
Lab Workbook Adding IP cores in PL

 www.xilinx.com/university ZedBoard 2-1
 xup@xilinx.com
 © copyright 2013 Xilinx

Adding IP cores in PL

Introduction

This lab guides you through the process of extending the processing system you created in the previous
lab by adding two GPIO (General Purpose Input/Output) IPs

Objectives

After completing this lab, you will be able to:
• Configure the GP Master port of the PS to connect to IP in the PL

• Add additional IP to a hardware design
• Setup some of the compiler settings

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 6 primary steps: You will open the project in Vivado, add and configure GPIO
peripherals in the system using IP Integrator, connect external ports, generate bitstream and export to
SDK, create TestApp application in SDK, and, finally, verify the design in hardware.

Design Description

The purpose of this lab exercise is to extend the hardware design (Figure 1) created in Lab 1

Figure 1 Extend the System from the Previous Lab

Adding IP cores in PL Lab Workbook

ZedBoard 2-2 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

General Flow for this Lab

Open the Project Step 1

1-1. Open the previous project, or the lab1 project from the labsolution
directory, and save the project as lab2. Open the Block Design.

1-1-1. Start the Vivado if necessary and open either the lab1 project (lab1.xpr) you created in the
previous lab or from the labsolution directory using the Open Project link in the Getting Started
page.

1-1-2. Select File > Save Project As … to open the Save Project As dialog box. Enter lab2 as the
project name. Make sure that the Create Project Subdirectory option is checked, the project
directory path is c:\xup\embedded\labs\ and click OK.

This will create the lab2 directory and save the project and associated directory with lab2 name.

Add Two Instances of GPIO Step 2

2-1. Enable AXI_M_GP0 interface, FCLK_RESET0_N, and FCLK_CLK0 ports,
Add two instances of an GPIO Peripheral from the IP catalog to the
processor system.

2-1-1. In the Sources panel, expand system_wrapper, and double-click on the system.bd file to invoke
IP Integrator. (The Block Design can also be opened from the Flow Navigator)

2-1-2. Double click on the Zynq block in the diagram to open the Zynq configuration window.

2-1-3. Select PS-PL Configuration page menu on the left, or click 32b GP AXI Master Ports block in
the Zynq Block Design view.

Step 1:
Open the
Project in

Vivado

Step 2:
Add Two

Instances of
GPIO using
IP Integrator

Step 3:
Connect
external
GPIO

Peripheral
Connections

Step 4:

Generate
Bitstream

and Export to
SDK

Step 5:
Generate
TestApp

Application in
SDK

Step 6:
Test in

Hardware

Lab Workbook Adding IP cores in PL

 www.xilinx.com/university ZedBoard 2-3
 xup@xilinx.com
 © copyright 2013 Xilinx

Figure 2 AXI Port Configuration

2-1-4. Expand General Purpose Master AXI Interfaces if necessary, and click on Enable M_AXI_GP0
interface check box under the field to enable the AXI GP0 port.

Figure 3 Configuration of 32b Master GP Block

2-1-5. Expand General > Enable Clock Resets and select the FCLK_RESET0_N option.

2-1-6. Select the Clock Configuration tab on the left. Expand the PL Fabric Clocks and select the
FCLK_CLK0 option (with requested clock frequency of 100.000000 MHz) and click OK.

2-1-7. Notice the additional M_AXI_GPO interface, and M_AXI_GPO_ACLK, FCLK_CLK0, and
FCLK_RESET0_N ports are now included on the Zynq block. You can click the regenerate button

() to redraw the diagram.

Figure 4 Zynq system with AXI and clock interfaces

Adding IP cores in PL Lab Workbook

ZedBoard 2-4 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

2-1-8. Click the Add IP icon and search for AXI GPIO in the catalog

Figure 5 Add GPIO IP

2-1-9. Double-click the AXI GPIO to add the core to the design. The core will be added to the design
and the block diagram will be updated.

Figure 6 Zynq system with AXI GPIO added

2-1-10. Click on the AXI GPIO block to select it, and in the properties tab, change the name to sw_8bit

Figure 7 Change AXI GPIO default name

2-1-11. Double click on the AXI GPIO block to open the customization window.

