
00101 = Divide exception
00110 = Floating point unit exception
00111 = Privileged instruction exception
00111 = Stack protection violation exception
10000 = Data storage exception
10001 = Instruction storage exception
10010 = Data TLB miss exception
10011 = Instruction TLB miss exception

Read-only

0

MicroBlaze Processor Reference Guide www.xilinx.com 31
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Table 2-12: Exception Specific Status (ESS)

Exception
Cause

Bits Name Description Reset Value

Unaligned
Data Access

20 W Word Access Exception

0 = unaligned halfword access

1 = unaligned word access

0

21 S Store Access Exception

0 = unaligned load access

1 = unaligned store access

0

22:26 Rx Source/Destination Register

General purpose register used as
source (Store) or destination (Load)
in unaligned access

0

Illegal
Instruction

20:26 Reserved 0

Instruction
bus error

20 ECC Exception caused by ILMB
correctable or uncorrectable error

0

21:26 Reserved 0

Data bus
error

20 ECC Exception caused by DLMB
correctable or uncorrectable error

0

21:26 Reserved 0

Divide 20 DEC Divide - Division exception cause

0 = Divide-By-Zero

1 = Division Overflow

0

21:26 Reserved 0

Floating
point unit

20:26 Reserved 0

Privileged
instruction

20:26 Reserved 0

Stack
protection
violation

20:26 Reserved 0

Stream 20:22 Reserved 0

23:26 FSL Stream (FSL or AXI) index that
caused the exception

0

Data storage 20 DIZ Data storage - Zone protection

0 = Did not occur
1 = Occurred

0

21 S Data storage - Store instruction

0 = Did not occur
1 = Occurred

0

22:26 Reserved 0
32 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Registers
Branch Target Register (BTR)

The Branch Target Register only exists if the MicroBlaze processor is configured to use exceptions.
The register stores the branch target address for all delay slot branch instructions executed while
MSR[EIP] = 0. If an exception is caused by an instruction in a delay slot (that is, ESR[DS]=1), the
exception handler should return execution to the address stored in BTR instead of the normal
exception return address stored in R17. When read with the MFS instruction, the BTR is specified
by setting Sa = 0x000B. The BTR register is illustrated in Figure 2-7 and Table 2-13 provides bit
descriptions and reset values.

Instruction
storage

20 DIZ Instruction storage - Zone protection

0 = Did not occur
1 = Occurred

0

21:26 Reserved 0

Data TLB
miss

20 Reserved 0

21 S Data TLB miss - Store instruction

0 = Did not occur
1 = Occurred

0

22:26 Reserved 0

Instruction
TLB miss

20:26 Reserved 0

Table 2-12: Exception Specific Status (ESS) (Continued)

Exception
Cause

Bits Name Description Reset Value

0 31


BTR

Figure 2-7: BTR

Table 2-13: Branch Target Register (BTR)

Bits Name Description Reset Value

0:31 BTR Branch target address used by handler when
returning from an exception caused by an
instruction in a delay slot.

Read-only

0x00000000
MicroBlaze Processor Reference Guide www.xilinx.com 33
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Floating Point Status Register (FSR)

The Floating Point Status Register contains status bits for the floating point unit. It can be read with
an MFS, and written with an MTS instruction. When read or written, the register is specified by
setting Sa = 0x0007. The bits in this register are sticky  floating point instructions can only set bits
in the register, and the only way to clear the register is by using the MTS instruction. Figure 2-8
illustrates the FSR register and Table 2-14 provides bit descriptions and reset values.

Exception Data Register (EDR)

The Exception Data Register stores data read on a stream link (FSL or AXI) that caused a stream
exception.

The contents of this register is undefined for all other exceptions. When read with the MFS
instruction, the EDR is specified by setting Sa = 0x000D. Figure 2-9 illustrates the EDR register and
Table 2-15 provides bit descriptions and reset values.

Note: The register is only implemented if C_FSL_LINKS is greater than 0 and C_FSL_EXCEPTION
is set to 1.

27 28 29 30 31

     
RESERVED IO DZ OF UF DO

Figure 2-8: FSR

Table 2-14: Floating Point Status Register (FSR)

Bits Name Description Reset Value

0:26 Reserved undefined

27 IO Invalid operation 0

28 DZ Divide-by-zero 0

29 OF Overflow 0

30 UF Underflow 0

31 DO Denormalized operand error 0

0 31


EDR

Figure 2-9: EDR

Table 2-15: Exception Data Register (EDR)

Bits Name Description Reset Value

0:31 EDR Exception Data Register 0x00000000
34 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Registers
Stack Low Register (SLR)

The Stack Low Register stores the stack low limit use to detect stack overflow. When the address of
a load or store instruction using the stack pointer (register R1) as rA is less than the Stack Low
Register, a stack overflow occurs, causing a Stack Protection Violation exception if exceptions are
enabled in MSR.

When read with the MFS instruction, the SLR is specified by setting Sa = 0x0800. Figure 2-10
illustrates the SLR register and Table 2-16 provides bit descriptions and reset values.

Note: The register is only implemented if C_USE_STACK_PROTECTION is set to 1.

Stack High Register (SHR)

The Stack High Register stores the stack high limit use to detect stack underflow. When the address
of a load or store instruction using the stack pointer (register R1) as rA is greater than the Stack High
Register, a stack underflow occurs, causing a Stack Protection Violation exception if exceptions are
enabled in MSR.

When read with the MFS instruction, the SHR is specified by setting Sa = 0x0802. Figure 2-11
illustrates the SHR register and Table 2-17 provides bit descriptions and reset values.

Note: The register is only implemented if C_USE_STACK_PROTECTION is set to 1.

