
OpenAMP Framework
for Zynq Devices

Getting Started Guide

UG1186 (v2016.1) May 26 , 2016

Xilinx OpenAMP Framework www.xilinx.com 2
UG1186 (v2016.1) May 26 , 2016

Revision History
The following table shows the revision history for this document.

Date Version Revision

05/26/2016 2016.1 Change version to match Vivado release.

05/05/2016 2.0 Changed the title to Chapter 2, Building Linux Applications and Remote Firmware.
Added a note to the introduction of Chapter 2, Building Linux Applications and
Remote Firmware.
Changed Settings for the Device Tree Binary Source in Chapter 3.
Added steps to Setting up PetaLinux with OpenAMP in Chapter 3.
Modified the procedure for Setting up PetaLinux with OpenAMP in Chapter 3.
Modified Running the Proxy Application in Chapter 3.
Added Appendix A, Configuration Parameters.
Added Appendix B, Exercise.
Added document references to Appendix C, Additional Resources and Legal Notices.

11/18/2015 1.0 Initial Public Access Release.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=2

Table of Contents
Chapter 1: Overview

Introduction . 5
Components in OpenAMP. 6
Process Overview. 7

Chapter 2: Building Linux Applications and Remote Firmware
Introduction . 9
Echo Test in Linux Master and Bare-Metal or FreeRTOS Remotes. 9
Matrix Multiplication for Linux Master and Bare-Metal or FreeRTOS Remotes 10
Proxy Application for Linux Masters and Bare-Metal or FreeRTOS Remotes 10
Building Remote Applications in XSDK . 11
OpenAMP XSDK Key Source Files . 13

Chapter 3: Building and Running a Linux Project with Applications
Introduction . 14
Setting up PetaLinux with OpenAMP . 14
Settings for the Device Tree Binary Source . 17
Building the Applications and the Linux Project . 18
Booting the PetaLinux Project. 18
Running the Example Applications . 20

Chapter 4: Remoteproc Development
Introduction . 22
remoteproc API Functions. 22

Chapter 5: RPMsg Development
Introduction . 24
RPMsg API Functions . 24

Appendix A: Configuration Parameters
Introduction . 31
Xilinx OpenAMP Framework www.xilinx.com 3
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=3

Appendix B: Exercise
ZynqMP Two Cortex-R5 Running Concurrently . 36

Appendix C: Additional Resources and Legal Notices
Xilinx Resources . 39
Solution Centers. 39
Xilinx Documentation . 39
Please Read: Important Legal Notices . 40
Xilinx OpenAMP Framework www.xilinx.com 4
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=4

Chapter 1

Overview

Introduction
Xilinx® open asymmetric multi-processing (OpenAMP) is a framework providing the
software components needed to enable the development of software applications for
asymmetric multi-processing (AMP) systems. The OpenAMP framework provides the
following for both Zynq® UltraScale+™ MPSoC and Zynq-7000™ All Programmable (AP)
SoC devices:

• The remoteproc, RPMsg, and virtIO components that are used for a Linux master or
a bare-metal remote configuration.

• Proxy infrastructure and demos that showcase the ability of a proxy on a master
processor running Linux on the ARM processor unit (APU) to handle printf, scanf,
open, close, read, and write calls from a bare-metal OS-based remote contexts
running on the remote processor unit (RPU).

Some of the advantages provided by the OpenAMP Framework for Zynq-7000 AP Soc and
Zynq Ultrascale+ MPSoC devices are, as follows:

• Process overviews for using the OpenAMP Framework components, with descriptions
of all included functions.

• Sample implementations of using AMP across a heterogeneous system with RPMsg.

• Bare-metal and Linux examples to bootstrap development. Step-by-step procedures for
building bare-metal and FreeRTOS applications are provided, as well as pointers to
further explanatory information in the code base.

• Demonstration of using RPMsg communication channel implementation for a
multiprocessor system-on-chip such as the Zynq UltraScale+ MPSoC device.

• FreeRTOS support for Cortex-R5 slaves.

• Examples and applications distributed in the Xilinx Software Development Kit (XSDK),
with templates to use for echo-tests, matrix multiplications, and RPC.
Xilinx OpenAMP Framework www.xilinx.com 5
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=5

Chapter 1: Overview
Software Requirements
The requirement of the current versions of PetaLinux and XSDK requirements must be met.

° Petalinux must be installed

° XSDK might need to be installed if you want to rebuild the remote processor
firmware.

Prerequisites
To use the OpenAMP Framework effectively, you must have a basic understanding of:

• Linux, PetaLinux, and Xilinx XSDK

• How to boot a Xilinx board using JTAG boot

• The remoteproc, RPMsg, and virtIO components used in Linux and bare-metal

Components in OpenAMP
OpenAMP framework uses the following key components:

• virtIO: the virtIO is a virtualization standard for network and disk device drivers
where only the driver on the guest device is aware it is running in a virtual
environment, and cooperates with the hypervisor. This concept is used by RPMsg and
remoteproc for a processor to communicate to the remote.

• remoteproc: This API controls the life cycle management (LCM) of the remote
processors. The remoteproc API that OpenAMP uses is compliant with the
infrastructure present in the Linux Kernel 3.18 and later. The remoteproc uses
information published through the remote processor firmware resource table to
allocate system resources and to create virtIO devices.

• RPMsg: This API allows inter-process communications (IPC) between software running
on independent cores in an AMP system. This is also compliant with the RPMsg bus
infrastructure present in the Linux Kernel version 3.18 and later.

The main Linux Kernel allows the following:

• Linux applications running on the master processor to control the LCM of a remote
processor

• IPC between the master and remotes

The main Linux Kernel does not include source code required to support other platforms
running on the remote processor (such as bare-metal or FreeRTOS applications) to
communicate with a Linux master.
Xilinx OpenAMP Framework www.xilinx.com 6
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=6

Chapter 1: Overview
The OpenAMP framework provides this missing functionality by providing the infrastructure
required for FreeRTOS and bare-metal environments to communicate with the Linux Kernel
in AMP systems. This is possible because the OpenAMP framework builds upon the
remoteproc, RPMsg, and virtIO functions included in the Linux Kernel.

Process Overview
It is common for the master processor in an AMP system to bring up software on the remote
cores on a demand-driven basis. These cores then communicate using inter process
communication (IPC). This allows the master processor to off-load work to the other
processors, called remote processors. Such activities are coordinated and managed by the
Xilinx OpenAMP software which builds upon pre-established capabilities within Linux: such
as the RPMsg, remoteproc, and virtIO functions.