As the Zedboard was selected during the project creation in lab1, and a board support package is
available for the Zedboard, Vivado has knowledge of available resources on the board.

2-1-12. Click on Generate Board Based IO Constraints, and under Board Interface, for GPIO, click on
Custom to view the dropdown menu options, and select sws_8bits

Lab Workbook Adding IP cores in PL

 www.xilinx.com/university ZedBoard 2-5
 xup@xilinx.com
 © copyright 2013 Xilinx

Figure 8 Configuring GPIO instance

2-1-13. Click the IP Configuration tab. Notice the GPIO Width is set to 8.

Notice that the peripheral can be configured for two channels, but, since we want to use only one
channel without interrupt, leave the GPIO Supports Interrupts and Enable Channel 2 unchecked.

Figure 9 Configuring GPIO instance

2-1-14. Click OK to save and close the customization window

2-1-15. Notice that Design assistance is available. Click on Run Connection Automation, and select
/sw_8bit/S_AXI

Adding IP cores in PL Lab Workbook

ZedBoard 2-6 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

2-1-16. Click OK when prompted to automatically connect the master and slave interfaces

Figure 10 Run connection automation

2-1-17. Notice two additional blocks, Proc Sys Reset, and AXI Interconnect have automatically been
added to the design. (The blocks can be dragged to be rearranged, or the design can be
redrawn.)

Figure 11 Design with SW_8bit automatically connected

2-1-18. Add another instance of the GPIO peripheral (Add IP), and using the board flow, configure it to
connect to the btns_5bit

2-1-19. Change the name of the block to btns_5bit (Click on the block to select it, and change the name
in the properties view)

At this point connection automation could be run, or the block could be connected manually. This time the
block will be connected manually.

2-1-20. Double click on the AXI Interconnect and change the Number of Master Interfaces to 2 and click
OK

Lab Workbook Adding IP cores in PL

 www.xilinx.com/university ZedBoard 2-7
 xup@xilinx.com
 © copyright 2013 Xilinx

Figure 12 Add slave port to AXI Interconnect

2-1-21. Click on the s_axi port of the new AXI GPIO block, and drag the pointer towards the AXI
Interconnect block. The message Found 1 interface should appear, and a green tick should
appear beside the M01_AXI port on the AXI Interconnect indicating this is a valid port to connect
to. Drag the pointer to this port and release the mouse button to make the connection.

Figure 13 Connect the ports

Adding IP cores in PL Lab Workbook

ZedBoard 2-8 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

2-1-22. In a similar way, connect the following ports:
btns_5bit s_axi_aclk -> Zynq7 Processing System FCLK_CLK0
btns_5bit s_axi_aresetn -> Proc Sys Reset peripheral_aresetn
AXI Interconnect M01_ACLK -> Zynq7 Processing System FCLK_CLK0
AXI Interconnect M01_ARESETN -> Proc Sys Reset peripheral_aresetn

The block diagram should look similar to this:

Figure 14 System Assembly View after Adding the Peripherals

2-1-23. Click on the Address Editor, and expand processing_system7_0 > Data > Unmapped Slaves if
necessary

2-1-24. Notice that sw_8bit has been automatically assigned an address, but btns_5bit has not. Right
click on btns_5bit and select Assign Address

Note that both peripherals are assigned in the address range of 0x40000000 to 0x7FFFFFFF (GP0
range).

Figure 15 Peripherals Memory Map

Lab Workbook Adding IP cores in PL

 www.xilinx.com/university ZedBoard 2-9
 xup@xilinx.com
 © copyright 2013 Xilinx

Make GPIO Peripheral Connections External Step 3

3-1. The push button and dip switch instances will be connected to
corresponding pins on the ZedBoard. This can be done manually, or using
Designer Assistance. The location constraints are automatically applied by
the tools as the information for the ZedBoard is already known. Normally,
one would consult the ZedBoard user manual to find this information.

3-1-1. In the Diagram view, notice that Designer Assistance is available. This will be ignored for now,
and a port will be manually created and connected for the sw_8bit instance. Designer Assistance
will be used to connect the btns_5bit peripheral.

3-1-2. Right-Click on the gpio port of the sw_8bit instance and select Make External to create the
external port. This will create the external port named gpio and connect it to the peripheral.