0 31


SLR

Figure 2-10: SLR

Table 2-16: Stack Low Register (SLR)

Bits Name Description Reset Value

0:31 SLR Stack Low Register 0x00000000

0 31


SHR

Figure 2-11: SHR

Table 2-17: Stack High Register (SHR)

Bits Name Description Reset Value

0:31 SHR Stack High Register 0xFFFFFFFF
MicroBlaze Processor Reference Guide www.xilinx.com 35
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Process Identifier Register (PID)

The Process Identifier Register is used to uniquely identify a software process during MMU address
translation. It is controlled by the C_USE_MMU configuration option on MicroBlaze. The register is
only implemented if C_USE_MMU is greater than 1 (User Mode) and C_AREA_OPTIMIZED is set
to 0. When accessed with the MFS and MTS instructions, the PID is specified by setting Sa =
0x1000. The register is accessible according to the memory management special registers parameter
C_MMU_TLB_ACCESS.

PID is also used when accessing a TLB entry:

 When writing Translation Look-Aside Buffer High (TLBHI) the value of PID is stored in the
TID field of the TLB entry

 When reading TLBHI and MSR[UM] is not set, the value in the TID field is stored in PID

Figure 2-12 illustrates the PID register and Table 2-18 provides bit descriptions and reset values.

24 31

 
RESERVED PID

Figure 2-12: PID

Table 2-18: Process Identifier Register (PID)

Bits Name Description Reset Value

0:23 Reserved

24:31 PID Used to uniquely identify a software process during
MMU address translation.

Read/Write

0x00
36 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Registers
Zone Protection Register (ZPR)

The Zone Protection Register is used to override MMU memory protection defined in TLB entries.
It is controlled by the C_USE_MMU configuration option on MicroBlaze. The register is only
implemented if C_USE_MMU is greater than 1 (User Mode), C_AREA_OPTIMIZED is set to 0, and
if the number of specified memory protection zones is greater than zero (C_MMU_ZONES > 0). The
implemented register bits depend on the number of specified memory protection zones
(C_MMU_ZONES). When accessed with the MFS and MTS instructions, the ZPR is specified by
setting Sa = 0x1001. The register is accessible according to the memory management special
registers parameter C_MMU_TLB_ACCESS. Figure 2-13 illustrates the ZPR register and Table 2-19
provides bit descriptions and reset values.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

               
ZP0 ZP1 ZP2 ZP3 ZP4 ZP5 ZP6 ZP7 ZP8 ZP9 ZP10 ZP11 ZP12 ZP13 ZP14 ZP15

Figure 2-13: ZPR

Table 2-19: Zone Protection Register (ZPR)

Bits Name Description Reset Value

0:1

2:3

...

30:31

ZP0

ZP1

...

ZP15

Zone Protect

User mode (MSR[UM] = 1):

00 = Override V in TLB entry. No access to the page is
allowed
01 = No override. Use V, WR and EX from TLB entry
10 = No override. Use V, WR and EX from TLB entry
11 = Override WR and EX in TLB entry. Access the page
as writable and executable

Privileged mode (MSR[UM] = 0):

00 = No override. Use V, WR and EX from TLB entry
01 = No override. Use V, WR and EX from TLB entry
10 = Override WR and EX in TLB entry. Access the page
as writable and executable
11 = Override WR and EX in TLB entry. Access the page
as writable and executable

Read/Write

0x00000000
MicroBlaze Processor Reference Guide www.xilinx.com 37
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Translation Look-Aside Buffer Low Register (TLBLO)

The Translation Look-Aside Buffer Low Register is used to access MMU Unified Translation Look-
Aside Buffer (UTLB) entries. It is controlled by the C_USE_MMU configuration option on
MicroBlaze. The register is only implemented if C_USE_MMU is greater than 1 (User Mode), and
C_AREA_OPTIMIZED is set to 0. When accessed with the MFS and MTS instructions, the TLBLO
is specified by setting Sa = 0x1003. When reading or writing TLBLO, the UTLB entry indexed by
the TLBX register is accessed. The register is readable according to the memory management
special registers parameter C_MMU_TLB_ACCESS.

The UTLB is reset on bit stream download (reset value is 0x00000000 for all TLBLO entries).

Note: The UTLB is not reset by the external reset inputs: Reset, MB_Reset and Debug_Rst.

Figure 2-14 illustrates the TLBLO register and Table 2-20 provides bit descriptions and reset
values.

0 22 23 24 28 29 30 31

       
RPN EX WR ZSEL W I M G

Figure 2-14: TLBLO

Table 2-20: Translation Look-Aside Buffer Low Register (TLBLO)

Bits Name Description Reset Value

0:21 RPN Real Page Number or Physical Page Number

When a TLB hit occurs, this field is read from the TLB
entry and is used to form the physical address. Depending
on the value of the SIZE field, some of the RPN bits are
not used in the physical address. Software must clear
unused bits in this field to zero.

Only defined when C_USE_MMU=3 (Virtual).

Read/Write

0x000000

22 EX Executable

When bit is set to 1, the page contains executable code,
and instructions can be fetched from the page. When bit is
cleared to 0, instructions cannot be fetched from the page.
Attempts to fetch instructions from a page with a clear EX
bit cause an instruction-storage exception.

Read/Write

0

38 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Registers
23 WR Writable

When bit is set to 1, the page is writable and store
instructions can be used to store data at addresses within
the page.

When bit is cleared to 0, the page is read-only (not
writable). Attempts to store data into a page with a clear
WR bit cause a data storage exception.

Read/Write

0

24:27 ZSEL Zone Select

This field selects one of 16 zone fields (Z0-Z15) from the
zone-protection register (ZPR). 
For example, if ZSEL 0x5, zone field Z5 is selected. The
selected ZPR field is used to modify the access protection
specified by the TLB entry EX and WR fields. It is also
used to prevent access to a page by overriding the TLB V
(valid) field.