The general OpenAMP flow is as follows:

1. The Linux master configures the remote processor and shared memory is created.

2. The master boots the remote processor.

3. The remote processor calls remoteproc_resource_init(), which creates and
initializes the virtIO resources and the RPMsg channels for the master.

4. The master receives these channels and invokes the callback channel that was created.

5. The master responds to the remote context, acknowledging the remote processor and
application.

6. The remote invokes the RPMsg channel that was registered. The RPMsg channel is now
established, and both sides can use the RPMsg calls to communicate.

To shut down the remote processor:

1. The master application sends an application-specific shutdown message to the remote
application.

2. The remote application cleans up its resources and sends an acknowledgment to the
master.

3. The remote calls the remoteproc_resource_deinit() function to free the
remoteproc resources on the remote side.

4. The master shuts down the remote processor and frees the remoteproc on its side.

Figure 1-1 shows the process interactions.
Xilinx OpenAMP Framework www.xilinx.com 7
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=7

Chapter 1: Overview
For more information, see the specific function descriptions in Chapter 4, Remoteproc
Development and Chapter 5, RPMsg Development.

X-Ref Target - Figure 1-1

Figure 1-1: System Sequence Diagram
Xilinx OpenAMP Framework www.xilinx.com 8
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=8

Chapter 2

Building Linux Applications and Remote
Firmware

Introduction
The Xilinx® software development kit (XSDK) contains templates to aid in the development
of OpenAMP Linux master applications, and bare-metal/FreeRTOS remote applications.

The following sections describe how to create OpenAMP applications with XSDK and
PetaLinux tools.

• Use XSDK to create the bare-metal or FreeRTOS remote applications

• Use PetaLinux tools to create Linux user applications and Kernel user modules, build
the Linux kernel, generate the device tree, and generate the rootfs.

Note: It is assumed here that you use the demo Linux applications already included in the PetaLinux BSP,
and it is built using Petalinux. You can otherwise build your own Linux applications with XSDK
documentation. See the Xilinx Software Developer Kit Help (UG782) for more information [Ref 3].

Echo Test in Linux Master and Bare-Metal or
FreeRTOS Remotes
This test application sends a number of payloads from the master to the remote and tests
the integrity of the transmitted data.

• The echo test application uses the Linux master to boot the remote bare-metal
firmware using remoteproc .

• The Linux master then transmits payloads to the remote firmware using RPMsg. The
remote firmware echoes back the received data using RPMsg.

• The Linux master verifies and prints the payload.

For more information on the echo test application, see the relevant source code in the
PetaLinux BSP:

• Linux master (Kernel space):
components/modules/rpmsg_echo_test_kern_app/
Xilinx OpenAMP Framework www.xilinx.com 9
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=9

Chapter 2: Building Linux Applications and Remote Firmware
• Linux master (user space): components/apps/echo_test/

• Bare-metal remote echo test firmware:
components/apps/echo_test/data/image_echo_test

Matrix Multiplication for Linux Master and
Bare-Metal or FreeRTOS Remotes
The matrix multiplication application provides a more complex test that generates two
matrices on the master. These matrices are then sent to the remote, which is used to
multiply the matrices. The remote then sends the result back to the master, which displays
the result.

The Linux master boots the bare-metal remote firmware using remoteproc. It then
transmits two randomly-generated matrices using RPMsg.

The bare-metal firmware multiplies the two matrices and transmits the result back to the
master using RPMsg. For more information on the matrix multiplication application, see the
relevant source code:

• Linux master (Kernel space): components/modules/rpmsg_mat_mul_kern_app/

• Linux master (user space): components/apps/mat_mul_demo/

• Bare-metal pre-built, remote matrix multiply firmware:
components/apps/mat_mul_demo/data/image_matrix_multiply

Proxy Application for Linux Masters and
Bare-Metal or FreeRTOS Remotes
This application creates a proxy between the Linux master and the remote core, which
allows the remote firmware to use console and execute file I/O on the master.

The Linux master boots the firmware using the proxy_app. The remote firmware executes
file I/O on the Linux file system (FS), which is on the master processor. The remote firmware
also uses the master console to receive input and display output. For more information on
the proxy application, see the relevant source code:

• Linux master (Kernel space): components/modules/rpmsg_proxy_dev_driver/

• Linux master (user space): components/apps/proxy_app/

• Bare-metal, prebuilt remote proxy firmware:
components/apps/proxy_app/data/image_rpc_demo
Xilinx OpenAMP Framework www.xilinx.com 10
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=10

Chapter 2: Building Linux Applications and Remote Firmware
Building Remote Applications in XSDK
You can build remote applications using XSDK by using the following procedures. The
Petalinux BSP already include pre-built firmware for a remote processor (Zynq Cortex-A9 #1
and Zynq Ultrascale+ MPSoC Cortex-R5 #0);The following steps are necessary only if you plan to
re-build the demo applications running on the remote processor.

Creating an Application Project for OpenAMP
1. From the XSDK window, create the application project by selecting File > New >

Application Projects.

a. Specify the BSP OS platform:

- standalone for a bare-metal application.

- freertos<version>_xilinx for a FreeRTOS application.

b. Specify the hardware platform.

c. Select the processor:

- For the Zynq UltraScale+ MPSoC device (zynqMP), only Cortex-R5 (RPU) is
supported.

Select psu_cortex5_0 or psu_cortex5_1.

- For the Zynq-7000® All Programmable (AP) SoC device (zynq), only
ps7_cortexa9 is supported.

Select ps7_cortexa9_1.

d. Select one of the following:

- Use Existing if you had previously created an application with a BSP and want
to re-use the same BSP.

- Create New BSP to create a new BSP.

IMPORTANT: If you select Create New BSP, the openamp library is automatically included, but the
compiler flags must be set as indicated in the upcoming steps.

e. Click Next to select an available template (do not click Finish).
Xilinx OpenAMP Framework www.xilinx.com 11
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=11

Chapter 2: Building Linux Applications and Remote Firmware
2. Select one of the three application templates available for OpenAMP remote bare-metal
from the available templates:

° OpenAMP echo-test

° OpenAMP matrix multiplication Demo

° OpenAMP RPC Demo

3. Click Finish.

4. In the XSDK project explorer, right-click the BSP and select Board Support Package
Settings.

5. Navigate to the BSP settings drivers: Settings > Overview > Drivers >
<selected_processor>.

6. Add any necessary parameters to the extra_compiler_flags:

To allow OpenAMP to redirect _open(), _close(), _read() and _write(), add:

–DUNDEFINE_FILE_OPS

For the Proxy Application demo in the next chapters, you need to set this option, and
also make sure the WITH_PROXY option in Settings > Overview > OpenAMP is set to
True (default).

By setting these two options you are instructing the OpenAMP framework to redirect
those function calls to the master processor. It is normally not necessary to set those for
other applications.

For the Zynq UltraScale+ MPSoC device (zynqMP):

° To force the vector table location in OCM (instead of TCM) add:

-DVEC_TABLE_IN_OCM.

All application examples in the following chapters have been setup to use OCM for
their vector table, so you need to set this parameter. OCM was chosen here to
demonstrate its use; however, it is recommended to use TCM if possible for the
vector table to get better latency and less jitter.

° When having two Cortex-R5 running concurrently in split mode, only one of them
needs to set this parameter and it shall be the one that starts the last, add:

-DUSE_AMP=1

This parameter tells the library not to perform some shared device initialization (for
example GIC) as it is already initialized by the processor that started first.
Xilinx OpenAMP Framework www.xilinx.com 12
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=12

Chapter 2: Building Linux Applications and Remote Firmware
CAUTION! Do not set this parameter when the two Cortex-R5 are running in lockstep mode, or if only
one of the Cortex-R5 is running (as is the case when running in split mode with only one processor up
and running).

For the Zynq-7000 All Programmable (AP) SoC device (zynq):

° To disable initialization of shared resources when the master processor is handling
shared resources initialization, add:

-DUSE_AMP=1

In the following examples, ps7_cortexa9_0 runs Linux while the OpenAMP slave
runs on ps7_cortexa9_1, therefore you need to set this parameter.

7. Click the OK button.

OpenAMP XSDK Key Source Files
The following key source files are available in the Xilinx XSDK application

• Platform Info (platform_info.c and platform_info.h): These files contain
hard-coded, platform-specific values used to get necessary information for OpenAMP.

° #define VRING1_IPI_INTR_VECT: This is the inter-processor interrupt (IPI)
vector for the remote processor.

° struct hil_proc proc_table (Array): This array provides definition of CPU
nodes for master and remote context. It contains two nodes because the same file
is intended for use with both master and remote configurations. Only one node
definition is required for the master/remote on the Zynq UltraScale+ MPSoC device
platform as there are only two cores present in the platform.

• Resource Table (rsc_table.c/.h): The resource table contains entries that
specify the memory and virtIO device resources including the firmware ELF start
address and size. The virtIO device contains device features, vring addresses, size,
and alignment information. The resource table entries are specified in rsc_table.c
and the remote_resource_table structure is specified in rsc_table.h.

• Helper (helper.c/.h): It contains platform-specific APIs that allow the remote
application to communicate with the hardware. It includes functions to initialize and
control the GIC.
Xilinx OpenAMP Framework www.xilinx.com 13
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=13

Chapter 3

Building and Running a Linux Project with
Applications

Introduction
This chapter describes how to perform the following:

• Setting up PetaLinux with OpenAMP

• Settings for the Device Tree Binary Source

• Building the Applications and the Linux Project

• Booting the PetaLinux Project

• Running the Example Application

Setting up PetaLinux with OpenAMP
PetaLinux requires the following preparation before use:

1. Create the PetaLinux master project in a suitable directory without any spaces. In this
guide it is named <master_root>:

petalinux-create -t project -s <PATH_TO_PETALINUX_ZYNQMP_PROJECT_BSP>

2. Navigate to the <master_root> directory:

cd <master_root>

3. Include a remote application in the PetaLinux project.

This step is needed if you are not using one of the pre-built remote firmware already
included with the PetaLinux BSP. After you have developed and built a remote
application (for example, with XSDK) it must be included in the PetaLinux project so that
it is available from the Linux filesystem for remoteproc.
Xilinx OpenAMP Framework www.xilinx.com 14
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=14

Chapter 3: Building and Running a Linux Project with Applications
a. Create a PetaLinux application inside the components/apps/<app_name>
directory, using the following command:

petalinux-create -t apps --template install -n <app_name> --enable

b. Copy the firmware built with XSDK into this directory:

components/apps/<app_name>/data

c. Modify the ..components/apps/<app_name>/Makefile to install the firmware
in the RootFS. for example:

install:
$(TARGETINST) -d -p 755 data/<myfirmware> /lib/firmware/<myfirmware>

TIP: If you want to try one of the demonstration applications, you can replace the existing firmware at:
<master_root>components/apps/<echo_test|mat_mul_demo|proxy_app>/data/.

4. These steps are for the Zynq-7000 AP SoC (zynq) device only:

a. Set the kernel base address. Because bare-metal and RTOS boot support is from
address 0; consequently, you must set the location for Linux to a higher address:

- Run petalinux-config, and set the kernel base address to 0x10000000, as
follows:

Subsystem AUTO Hardware Settings --->
Memory Settings --->
(0x10000000) kernel base address

b. If you have configured using PetaLinux U-Boot autoconfig, set the memory
address into which the U-Boot loads the Kernel.

- Run petalinux-config:

u-boot Configuration --->
(0x11000000) netboot offset

5. Configure the kernel options to work with OpenAMP:

a. Start the PetaLinux Kernel configuration tool:

petalinux-config -c kernel

b. Enable loadable module support:

[*] Enable loadable module support --->

c. Enable user space firmware loading support:

Device Drivers --->
Generic Driver Options --->

<*> Userspace firmware loading support
Xilinx OpenAMP Framework www.xilinx.com 15
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=15

Chapter 3: Building and Running a Linux Project with Applications
d. Enable the remoteproc driver support: Note that the commands differ, based on
which Zynq device you are using:

Device Drivers --->
Remoteproc drivers --->

for R5:
<M> ZynqMP_r5 remoteproc support
for Zynq A9
<M> Support ZYNQ remoteproc

e. For the Zynq-7000 All Programmable (AP) SoC (Zynq) only, set memory split to
2G/2G (or use 1G/3G user/kernel):

Kernel Features--->
Memory split (...)--->
(x) 2G/2G user/kernel split

f. For Zynq-7000 All Programmable (AP) SoC (Zynq) only, enable High Memory
support:

Kernel Features--->
[*] High Memory Support--->

6. Enable all of the modules and applications in the RootFS:

IMPORTANT: These options are only available in the PetaLinux reference BSP. The applications in this
procedure are examples you can use.