Read/Write

0x0

28 W Write Through

When the parameter C_DCACHE_USE_WRITEBACK is
set to 1, this bit controls caching policy. A write-through
policy is selected when set to 1, and a write-back policy is
selected otherwise.

This bit is fixed to 1, and write-through is always used,
when C_DCACHE_USE_WRITEBACK is cleared to 0.

Read/Write

0/1

29 I Inhibit Caching

When bit is set to 1, accesses to the page are not cached
(caching is inhibited).

When cleared to 0, accesses to the page are cacheable.

Read/Write

0

30 M Memory Coherent

This bit is fixed to 0, because memory coherence is not
implemented on MicroBlaze.

Read Only

0

31 G Guarded

When bit is set to 1, speculative page accesses are not
allowed (memory is guarded).

When cleared to 0, speculative page accesses are allowed.

The G attribute can be used to protect memory-mapped
I/O devices from inappropriate instruction accesses.

Read/Write

0

Table 2-20: Translation Look-Aside Buffer Low Register (TLBLO) (Continued)

Bits Name Description Reset Value
MicroBlaze Processor Reference Guide www.xilinx.com 39
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Translation Look-Aside Buffer High Register (TLBHI)

The Translation Look-Aside Buffer High Register is used to access MMU Unified Translation
Look-Aside Buffer (UTLB) entries. It is controlled by the C_USE_MMU configuration option on
MicroBlaze. The register is only implemented if C_USE_MMU is greater than 1 (User Mode), and
C_AREA_OPTIMIZED is set to 0. When accessed with the MFS and MTS instructions, the TLBHI
is specified by setting Sa = 0x1004. When reading or writing TLBHI, the UTLB entry indexed by
the TLBX register is accessed. The register is readable according to the memory management
special registers parameter C_MMU_TLB_ACCESS.

PID is also used when accessing a TLB entry:

 When writing TLBHI the value of PID is stored in the TID field of the TLB entry

 When reading TLBHI and MSR[UM] is not set, the value in the TID field is stored in PID

The UTLB is reset on bit stream download (reset value is 0x00000000 for all TLBHI entries).

Note: The UTLB is not reset by the external reset inputs: Reset, MB_Reset and Debug_Rst.

Figure 2-15 illustrates the TLBHI register and Table 2-21 provides bit descriptions and reset values.

0 22 25 26 27 28 31

     
TAG SIZE V E U0 Reserved

Figure 2-15: TLBHI

Table 2-21: Translation Look-Aside Buffer High Register (TLBHI)

Bits Name Description
Reset
Value

0:21 TAG TLB-entry tag

Is compared with the page number portion of the virtual
memory address under the control of the SIZE field.

Read/Write

0x000000

22:24 SIZE Size

Specifies the page size. The SIZE field controls the bit
range used in comparing the TAG field with the page
number portion of the virtual memory address. The page
sizes defined by this field are listed in Table 2-36.

Read/Write

000

25 V Valid

When this bit is set to 1, the TLB entry is valid and
contains a page-translation entry.

When cleared to 0, the TLB entry is invalid.

Read/Write

0

40 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Registers
26 E Endian

When this bit is set to 1, a the page is accessed as a little
endian page if C_ENDIANNESS is 0 (Big Endian), or as
a big endian page otherwise.

When cleared to 0, the page is accessed as a big endian
page if C_ENDIANNESS is 0 (Big Endian), or as a little
endian page otherwise.

The E bit only affects data read or data write accesses.
Instruction accesses are not affected.

The E bit is only implemented when the parameter
C_USE_REORDER_INSTR is set to 1, otherwise it is
fixed to 0.

Read/Write

0

27 U0 User Defined

This bit is fixed to 0, since there are no user defined
storage attributes on MicroBlaze.

Read Only

0

28:31 Reserved

Table 2-21: Translation Look-Aside Buffer High Register (TLBHI) (Continued)

Bits Name Description
Reset
Value
MicroBlaze Processor Reference Guide www.xilinx.com 41
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Translation Look-Aside Buffer Index Register (TLBX)

The Translation Look-Aside Buffer Index Register is used as an index to the Unified Translation
Look-Aside Buffer (UTLB) when accessing the TLBLO and TLBHI registers. It is controlled by the
C_USE_MMU configuration option on MicroBlaze. The register is only implemented if
C_USE_MMU is greater than 1 (User Mode), and C_AREA_OPTIMIZED is set to 0. When accessed
with the MFS and MTS instructions, the TLBX is specified by setting Sa = 0x1002. Figure 2-16
illustrates the TLBX register and Table 2-22 provides bit descriptions and reset values.

0 26 31

  
MISS Reserved INDEX

Figure 2-16: TLBX

Table 2-22: Translation Look-Aside Buffer Index Register (TLBX)

Bits Name Description Reset Value

0 MISS TLB Miss

This bit is cleared to 0 when the TLBSX register is
written with a virtual address, and the virtual address is
found in a TLB entry. 
The bit is set to 1 if the virtual address is not found. It is
also cleared when the TLBX register itself is written.

Read Only

Can be read if the memory management special registers
parameter C_MMU_TLB_ACCESS > 0 (MINIMAL).

0

1:25 Reserved

26:31 INDEX TLB Index

This field is used to index the Translation Look-Aside
Buffer entry accessed by the TLBLO and TLBHI
registers. The field is updated with a TLB index when the
TLBSX register is written with a virtual address, and the
virtual address is found in the corresponding TLB entry.

Read/Write

Can be read and written if the memory management
special registers parameter C_MMU_TLB_ACCESS > 0
(MINIMAL).