a. Open the RootFS configuration menu:

petalinux-config -c rootfs

b. Ensure the OpenAMP applications are enabled:

Apps --->
[*] echo_test --->
[*] mat_mul_demo --->
[*] proxy_app --->

c. Ensure the OpenAMP modules are enabled:

Modules --->
[*] rpmsg_proxy_dev_driver --->
[*] rpmsg_user_dev_driver --->
Xilinx OpenAMP Framework www.xilinx.com 16
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=16

Chapter 3: Building and Running a Linux Project with Applications
Settings for the Device Tree Binary Source
The PetaLinux reference BSP includes a Device Tree Binary (DTB) for OpenAMP located at:

pre-built/linux/images/openamp.dtb

This is built from the Device Tree Source (DTS), in the reference PetaLinux BSP, which is
located at:

subsystems/linux/configs/device-tree/openamp.dts

This file is the same as the standard system-top.dts, except it has the following line
incorporated:

/include/ “openamp-overlay.dtsi”

This includes the DTS overlay which is in the PetaLinux BSP, located at:

subsystems/linux/configs/device-tree/openamp-overlay.dtsi

The overlay contains nodes that OpenAMP requires in the device tree.

• For ZynqMP running Linux on Cortex-A53 and communicating with Cortex-R5:

{
 reserved-memory {
 #address-cells = <2>;
 #size-cells = <2>;
 ranges;
 rproc_0_reserved: rproc@3ed000000 {
 no-map;
 reg = <0x0 0x3ed00000 0x0 0x1000000>;
 };
 };

 amba {
 test_r50: zynqmp_r5_rproc@0 {
 compatible = "xlnx,zynqmp-r5-remoteproc-1.0";
 reg = <0x0 0xff340000 0x0 0x100>, <0x0 0xff9a0000 0x0 0x400>,
<0x0 0xff5e0000 0x0 0x400>;
 reg-names = “ipi”, “rpu_base”, “rpu_base”;
 core_conf = “split0”;
 interrupt-parent = <&sic>;
 interrupts = <0 29 4>;
 } ;
 };

};

• For Zynq_A9:

{
 amba {
Xilinx OpenAMP Framework www.xilinx.com 17
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=17

Chapter 3: Building and Running a Linux Project with Applications
 remoteproc0: remoteproc@0 {
 compatible = “xlnx,zynq_remoteproc”;
 reg = < 0x00000000 0x10000000 >;
 firmware = “firmware”;
 vring0 = <15>;
 vring1 = <14>;
 };
 };
};

In particular for ZynqMP, you might want to configure how the Cortex-R5 is operating by
setting the core_conf parameter. The current settings works with the demo applications
referenced in this document. Appendix A, Configuration Parameters gives a more detailed
explanation of those parameters.

Building the Applications and the Linux Project
To build the applications and Linux project, do the following:

1. Ensure that you are in the PetaLinux project root directory:

cd <master_root>

2. Build PetaLinux: petalinux-build

TIP: If you encounter any issues append –v to petalinux-build to see the respective textual output.

If the build is successful, the images are in the image/linux folder:
<master_root>/images/linux

Booting the PetaLinux Project
You can boot the PetaLinux project from QEMU or hardware.

Booting on QEMU
After a successful build, you can run the PetaLinux project on QEMU as follows.

1. Navigate to the PetaLinux directory: cd <master_root>

2. Run PetaLinux boot: petalinux-boot --qemu --kernel
Xilinx OpenAMP Framework www.xilinx.com 18
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=18

Chapter 3: Building and Running a Linux Project with Applications
Booting on Hardware
After a successful build, you can run the PetaLinux project on hardware. Follow these
procedures to boot OpenAMP on a board.

Setting Up the Board

1. Connect the board to your computer, and ensure that it is powered on.

2. Program the relevant bitstreams to the board. Ensure that it is using RTL v5.2; this must
be done separately from PetaLinux.

3. If the board is connected to a remote system, start the hw_server on the remote
system.

4. Open a console terminal and connect it to UART on the board.

Downloading the Images

1. Navigate to the PetaLinux directory:

cd <master_root>

2. Run the PetaLinux boot:

° Using a remote system:

petalinux-boot --jtag --kernel --hw_server-url <remote_system>

° Using a local system:

petalinux-boot --jtag --kernel

TIP: If you encounter any issues append –v to the above commands to see the textual output.
Xilinx OpenAMP Framework www.xilinx.com 19
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=19

Chapter 3: Building and Running a Linux Project with Applications
Running the Example Applications
After the system is up and running, log in with the username and password root. After
logging in, the following example applications are available:

Running the Echo Test
1. Load the Echo test firmware and driver. This loads the remoteproc and RPMsg modules:

° For the Zynq UltraScale+ MPSoC device (ZynqMP_R5):

modprobe zynqmp_r5_remoteproc firmware=image_echo_test
modprobe rpmsg_user_dev_driver

° For the Zynq-7000 All Programmable (AP) SoC device (Zynq_A9):

modprobe zynq_remoteproc firmware=image_echo_test
modprobe rpmsg_user_dev_driver

2. Run the test:

echo_test

3. The test starts, follow the on-screen instructions to complete the test.

4. After you have completed the test, unload the application:

° For the Zynq UltraScale+ MPSoC device (ZynqMP_R5):

modprobe –r rpmsg_user_dev_driver
modprobe –r zynqmp_r5_remoteproc

° For the Zynq-7000 All Programmable (AP) SoC device (Zynq_A9):

modprobe –r rpmsg_user_dev_driver
modprobe –r zynq_remoteproc

IMPORTANT: After you have exited the application, you must unload and re-load the module if you
want to re-run the test.

Running the Matrix Multiplication Test
1. Load the Matrix Multiply application. This loads the remoteproc, RPMsg modules, and

applications.

° For the Zynq UltraScale+ MPSoC device (ZynqMP_R5):

modprobe zynqmp_r5_remoteproc firmware=image_matrix_multiply
modprobe rpmsg_user_dev_driver
Xilinx OpenAMP Framework www.xilinx.com 20
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=20

Chapter 3: Building and Running a Linux Project with Applications
° For the Zynq-7000 All Programmable (AP) MPSoC device (Zynq_A9):

modprobe zynq_remoteproc firmware=image_matrix_multiply
modprobe rpmsg_user_dev_driver

2. Run the test:

mat_mul_demo

The test starts.

3. Follow the on screen instructions to complete the test.

4. After you have completed the test, unload the application:

° For the Zynq UltraScale+ MPSoC device (ZynqMP_R5):

modprobe –r zynqmp_r5_remoteproc

° For the Zynq-7000 All Programmable (AP) MPSoC device (Zynq_A9):

modprobe –r rpmsg_user_dev_driver
modprobe –r zynq_remoteproc

IMPORTANT: After you have exited the application, you must unload and re-load the module if you
want to re-run the test.

Running the Proxy Application
1. Load and run the proxy application in one step. The proxy application automatically

loads the required modules:

° For the Zynq UltraScale+ MPSoC device (ZynqMP_R5):

proxy_app -m zynqmp_r5_remoteproc

° For the Zynq-7000 All Programmable (AP) SoC device (Zynq_A9):

proxy_app -m zynq_remoteproc

2. When the application prompts you to Enter name, enter any string.

3. When the application prompts you to Enter age, enter any integer.

4. When the application prompts you to Enter value for pi, enter any floating point number.

5. The application then prompts you to re-run the test.

6. After you exit the application, the module unloads automatically.
Xilinx OpenAMP Framework www.xilinx.com 21
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=21

Chapter 4

Remoteproc Development

Introduction
The remoteproc APIs provided by the OpenAMP framework allows software applications
on the master to manage the remote processor and its relevant software.

This chapter introduces the remoteproc implementation in the OpenAMP library, and
provides a brief overview of the remoteproc APIs and workflow.

remoteproc API Functions

remoteproc_resource_init

Description

Initializes resources for remoteproc remote configuration. Only remoteproc remote
applications are allowed to call this function. This API is called when the remote application
is running on the remote processor to create the virtIO/RPMsg devices which are used
for IPC. This API causes remoteproc to use the RPMsg name service to announce the RPMsg
channels served by the remote application.

Usage

int remoteproc_resource_init(struct rsc_table_info *rsc_info,
rpmsg_chnl_cb_t channel_created,
rpmsg_chnl_cb_t channel_destroyed,
rpmsg_rx_cb_t default_cb,
struct remote_proc** rproc_handle);

Arguments

rsc_info Pointer to resource table info control block.

channel_created Callback function for channel creation.
Xilinx OpenAMP Framework www.xilinx.com 22
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=22

Chapter 4: Remoteproc Development
Returns

Status of execution.

remoteproc_resource_deinit

Description

Uninitialized resources for remoteproc remote configuration.

Usage

int remoteproc_resource_deinit(struct remote_proc *rproc);

Arguments

rproc - pointer to remoteproc instance.

Returns

Status of execution.

remoteproc_shutdown

Description

This function shutdowns the remote execution context.

Usage

int remoteproc_shutdown(struct remote_proc *rproc);

Arguments

rproc - pointer to remoteproc instance to shutdown.

Returns

Status of function execution.

channel_destroyed Callback function for channel deletion.

rdefault_cb Default callback for channel I/O.

rproc_handle Pointer to new remoteproc instance.
Xilinx OpenAMP Framework www.xilinx.com 23
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=23

Chapter 5

RPMsg Development

Introduction
The RPMsg APIs provided by the OpenAMP framework allow bare-metal or RTOS
applications to perform inter-process communication (IPC) in an AMP configuration,
running on either a master or remote processor. This information is based on the
documentation available in the rpmsg.h header file.

This chapter introduces the RPMsg implementation in the OpenAMP library, and provides a
brief overview of the RPMsg APIs and workflow.

RPMsg API Functions

rpmsg_sendto

Description

Sends a message containing data and payload length to the destination address of the
remote processor respective to the rpdev channel using the source address of the rpdev.

If there are no TX buffers available, the function remains blocked until one becomes
available, or a time-out of 15 seconds elapses. When the latter occurs, ERESTARTSYS is
returned. This API can be called from process context only.

Usage

static inline int rpmsg_sendto (struct rpmsg_channel *rpdev,
void *data, int len, unsigned long dst)

Arguments

rpdev The RPMsg channel

data Payload of message
Xilinx OpenAMP Framework www.xilinx.com 24
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=24

Chapter 5: RPMsg Development
Returns

Returns 0 on success, and an appropriate error value upon failure.

rpmsg_send

Description

Sends a message containing data and payload length to the destination address of the
remote processor respective to the rpdev channel using the source and destination address
of the rpdev. If there are no Tx buffers available, the function remains blocked until one
becomes available, or a time-out of 15 seconds elapses. When the latter occurs,
ERESTARTSYS is returned. Presently, this API can be called from process context only.

Usage

static inline int rpmsg_send(struct rpmsg_channel *rpdev, void *data, int
len)

Arguments

Returns

Returns 0 on success, and an appropriate error value upon failure.

rpmsg_send_offchannel

Description

Sends a message containing data and payload length to the destination address of the
remote processor respective to the rpdev channel using src as the source address. If there
are no TX buffers available, the function remains blocked until one becomes available, or a
time-out of 15 seconds elapses. When the latter occurs, ERESTARTSYS is returned. This API
can be called from process context only.

len Length of payload

dst Destination address

rpdev The rpmsg channel

data Payload of message

len Length of payload
Xilinx OpenAMP Framework www.xilinx.com 25
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=25

Chapter 5: RPMsg Development
Usage

static inline int rpmsg_send_offchannel(struct rpmsg_channel *rpdev,
unsigned long src, unsigned long dst,
void *data, int len)

Arguments

Returns

Returns 0 on success, and an appropriate error value upon failure.

rpmsg_trysend

Description

Sends a message containing data and payload length to the destination address of the
remote processor respective to the rpdev channel using the source of the rpdev and
destination addresses. If there are no Tx buffers available, the function immediately returns
ENOMEM without waiting until one becomes available. This API can be called from process
context only.

Usage

static inline int rpmsg_trysend(struct rpmsg_channel *rpdev, void *data, int
len)

Arguments

Returns

Returns 0 on success, and an appropriate error value upon failure.

rpdev The rpmsg channel.

src Source address.

dst Destination address.

data Payload of message.

len Length of payload.

rpdev The rpmsg channel

data Payload of message

len Length of payload
Xilinx OpenAMP Framework www.xilinx.com 26
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=26

Chapter 5: RPMsg Development
rpmsg_trysendto

Description

Sends a message containing data and payload length to the destination address of the
remote processor respective to the rpdev channel using the source addresses of the rpdev.
If there are no TX buffers available, the function immediately returns ENOMEM without
waiting until one becomes available. This API can be called from the process context only.