000000
42 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Registers
Translation Look-Aside Buffer Search Index Register (TLBSX)

The Translation Look-Aside Buffer Search Index Register is used to search for a virtual page
number in the Unified Translation Look-Aside Buffer (UTLB). It is controlled by the C_USE_MMU
configuration option on MicroBlaze. The register is only implemented if C_USE_MMU is greater
than 1 (User Mode), and C_AREA_OPTIMIZED is set to 0. When written with the MTS instruction,
the TLBSX is specified by setting Sa = 0x1005. Figure 2-17 illustrates the TLBSX register and
Table 2-23 provides bit descriptions and reset values.

0 22 31

 
VPN Reserved

Figure 2-17: TLBSX

Table 2-23: Translation Look-Aside Buffer Index Search Register (TLBSX)

Bits Name Description Reset Value

0:21 VPN Virtual Page Number

This field represents the page number portion of the
virtual memory address. It is compared with the page
number portion of the virtual memory address under the
control of the SIZE field, in each of the Translation Look-
Aside Buffer entries that have the V bit set to 1.

If the virtual page number is found, the TLBX register is
written with the index of the TLB entry and the MISS bit
in TLBX is cleared to 0. If the virtual page number is not
found in any of the TLB entries, the MISS bit in the
TLBX register is set to 1.

Write Only

22:31 Reserved
MicroBlaze Processor Reference Guide www.xilinx.com 43
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Processor Version Register (PVR)

The Processor Version Register is controlled by the C_PVR configuration option on MicroBlaze.

 When C_PVR is set to 0 (None) the processor does not implement any PVR and
MSR[PVR]=0.

 When C_PVR is set to 1 (Basic), MicroBlaze implements only the first register: PVR0, and if
set to 2 (Full), all 12 PVR registers (PVR0 to PVR11) are implemented.

When read with the MFS instruction the PVR is specified by setting Sa = 0x200x, with x being the
register number between 0x0 and 0xB.

Table 2-24 through Table 2-35 provide bit descriptions and values.

Table 2-24: Processor Version Register 0 (PVR0)

Bits Name Description Value

0 CFG PVR implementation:
0 = Basic, 1 = Full

Based on C_PVR

1 BS Use barrel shifter C_USE_BARREL

2 DIV Use divider C_USE_DIV

3 MUL Use hardware multiplier C_USE_HW_MUL > 0 (None)

4 FPU Use FPU C_USE_FPU > 0 (None)

5 EXC Use any type of exceptions Based on C_*_EXCEPTION
Also set if C_USE_MMU > 0 (None)

6 ICU Use instruction cache C_USE_ICACHE

7 DCU Use data cache C_USE_DCACHE

8 MMU Use MMU C_USE_MMU > 0 (None)

9 BTC Use branch target cache C_USE_BRANCH_TARGET_CACHE

10 ENDI Selected endianness:
0 = Big endian, 1 = Little endian

C_ENDIANNESS

11 FT Implement fault tolerant features C_FAULT_TOLERANT

12 SPROT Use stack protection C_USE_STACK_PROTECTION

13 REORD Implement reorder instructions C_USE_REORDER_INSTR

14:15 Reserved 0

16:23 MBV MicroBlaze release version code Release Specific

0x1 = v5.00.a
0x2 = v5.00.b
0x3 = v5.00.c
0x4 = v6.00.a
0x6 = v6.00.b
0x5 = v7.00.a
0x7 = v7.00.b
0x8 = v7.10.a
0x9 = v7.10.b
0xA = v7.10.c
0xB = v7.10.d
0xC = v7.20.a
0xD = v7.20.b

0xE = v7.20.c
0xF = v7.20.d
0x10 = v7.30.a
0x11 = v7.30.b
0x12 = v8.00.a
0x13 = v8.00.b
0x14 = v8.10.a
0x15 = v8.20.a
0x16 = v8.20.b
0x17 = v8.30.a
0x18 = v8.40.a
0x19 = v8.40.b

24:31 USR1 User configured value 1 C_PVR_USER1
44 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Registers
Table 2-25: Processor Version Register 1 (PVR1)

Bits Name Description Value

0:31 USR2 User configured value 2 C_PVR_USER2

Table 2-26: Processor Version Register 2 (PVR2)

Bits Name Description Value

0 DAXI Data side AXI4 in use C_D_AXI

1 DLMB Data side LMB in use C_D_LMB

2 IAXI Instruction side AXI4 in use C_I_AXI

3 ILMB Instruction side LMB in use C_I_LMB

4 IRQEDGE Interrupt is edge triggered C_INTERRUPT_IS_EDGE

5 IRQPOS Interrupt edge is positive C_EDGE_IS_POSITIVE

6 DPLB Data side PLB in use C_D_PLB

7 IPLB Instruction side PLB in use C_I_PLB

8 INTERCON Use PLB interconnect C_INTERCONNECT = 1 (PLBv46)

9 STREAM Use AXI4-Stream
interconnect

C_STREAM_INTERCONNECT = 1
(AXI4-Stream)

10:11 Reserved

12 FSL Use extended stream (FSL or
AXI) instructions

C_USE_EXTENDED_FSL_INSTR

13 FSLEXC Generate exception for stream
control bit (FSL or AXI)
mismatch

C_FSL_EXCEPTION

14 MSR Use msrset and msrclr
instructions

C_USE_MSR_INSTR

15 PCMP Use pattern compare and CLZ
instructions

C_USE_PCMP_INSTR

16 AREA Select implementation to
optimize area with lower
instruction throughput

C_AREA_OPTIMIZED

17 BS Use barrel shifter C_USE_BARREL

18 DIV Use divider C_USE_DIV

19 MUL Use hardware multiplier C_USE_HW_MUL > 0 (None)

20 FPU Use FPU C_USE_FPU > 0 (None)

21 MUL64 Use 64-bit hardware
multiplier

C_USE_HW_MUL = 2 (Mul64)
MicroBlaze Processor Reference Guide www.xilinx.com 45
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
22 FPU2 Use floating point conversion
and square root instructions