Usage

static inline int rpmsg_trysendto(struct rpmsg_channel *rpdev,
void *data, int len, unsigned long dst)

Arguments

Returns

Returns 0 on success, and an appropriate error value upon failure.

rpmsg_trysend_offchannel

Description

Sends a message containing data and payload length to the destination address of the
remote processor respective to the rpdev channel using src as the source address. If there
are no Tx buffers available, the function immediately returns ENOMEM without waiting until
one becomes available. This API can be called from process context only.

Usage

static inline int rpmsg_trysend_offchannel (struct rpmsg_channel *rpdev,
unsigned long src,
unsigned long dst,
void *data, int len)

rpdev The rpmsg channel

data Payload of message

len Length of payload

dst Destination address
Xilinx OpenAMP Framework www.xilinx.com 27
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=27

Chapter 5: RPMsg Development
Arguments

Returns

Returns 0 on success, and an appropriate error value upon failure.

rpmsg_init

Description

Allocates and initializes the rpmsg driver resources for a given device ID (cpu_id). The
successful return from this function enables the IPC link.

Usage

int rpmsg_init(int dev_id, struct remote_device **rdev,
rpmsg_chnl_cb_t channel_created,
rpmsg_chnl_cb_t channel_destroyed,
rpmsg_rx_cb_t default_cb, int role);

Arguments

Returns

Status of function execution.

rpdev The RPMsg channel.

src Source address.

dst Destination address.

data Payload of message.

len Length of payload.

param dev_id The RPMsg remote device associated with the driver to be
initialized.

@param rdev Source address.

@param channel_created Destination address.

@param channel_destroyed Callback function for channel deletion.

@default_cb Payload of message.

@param role Length of payload.
Xilinx OpenAMP Framework www.xilinx.com 28
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=28

Chapter 5: RPMsg Development
rpmsg_deinit

Description

Releases the rpmsg driver resources for a given remote instance.

Usage

void rpmsg_deinit(struct remote_device *rdev);

Arguments

rdev: Pointer to device de-initialize.

Returns

None.

rpmsg_get_buffer_size

Description

Returns buffer size available for sending messages.

Usage

int rpmsg_get_buffer_size(struct rpmsg_channel *rp_chnl)

Arguments

Channel: Pointer to the rpmsg channel or device.

Returns

Buffer size.

rpmsg_create_channel

Description

Creates rpmsg channel with the given name for remote device.
Xilinx OpenAMP Framework www.xilinx.com 29
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=29

Chapter 5: RPMsg Development
Usage

struct rpmsg_channel *rpmsg_create_channel(struct remote_device *rdev, char
*name);

Arguments

Returns

Pointer to the new rpmsg channel.

rpmsg_delete_channel

Description

Deletes the given rpmsg channel. You mush have first created the RPMsg channel using the
pmsg_create_channel API.

Usage

void rpmsg_delete_channel(struct rpmsg_channel *rp_chnl);

Arguments

rp_chn: Pointer to the rpmsg channel to be deleted.

Returns

None

rdev Pointer to the RPMsg remote device

name Channel name
Xilinx OpenAMP Framework www.xilinx.com 30
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=30

Appendix A

Configuration Parameters

Introduction
This appendix lists the configuration parameters that are verified to work.

• Zynq-A9 :

Cortex-A9 #0 running Linux and Cortex-A9 #1 remote running demo applications on
Standalone or FreeRTOS.

• ZynqMP:

Cortex-A53s running Linux and Cortex-R5s as remote(s) running demo applications on
Standalone or FreeRTOS in one of the following configurations:

a. Cortex-R5 in lockstep mode.

b. Cortex-R5 in split mode with either:

- Cortex-R5 #0 remote and Cortex-R5 #1 not running

- Cortex-R5 #1 remote and Cortex-R5 #0 not running

- Cortex-R5 #0 and Cortex-R5 #1 as remotes running concurrently and independently,
each with its own channel to separate applications on A53.

The following parameters are the ones you need to inspect and/or modify for your design.

Check the Wiki: OpenAMP [Ref 1] where more detailed information could be provided.
Xilinx OpenAMP Framework www.xilinx.com 31
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=31

Appendix A: Configuration Parameters
DTS configuration for OpenAMP

File location

<petalinux project directory>/subsystems/linux/configs
/device-tree/openamp-overlay.dtsi

General Information

General information on DTS file format can be found by searching online for the
specification.

For Zynq UltraScale+ MPSoC Device using Cortex-R5

The reserved-memory section below defines which part of the memory visible to
Cortex-A53 can be reserved for Cortex-R5 firmware use. The current address below points
to DDR location.

The zynqmp_r5_rproc section defines:

• reg and reg-names: Provide a map of where the registers for the inter-processor
interrupts (IPI), (RPU), and (ABP) blocks are located in the chip. For example, the IPI
registers below are located starting at address 0xff340000. For more information on
registers definition and addresses, see the Zynq UltraScale+ MPSoC Technical Reference
Manual (UG1085) [Ref 2].

• interrupts : interrupt number used by OpenAMP.

• core_conf: Provides the mode of operation for Cortex-R5. Values are:

° split0=cortex-R5 #0

° split1=cortex-R5 #1,

° lockstep

Code Example

{
 reserved-memory {
 #address-cells = <2>;
 #size-cells = <2>;
 ranges;
 rproc_0_reserved: rproc@3ed000000 {
 no-map;
 reg = <0x0 0x3ed00000 0x0 0x1000000>;
 };
 };

 amba {
 test_r50: zynqmp_r5_rproc@0 {
 compatible = "xlnx,zynqmp-r5-remoteproc-1.0";
Xilinx OpenAMP Framework www.xilinx.com 32
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=32

Appendix A: Configuration Parameters
 reg = <0x0 0xff340000 0x0 0x100>, <0x0 0xff9a0000 0x0 0x400>,
<0x0 0xff5e0000 0x0 0x400>;
 reg-names = “ipi”, “rpu_base”, “apb_base”;
 core_conf = “split0”;
 interrupt-parent = <&gic>;
 interrupts = <0 29 4>;
 } ;
 };
};

For Zynq-7000 AP SoC Device using Cortex-A9

• reg: memory range and size used by the firmware.

• vring0 and vring1: two separate interrupts used for signaling between the CPU
cores.

Code Example

{
 amba {
 remoteproc0: remoteproc@0 {
 compatible = “xlnx,zynq_remoteproc”;
 reg = < 0x00000000 0x10000000 >;
 firmware = “firmware”;
 vring0 = <15>;
 vring1 = <14>;
 };
 };
};

Linux RPMsg Buffer Size
The OpenAMP message size is limited by the buffer size defined in the rpmsg kernel
module; currently defined as 512 bytes, with 16 bytes for the message header and 496 bytes
of payload.