C_USE_FPU = 2 (Extended)

23 IPLBEXC Generate exception for IPLB
error

C_IPLB_BUS_EXCEPTION

24 DPLBEXC Generate exception for DPLB
error

C_DPLB_BUS_EXCEPTION

25 OP0EXC Generate exception for 0x0
illegal opcode

C_OPCODE_0x0_ILLEGAL

26 UNEXC Generate exception for
unaligned data access

C_UNALIGNED_EXCEPTIONS

27 OPEXC Generate exception for any
illegal opcode

C_ILL_OPCODE_EXCEPTION

28 AXIIEXC Generate exception for
M_AXI_I error

C_M_AXI_I_BUS_EXCEPTION

29 AXIDEXC Generate exception for
M_AXI_D error

C_M_AXI_D_BUS_EXCEPTION

30 DIVEXC Generate exception for
division by zero or division
overflow

C_DIV_ZERO_EXCEPTION

31 FPUEXC Generate exceptions from
FPU

C_FPU_EXCEPTION

Table 2-27: Processor Version Register 3 (PVR3)

Bits Name Description Value

0 DEBUG Use debug logic C_DEBUG_ENABLED

1:2 Reserved

3:6 PCBRK Number of PC breakpoints C_NUMBER_OF_PC_BRK

7:9 Reserved

10:12 RDADDR Number of read address
breakpoints

C_NUMBER_OF_RD_ADDR_BRK

13:15 Reserved

16:18 WRADDR Number of write address
breakpoints

C_NUMBER_OF_WR_ADDR_BRK

19 Reserved

20:24 FSL Number of stream links C_FSL_LINKS

25:28 Reserved

29:31 BTC_SIZE Branch Target Cache size C_BRANCH_TARGET_CACHE_SIZE

Table 2-26: Processor Version Register 2 (PVR2) (Continued)

Bits Name Description Value
46 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Registers
Table 2-28: Processor Version Register 4 (PVR4)

Bits Name Description Value

0 ICU Use instruction cache C_USE_ICACHE

1:5 ICTS Instruction cache tag size C_ADDR_TAG_BITS

6 Reserved 1

7 ICW Allow instruction cache write C_ALLOW_ICACHE_WR

8:10 ICLL The base two logarithm of the
instruction cache line length

log2(C_ICACHE_LINE_LEN)

11:15 ICBS The base two logarithm of the
instruction cache byte size

log2(C_CACHE_BYTE_SIZE)

16 IAU The instruction cache is used for
all memory accesses within the
cacheable range

C_ICACHE_ALWAYS_USED

17 Reserved 0

18 ICI Instruction cache XCL protocol C_ICACHE_INTERFACE

19:21 ICV Instruction cache victims 0-3: C_ICACHE_VICTIMS = 0,2,4,8

22:23 ICS Instruction cache streams C_ICACHE_STREAMS

24 IFTL Instruction cache tag uses
distributed RAM

C_ICACHE_FORCE_TAG_LUTRAM

25 ICDW Instruction cache data width C_ICACHE_DATA_WIDTH > 0

26:31 Reserved 0

Table 2-29: Processor Version Register 5 (PVR5)

Bits Name Description Value

0 DCU Use data cache C_USE_DCACHE

1:5 DCTS Data cache tag size C_DCACHE_ADDR_TAG

6 Reserved 1

7 DCW Allow data cache write C_ALLOW_DCACHE_WR

8:10 DCLL The base two logarithm of the
data cache line length

log2(C_DCACHE_LINE_LEN)

11:15 DCBS The base two logarithm of the
data cache byte size

log2(C_DCACHE_BYTE_SIZE)

16 DAU The data cache is used for all
memory accesses within the
cacheable range

C_DCACHE_ALWAYS_USED

17 DWB Data cache policy is write-back C_DCACHE_USE_WRITEBACK
MicroBlaze Processor Reference Guide www.xilinx.com 47
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
18 DCI Data cache XCL protocol C_DCACHE_INTERFACE

19:21 DCV Data cache victims 0-3: C_DCACHE_VICTIMS = 0,2,4,8

22:23 Reserved 0

24 DFTL Data cache tag uses distributed
RAM

C_DCACHE_FORCE_TAG_LUTRAM

25 DCDW Data cache data width C_DCACHE_DATA_WIDTH > 0

26:31 Reserved 0

Table 2-30: Processor Version Register 6 (PVR6)

Bits Name Description Value

0:31 ICBA Instruction Cache Base Address C_ICACHE_BASEADDR

Table 2-31: Processor Version Register 7 (PVR7)

Bits Name Description Value

0:31 ICHA Instruction Cache High Address C_ICACHE_HIGHADDR

Table 2-32: Processor Version Register 8 (PVR8)

Bits Name Description Value

0:31 DCBA Data Cache Base Address C_DCACHE_BASEADDR

Table 2-33: Processor Version Register 9 (PVR9)

Bits Name Description Value

0:31 DCHA Data Cache High Address C_DCACHE_HIGHADDR

Table 2-29: Processor Version Register 5 (PVR5) (Continued)

Bits Name Description Value
48 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Registers
Table 2-34: Processor Version Register 10 (PVR10)

Bits Name Description Value

0:7 ARCH Target architecture: Defined by parameter
C_FAMILY

0x6

0x7

0x8


0x9

0xA

0xB

0xC

0xD

0xE

0xF

0x10

0x11


0x12

=

=

=


=

=

=

=

=

=

=

=

=


=

Spartan®-3, Automotive Spartan-3

Virtex-4, Defence Grade Virtex-4 Q
Space-Grade Virtex-4 QV

Virtex-5, Defence Grade Virtex-5 Q
Space-Grade Virtex-5 QV

Spartan-3E, Automotive Spartan-3E

Spartan-3A, Automotive Spartan-3A

Spartan-3AN

Spartan-3A DSP,
Automotive Spartan-3A DSP

Spartan-6, Automotive Spartan-6,
Defence Grade Spartan-6 Q

Virtex-6, Defence Grade Virtex-6 Q

Virtex-7, Defence Grade Virtex-7 Q

Kintex™-7, Defence Grade Kintex-7 Q

Artix™-7, Automotive Artix-7,
Defence Grade Artix-7 Q

Zynq™-7000, Automotive Zynq-7000,
Defence Grade Zynq-7000 Q

8:31 Reserved 0

Table 2-35: Processor Version Register 11 (PVR11)

Bits Name Description Value

0:1 MMU Use MMU: C_USE_MMU

0 = None
1 = User Mode

2 = Protection
3 = Virtual

2:4 ITLB Instruction Shadow TLB size log2(C_MMU_ITLB_SIZE)

5:7 DTLB Data Shadow TLB size log2(C_MMU_DTLB_SIZE)

8:9 TLBACC TLB register access: C_MMU_TLB_ACCESS

0 = Minimal
1 = Read

2 = Write
3 = Full

10:14 ZONES Number of memory protection zones C_MMU_ZONES

15 PRIVINS Privileged instructions:

0 = Full protection
1 = Allow stream instructions

C_MMU_PRIVILEGED_INSTR

16:16 Reserved Reserved for future use 0

17:31 RSTMSR Reset value for MSR C_RESET_MSR
MicroBlaze Processor Reference Guide www.xilinx.com 49
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Pipeline Architecture
MicroBlaze instruction execution is pipelined. For most instructions, each stage takes one clock
cycle to complete. Consequently, the number of clock cycles necessary for a specific instruction to
complete is equal to the number of pipeline stages, and one instruction is completed on every cycle.
A few instructions require multiple clock cycles in the execute stage to complete. This is achieved
by stalling the pipeline.

When executing from slower memory, instruction fetches may take multiple cycles. This additional
latency directly affects the efficiency of the pipeline. MicroBlaze implements an instruction prefetch
buffer that reduces the impact of such multi-cycle instruction memory latency. While the pipeline is
stalled by a multi-cycle instruction in the execution stage, the prefetch buffer continues to load
sequential instructions. When the pipeline resumes execution, the fetch stage can load new
instructions directly from the prefetch buffer instead of waiting for the instruction memory access to
complete. If instructions are modified during execution (e.g. with self-modifying code), the prefetch
buffer should be emptied before executing the modified instructions, to ensure that it does not
contain the old unmodified instructions. The recommended way to do this is using an MBAR
instruction, although it is also possible to use a synchronizing branch instruction, for example BRI 4.

Three Stage Pipeline
With C_AREA_OPTIMIZED set to 1, the pipeline is divided into three stages to minimize hardware
cost: Fetch, Decode, and Execute.

Five Stage Pipeline
With C_AREA_OPTIMIZED set to 0, the pipeline is divided into five stages to maximize
performance: Fetch (IF), Decode (OF), Execute (EX), Access Memory (MEM), and Writeback
(WB).

Branches
Normally the instructions in the fetch and decode stages (as well as prefetch buffer) are flushed
when executing a taken branch. The fetch pipeline stage is then reloaded with a new instruction from
the calculated branch address. A taken branch in MicroBlaze takes three clock cycles to execute,
two of which are required for refilling the pipeline. To reduce this latency overhead, MicroBlaze
supports branches with delay slots.

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7

instruction 1 Fetch Decode Execute

instruction 2 Fetch Decode Execute Execute Execute

instruction 3 Fetch Decode Stall Stall Execute

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7 cycle8 cycle9

instruction 1 IF OF EX MEM WB

instruction 2 IF OF EX MEM MEM MEM WB

instruction 3 IF OF EX Stall Stall MEM WB
50 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Pipeline Architecture
Delay Slots

When executing a taken branch with delay slot, only the fetch pipeline stage in MicroBlaze is
flushed. The instruction in the decode stage (branch delay slot) is allowed to complete. This
technique effectively reduces the branch penalty from two clock cycles to one. Branch instructions
with delay slots have a D appended to the instruction mnemonic. For example, the BNE instruction
does not execute the subsequent instruction (does not have a delay slot), whereas BNED executes
the next instruction before control is transferred to the branch location.

A delay slot must not contain the following instructions: IMM, branch, or break. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

Instructions that could cause recoverable exceptions (e.g. unaligned word or halfword load and
store) are allowed in the delay slot. If an exception is caused in a delay slot the ESR[DS] bit is set,
and the exception handler is responsible for returning the execution to the branch target (stored in
the special purpose register BTR). If the ESR[DS] bit is set, register R17 is not valid (otherwise it
contains the address following the instruction causing the exception).

Branch Target Cache

To improve branch performance, MicroBlaze provides a Branch Target Cache (BTC) coupled with
a branch prediction scheme. With the BTC enabled, a correctly predicted immediate branch or
return instruction incurs no overhead.

The BTC operates by saving the target address of each immediate branch and return instruction the
first time the instruction is encountered. The next time it is encountered, it is usually found in the
Branch Target Cache, and the Instruction Fetch Program Counter is then simply changed to the
saved target address, in case the branch should be taken. Unconditional branches and return
instructions are always taken, whereas conditional branches use branch prediction, to avoid taking a
branch that should not have been taken and vice versa.