While you might be interested in redefining this, resizing the RPMsg size and its effects has
not been verified.

In addition to changing the rpmsg kernel module, you would need to change your user
driver module (for example: the rpmsg_user_dev_driver in the provided examples), as
well as the OpenAMP library.

Application Resource Table and Linker Script Files
The demo applications use three files (rsc_table.c, rsc_table.h , and lscript.ld)
to define the memory usage for OpenAMP. The Zynq UltraScale+ MPSoC Technical Reference
Manual (UG1085) [Ref 2] provides detailed information on the different type of memory
accessible.
Xilinx OpenAMP Framework www.xilinx.com 33
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=33

Appendix A: Configuration Parameters
The resource_table contained in the rsc_table.c file defines the memory regions
shared between the remote processor and the remoteproc driver running on Linux. This one
extracts the resource table from the generated ELF file for the remote processor.

You could, for example, add or remove carveout sections, in which case you would change
the CARVEOUT_SRC and CARVEOUT_SRC_OFFSETS as well as the NUM_TABLE_ENTRIES in
the rsc_table.c file, and the remote_resource_table structure in the
rsc_table.h file.

Each CARVEOUT_SRC entry contains a start address and a length that needs to be defined
based your application need.

Note: Carveout is defined in the Linux Kernel remoteproc documentation as “physically
contiguous memory regions.

The lscript.ld is for the linker use, and defines the memory usage for the R5 application
as for any other applications.

Compilation Flags
The following parameters can be provided to the toolchain via the extra compiler flags.

You can access the extra_compiler_flag field in the Xilinx SDK BSP for your application.

See the SDK Help [Ref 3] for more information.

For the Zynq-7000 All Programmable (AP) SoC device (zynq):

a. To disable initialization of shared resources when the master processor is handling
shared resources initialization, add:

-DUSE_AMP=1

b. To allow OpenAMP to redirect _open(), _close(), _read(), and _write(), add

–DUNDEFINE_FILE_OPS

This parameter is used when the OpenAMP library is linked with the
rpmsg_retarget.o file. This can be enabled or disabled when creating the
application BSP in the Xilinx SDK, and setting the PROXY option in the OpenAMP
section to either True or False.

For the Zynq UltraScale+ MPSoC device (zynqMP):

a. When having two Cortex-R5 running concurrently in split mode, only one of them
needs to set this parameter, and it shall be the one that start the last, add:

-DUSE_AMP=1

This parameters tells the library not to perform some shared device initialization (for
example: GIC) as it is already initialized by the processor that started first.
Xilinx OpenAMP Framework www.xilinx.com 34
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=34

Appendix A: Configuration Parameters
IMPORTANT: Do not set this parameter when the two Cortex-R5 run in lockstep mode, or if only one of
the Cortex-R5 is running (such as in split mode with only one processor up and running).

b. To allow OpenAMP to redirect _open(), _close(), _read(), and _write(), add:

–DUNDEFINE_FILE_OPS.

This parameter is used when the OpenAMP library is linked with the
rpmsg_retarget.o file. This can be enabled or disabled when creating the
application BSP in the Xilinx SDK and setting the PROXY option in the OpenAMP
section to either True or False.

c. To force the vector table location in OCM (instead of TCM), add:

–DVEC_TABLE_IN_OCM

IMPORTANT: All application example have been set up to use OCM for their vector table, so you need
to set this parameter.

Changing the RPMsg Channel ID
Changing the RPMsg ID might be required if you need to create multiple OpenAMP slaves,
because the messages carry an individual identifier associated to each channel.

To change the RPMsg ID:

1. Modify the rpmsg_user_dev_driver, LKM, by changing the string ‘.name’ in the
structure rpmsg_user_dev_drv_id_table, so that it is a unique identifier for this
channel.

2. Modify user application platform_info.c file by changing the channel name in this
file.
Xilinx OpenAMP Framework www.xilinx.com 35
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=35

Appendix B

Exercise

ZynqMP Two Cortex-R5 Running
Concurrently
ZynqMP Cortex-A53 running one Linux application connected to one Cortex-R5 in split
mode and another application connected to the other Cortex-R5. For simplicity, use the
pre-existing echo_test demo application.

In this example, Cortex R5 #0 boots first, followed by Cortex-R5 #1. This order is important
here because Cortex R5 #0 needs to first initialize the interrupt controller shared by both
cores.

The following steps are what you need to change:

1. Modify the rpmsg_user_dev_driver, LKM:

a. Change directories to the petalinux project:

cd <petalinux project directory>

b. Make a copy of the driver code and create a new instance (see the PetaLinux Tools
Reference Guide (UG1144) [Ref 4]).

petalinux-create -t modules --name rpmsg_user_dev_driver_r5_1 --enable
cd <petalinux project directory>/components/modules/rpms_user_dev_driver_r5_1
cp ../rpmsg_user_dev_driver/rpmsg_user_dev_driver
. /rpmsg_user_dev_driver_r5_1.c

c. Edit rpmsg_user_dev_driver_r5_1.c file, and change the
rpmsg_user_dev_drv structure, so that the string, ‘.drv.name’, is unique to
this driver.

d. Change the channel name to be unique. See Appendix A, Configuration Parameters
for more information.

e. Change the device name in device_create() to be unique (will show in /dev/…)

Note: The echo_test demo application can take the following as a argument:
-d /dev/<your device name>, that it uses it when calling open().
Xilinx OpenAMP Framework www.xilinx.com 36
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=36

Appendix B: Exercise
f. Build the driver, and add it to rootfs.

petalinux-build

2. Use XSDK to create two echo-test remote firmware applications as explained in this
document: One to run on Cortex-R5 #0, and one to run on Cortex-R5 #1.