The BTC is cleared when a memory barrier (MBAR 0) or synchronizing branch (BRI 4) is executed.

There are three cases where the branch prediction can cause a mispredict, namely:

 A conditional branch that should not have been taken, is actually taken,

 A conditional branch that should actually have been taken, is not taken,

 The target address of a return instruction is incorrect, which may occur when returning from a
function called from different places in the code.

All of these cases are detected and corrected when the branch or return instruction reaches the
execute stage, and the branch prediction bits or target address are updated in the BTC, to reflect the
actual instruction behavior. This correction incurs a penalty of two clock cycles.

The size of the BTC can be selected with C_BRANCH_TARGET_CACHE_SIZE. The default
recommended setting uses one block RAM, and provides either 512 entries (for Virtex-5, Virtex-6,
and 7 Series) or 256 entries (for all other families). When selecting 64 entries or below, distributed
RAM is used to implement the BTC, otherwise block RAM is used.

When the BTC uses block RAM, and C_FAULT_TOLERANT is set to 1, block RAMs are protected
by parity. In case of a parity error, the branch is not predicted. To avoid accumulating errors in this
case, the BTC should be cleared periodically by a synchronizing branch.

The Branch Target Cache is available when C_USE_BRANCH_TARGET_CACHE is set to 1 and
C_AREA_OPTIMIZED is set to 0.
MicroBlaze Processor Reference Guide www.xilinx.com 51
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Memory Architecture
MicroBlaze is implemented with a Harvard memory architecture; instruction and data accesses are
done in separate address spaces. Each address space has a 32-bit range (that is, handles up to 4-GB
of instructions and data memory respectively). The instruction and data memory ranges can be made
to overlap by mapping them both to the same physical memory. The latter is useful for software
debugging.

Both instruction and data interfaces of MicroBlaze are default 32 bits wide and use big endian or
little endian, bit-reversed format, depending on the parameter C_ENDIANNESS. MicroBlaze
supports word, halfword, and byte accesses to data memory.

Data accesses must be aligned (word accesses must be on word boundaries, halfword on halfword
boundaries), unless the processor is configured to support unaligned exceptions. All instruction
accesses must be word aligned.

MicroBlaze prefetches instructions to improve performance, using the instruction prefetch buffer
and (if enabled) instruction cache streams. To avoid attempts to prefetch instructions beyond the end
of physical memory, which may cause an instruction bus error or a processor stall, instructions must
not be located too close to the end of physical memory. The instruction prefetch buffer requires 16
bytes margin, and using instruction cache streams adds two additional cache lines (32 or 64 bytes).

MicroBlaze does not separate data accesses to I/O and memory (it uses memory mapped I/O). The
processor has up to three interfaces for memory accesses:

 Local Memory Bus (LMB)

 Advanced eXtensible Interface (AXI4) or Processor Local Bus (PLB)

 Advanced eXtensible Interface (AXI4) or Xilinx CacheLink (XCL)

The LMB memory address range must not overlap with AXI4, PLB or XCL ranges.

The C_ENDIANNESS parameter is automatically set to little endian when using AXI4, and to big
endian when using PLB, but can be overridden by the user.

MicroBlaze has a single cycle latency for accesses to local memory (LMB) and for cache read hits,
except with C_AREA_OPTIMIZED set to 1, when data side accesses and data cache read hits
require two clock cycles, and with C_FAULT_TOLERANT set to 1, when byte writes and halfword
writes to LMB normally require two clock cycles.

The data cache write latency depends on C_DCACHE_USE_WRITEBACK. When
C_DCACHE_USE_WRITEBACK is set to 1, the write latency normally is one cycle (more if the
cache needs to do memory accesses). When C_DCACHE_USE_WRITEBACK is cleared to 0, the
write latency normally is two cycles (more if the posted-write buffer in the memory controller is
full).

The MicroBlaze instruction and data caches can be configured to use 4 or 8 word cache lines. When
using a longer cache line, more bytes are prefetched, which generally improves performance for
software with sequential access patterns. However, for software with a more random access pattern
the performance can instead decrease for a given cache size. This is caused by a reduced cache hit
rate due to fewer available cache lines.

For details on the different memory interfaces refer to Chapter 3, MicroBlaze Signal Interface
Description.
52 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com

Privileged Instructions
Privileged Instructions
The following MicroBlaze instructions are privileged:

 GET, GETD,PUT,PUTD (except when explicitly allowed)

 WIC, WDC

 MTS

 MSRCLR, MSRSET (except when only the C bit is affected)

 BRK

 RTID, RTBD, RTED

 BRKI (except when jumping to physical address C_BASE_VECTORS + 0x8 or
C_BASE_VECTORS + 0x18)

 SLEEP

Attempted use of these instructions when running in user mode causes a privileged instruction
exception.

When setting the parameter C_MMU_PRIVILEGED_INSTR to 1, the instructions GET, GETD,
PUT, and PUTD are not considered privileged, and can be executed when running in user mode. It
is strongly discouraged to do this, unless absolutely necessary for performance reasons, since it
allows application programs to interfere with each other.

There are six ways to leave user mode and virtual mode:

1. Hardware generated reset (including debug reset)

2. Hardware exception

3. Non-maskable break or hardware break

4. Interrupt

5. Executing "BRALID Re,C_BASE_VECTORS + 0x8” to perform a user vector exception

6. Executing the software break instructions “BRKI” jumping to physical address
C_BASE_VECTORS + 0x8 or C_BASE_VECTORS + 0x18

In all of these cases, except hardware generated reset, the user mode and virtual mode status is saved
in the MSR UMS and VMS bits.

Application (user-mode) programs transfer control to system-service routines (privileged mode
programs) using the BRALID or BRKI instruction, jumping to physical address
C_BASE_VECTORS + 0x8. Executing this instruction causes a system-call exception to occur. The
exception handler determines which system-service routine to call and whether the calling
application has permission to call that service. If permission is granted, the exception handler
performs the actual procedure call to the system-service routine on behalf of the application
program.

The execution environment expected by the system-service routine requires the execution of
prologue instructions to set up that environment. Those instructions usually create the block of
storage that holds procedural information (the activation record), update and initialize pointers, and
save volatile registers (registers the system-service routine uses). Prologue code can be inserted by
the linker when creating an executable module, or it can be included as stub code in either the
system-call interrupt handler or the system-library routines.

Returns from the system-service routine reverse the process described above. Epilog code is
executed to unwind and deallocate the activation record, restore pointers, and restore volatile
registers. The interrupt handler executes a return from exception instruction (RTED) to return to the
application.
MicroBlaze Processor Reference Guide www.xilinx.com 53
UG081 (v14.4)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Virtual-Memory Management
Programs running on MicroBlaze use effective addresses to access a flat 4 GB address space. The
processor can interpret this address space in one of two ways, depending on the translation mode:

 In real mode, effective addresses are used to directly access physical memory

 In virtual mode, effective addresses are translated into physical addresses by the virtual-
memory management hardware in the processor

Virtual mode provides system software with the ability to relocate programs and data anywhere in
the physical address space. System software can move inactive programs and data out of physical
memory when space is required by active programs and data.

Relocation can make it appear to a program that more memory exists than is actually implemented
by the system. This frees the programmer from working within the limits imposed by the amount of
physical memory present in a system. Programmers do not need to know which physical-memory
addresses are assigned to other software processes and hardware devices. The addresses visible to
programs are translated into the appropriate physical addresses by the processor.

Virtual mode provides greater control over memory protection. Blocks of memory as small as 1 KB
can be individually protected from unauthorized access. Protection and relocation enable system
software to support multitasking. This capability gives the appearance of simultaneous or near-
simultaneous execution of multiple programs.

In MicroBlaze, virtual mode is implemented by the memory-management unit (MMU), available
when C_USE_MMU is set to 3 (Virtual) and C_AREA_OPTIMIZED is set to 0. The MMU controls
effective-address to physical-address mapping and supports memory protection. Using these
capabilities, system software can implement demand-paged virtual memory and other memory
management schemes.

The MicroBlaze MMU implementation is based upon PowerPC™ 405. For details, see the
PowerPC Processor Reference Guide (UG011) document.

The MMU features are summarized as follows:

 Translates effective addresses into physical addresses

 Controls page-level access during address translation

 Provides additional virtual-mode protection control through the use of zones

 Provides independent control over instruction-address and data-address translation and
protection

 Supports eight page sizes: 1 kB, 4 kB, 16 kB, 64 kB, 256 kB, 1 MB, 4 MB, and 16 MB. Any
combination of page sizes can be used by system software

 Software controls the page-replacement strategy

Real Mode
The processor references memory when it fetches an instruction and when it accesses data with a
load or store instruction. Programs reference memory locations using a 32-bit effective address
calculated by the processor. When real mode is enabled, the physical address is identical to the
effective address and the processor uses it to access physical memory. After a processor reset, the
processor operates in real mode. Real mode can also be enabled by clearing the VM bit in the MSR.

Physical-memory data accesses (loads and stores) are performed in real mode using the effective
address. Real mode does not provide system software with virtual address translation, but the full
memory access-protection is available, implemented when C_USE_MMU > 1 (User Mode) and
C_AREA_OPTIMIZED = 0. Implementation of a real-mode memory manager is more
54 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v14.4)

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug011.pdf

Virtual-Memory Management
straightforward than a virtual-mode memory manager. Real mode is often an appropriate solution
for memory management in simple embedded environments, when access-protection is necessary,
but virtual address translation is not required.

Virtual Mode
In virtual mode, the processor translates an effective address into a physical address using the
process shown in Figure 2-18. Virtual mode can be enabled by setting the VM bit in the MSR..

Each address shown in Figure 2-18 contains a page-number field and an offset field. The page
number represents the portion of the address translated by the MMU. The offset represents the byte
offset into a page and is not translated by the MMU. The virtual address consists of an additional
field, called the process ID (PID), which is taken from the PID register (see Process-ID Register,
page 36). The combination of PID and effective page number (EPN) is referred to as the virtual page
number (VPN). The value n is determined by the page size, as shown in Table 2-36.

System software maintains a page-translation table that contains entries used to translate each
virtual page into a physical page. The page size defined by a page translation entry determines the
size of the page number and offset fields. For example, when a 4 kB page size is used, the page-
number field is 20 bits and the offset field is 12 bits. The VPN in this case is 28 bits.

Then the most frequently used page translations are stored in the translation look-aside buffer
(TLB). When translating a virtual address, the MMU examines the page-translation entries for a
matching VPN (PID and EPN). Rather than examining all entries in the table, only entries contained
in the processor TLB are examined. When a page-translation entry is found with a matching VPN,
the corresponding physical-page number is read from the entry and combined with the offset to form
the 32-bit physical address. This physical address is used by the processor to reference memory.

Figure 2-18: Virtual-Mode Address Translation

UG011_37_021302

32-Bit Effective Address
0

Effective Page Number Offset

n 31

0

PID

24 31

Translation Look-Aside
Buffer (TLB) Look-Up

0

Effective Page Number Offset

n+8 39

PID

8

40-Bit Virtual Address

0

Real Page Number Offset

n 31

32-Bit Physical Address

Process ID Register
MicroBlaze Processor Reference Guide www.xilinx.com 55
UG081 (v14.4)