3. Modify the Cortex-R5-1 remote firmware application in XSDK:

a. Edit platform_info.c and change the channel name to match the one in the
rpmsg_user_dev_driver above.

b. Search and replace IPI_BASEADDR value from 0xff310000 to 0xff320000.

c. Search and replace REMOTE_CPU_ID value from 1 to 2.

d. Edit platform_info.h, and search and replace VRING1_IPI_INTR_VECT value
from 65 to 66.

e. Edit the linker script file, lscript.ld, to avoid memory conflict with other remote
processors. For example, to increase DDR start address and use TCM for the vector
table.

f. Edit the carveout sections in rsc_table.c for both applications to match the
linker script so that they do not conflict.

g. Add to this application BSP the extra compiler flag -DUSE_AMP=1

4. Add the necessary entry to your DTS file for each Cortex-R5 in split mode:

amba {
test_r50: zynqmp_r5_rproc0@0 {
compatible = “xlnx,zynqmp-r5-remoteproc-1.0”;
reg = <0x0 0xff340000 0x0 0x100>, <0x0 0xff9a0000 0x0 0x400>,
<0x0 0xff5e0000 0x0 0x400>;
reg-names = “ipi”, “rpu_base”, “apb_base”;
core_conf = “split0”;
interrupt-parent = <&gic>;
interrupts = <0 29 4>;

} ;
test_r51: zynqmp_r5_rproc1@1 {

compatible = “xlnx,zynqmp-r5-remoteproc-1.0”;
reg = <0x0 0xff340000 0x0 0x100>, <0x0 0xff9a0000 0x0 0x400>,
<0x0 0xff5e0000 0x0 0x400>;
reg-names = “ipi”, “rpu_base”, “apb_base”;
core_conf = “split1”;
interrupt-parent = <&gic>;
interrupts = <0 29 4>;

} ;
 };

5. Run the demonstration applications.

a. Connect to your target using either serial, telnet, or ssh to have two separate
terminals with which to run your linux applications concurrently.
Xilinx OpenAMP Framework www.xilinx.com 37
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=37

Appendix B: Exercise
b. Load both remote firmware using the following syntax:

modprobe zynqmp_r5_remoteproc firmware=<Cortex R5 #0 elf file>
firmware1=<Cortex R5 #1 elf file>

c. Load RPMsg user device driver for Cortex R5 #0:

modprobe rpmsg_user_dev_driver

d. Load rpmsg user device driver for Cortex R5 #1:

 modprobe rpmsg_user_dev_driver_r5_1

e. Start the Cortex-R5 #0 echo_test Linux application in one terminal:

echo_test

f. Start the Cortex-R5 #1 echo_test Linux application in another terminal:

echo_test -d /dev/<your device name>

Note: More details can be found on the Xilinx Wiki: OpenAMP [Ref 1].
Xilinx OpenAMP Framework www.xilinx.com 38
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=38

Appendix C

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Xilinx Documentation
1. OpenAMP Wiki

2. Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085)

3. Xilinx Software Developer Kit Help (UG782)

4. PetaLinux Tools Reference Guide (UG1144)
Xilinx OpenAMP Framework www.xilinx.com 39
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.1;d=SDK_Doc/index.html
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1144-petalinux-tools-reference-guide.pdf
http://www.wiki.xilinx.com/OpenAMP
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=39

Appendix C: Additional Resources and Legal Notices
Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications,
please refer to Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.
This document contains preliminary information and is subject to change without notice. Information provided herein relates to
products and/or services not yet available for sale, and provided solely for information purposes and are not intended, or to be
construed, as an offer for sale or an attempted commercialization of the products and/or services referred to herein.
AMBA, AMBA Designer, ARM, ARM1176JZ-S, CoreSight, Cortex, and PrimeCell are trademarks of ARM in the EU and other
countries.
© Copyright 2015-2016 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of
their respective owners.
Xilinx OpenAMP Framework www.xilinx.com 40
UG1186 (v2016.1) May 26, 2016

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1186&Title=OpenAMP%20Framework%20for%20Zynq%20Devices%3A%20Getting%20Started%20Guide&releaseVersion=2016.1&docPage=40

	OpenAMP Framework for Zynq Devices: Getting Started Guide
	Revision History
	Table of Contents
	Ch. 1: Overview
	Introduction
	Software Requirements
	Prerequisites

	Components in OpenAMP
	Process Overview

	Ch. 2: Building Linux Applications and Remote Firmware
	Introduction
	Echo Test in Linux Master and Bare-Metal or FreeRTOS Remotes
	Matrix Multiplication for Linux Master and Bare-Metal or FreeRTOS Remotes
	Proxy Application for Linux Masters and Bare-Metal or FreeRTOS Remotes
	Building Remote Applications in XSDK
	Creating an Application Project for OpenAMP

	OpenAMP XSDK Key Source Files

	Ch. 3: Building and Running a Linux Project with Applications
	Introduction
	Setting up PetaLinux with OpenAMP
	Settings for the Device Tree Binary Source
	Building the Applications and the Linux Project
	Booting the PetaLinux Project
	Booting on QEMU
	Booting on Hardware
	Setting Up the Board
	Downloading the Images

	Running the Example Applications
	Running the Echo Test
	Running the Matrix Multiplication Test
	Running the Proxy Application

	Ch. 4: Remoteproc Development
	Introduction
	remoteproc API Functions
	remoteproc_resource_init
	Description
	Usage
	Arguments
	Returns

	remoteproc_resource_deinit
	Description
	Usage
	Arguments
	Returns

	remoteproc_shutdown
	Usage
	Arguments
	Returns

	Ch. 5: RPMsg Development
	Introduction
	RPMsg API Functions
	rpmsg_sendto
	Description
	Usage
	Arguments
	Returns

	rpmsg_send
	Description
	Usage
	Arguments
	Returns

	rpmsg_send_offchannel
	Description
	Usage
	Arguments
	Returns

	rpmsg_trysend
	Description
	Usage
	Arguments
	Returns

	rpmsg_trysendto
	Description
	Usage
	Arguments
	Returns

	rpmsg_trysend_offchannel
	Description
	Usage
	Arguments
	Returns

	rpmsg_init
	Description
	Usage
	Arguments
	Returns

	rpmsg_deinit
	Description
	Usage
	Arguments
	Returns

	rpmsg_get_buffer_size
	Description
	Usage
	Arguments
	Returns
	rpmsg_create_channel
	Description
	Usage
	Arguments
	Returns

	rpmsg_delete_channel
	Description
	Usage
	Arguments
	Returns

	Appx. A: Configuration Parameters
	Introduction
	DTS configuration for OpenAMP
	File location
	General Information
	For Zynq UltraScale+ MPSoC Device using Cortex-R5
	Code Example

	For Zynq-7000 AP SoC Device using Cortex-A9
	Code Example

	Linux RPMsg Buffer Size
	Application Resource Table and Linker Script Files
	Compilation Flags
	Changing the RPMsg Channel ID

	Appx. B: Exercise
	ZynqMP Two Cortex-R5 Running Concurrently

	Appx. C: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Xilinx Documentation
	Please Read: Important Legal Notices