3-1-3. Select the gpio port and change the name to sw_8bit in its properties form.

The width of the interface will be automatically determined by the upstream block.

3-1-4. Connection automation will be used to create a port for the btns_5bit block. Add the port for the
btns_5bit component automatically, by clicking on Run Connection Automation, and selecting
/btns_5bit/GIO

3-1-5. In the Select Board Interface drop down menu, select btns_5bits, and click OK to create and
connect the external port.

Figure 16 Run Connection Automation

3-1-6. Run Design Validation (Tools -> Validate Design) and verify there are no errors.

The design should now look similar to the diagram below

Adding IP cores in PL Lab Workbook

ZedBoard 2-10 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

Figure 17 Completed design

3-1-7. In the sources view, Right Click on the block diagram file, system.bd, and select Create HDL
Wrapper to update the HDL wrapper file. When prompted, click OK

3-1-8. In the Flow Navigator, click Run Synthesis. (Click Save when prompted) and when synthesis
completes, select Open Synthesized Design and click OK

3-1-9. In the shortcut Bar, select I/O Planning from the Layout dropdown menu

Figure 18 Switch to the IO planning view

3-1-10. In the I/O ports tab, expand BTNs_5bit_tri_i, and notice pins have already been assigned to this
peripheral. The pin information was included in the board support package, and automatically
assigning when the IP was automatically connected to the port. The sw_8bit_tri_i have also been
automatically assigned pin locations, along with the other Fixed ports in the design.

Figure 19 Check the IP port pin constraints

Lab Workbook Adding IP cores in PL

 www.xilinx.com/university ZedBoard 2-11
 xup@xilinx.com
 © copyright 2013 Xilinx

Generate Bitstream and Export to SDK Step 4

4-1. Generate the bistream, and export the hardware along with the generated
bitstream to SDK.

4-1-1. Click on Generate Bitstream, and click Yes if prompted to Launch Implementation (Click Yes if
prompted to save the design)

4-1-2. Select Open Implemented Design option when the bitstream generation process is complete
and click OK. (Click Yes if prompted to close the synthesized design.)

You should have the block design and the implemented design open (since we have a portion of
the design in the PL section) before you export the hardware to SDK.

4-1-3. Start SDK by clicking File > Export > Export Hardware for SDK.

The export to SDK GUI will be displayed.

Note: Since we have hardware in Programmable Logic (PL) and we have generated the
bitstream, the check box is selectable.

4-1-4. Check the Launch SDK box (all three should be checked) and click OK.

Figure 20 Export the design to SDK

4-1-5. Click Yes to overwrite the exported module (from lab 1).

Generate TestApp Application in SDK Step 5

5-1. Generate software platform project with default settings and default
software project name.

Adding IP cores in PL Lab Workbook

ZedBoard 2-12 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

5-1-1. In SDK, right click on the mem_test project from the previous lab and select Close Project

5-1-2. Do the same for mem_test_bsp (The bsp could be reused for this project, but a new one will be
created instead. The existing hardware platform project, hw_platform_0, has been overwritten
and updated by the new export from Vivado, and will be reused for this lab.)

5-1-3. From the File menu select File > New > Board Support Package

5-1-4. Change the name to standalone_bsp and click Finish with the standalone OS selected.

5-1-5. Click OK to generate the board support package named standalone_bsp.

5-1-6. From the File menu select File > New > Application Project

5-1-7. Name the project TestApp and in the Board Support Package section, select Create New and
type the name standalone_bsp and click Next

Figure 21 Board Support Package settings

Lab Workbook Adding IP cores in PL

 www.xilinx.com/university ZedBoard 2-13
 xup@xilinx.com
 © copyright 2013 Xilinx

5-1-8. Select Empty Application and click Finish

This will create a new Application project, and a new Board Support Package Project

5-1-9. The library generator will run in the background and will create the xparameters.h file in the
C:\xup\embedded\labs\lab2\lab2.sdk\SDK\SDK_Export\standalone_bsp\ps7_cortexa9_0\inc
lude directory

5-1-10. Expand TestApp in the project view, and right-click on the src folder, and select Import

5-1-11. Expand General category and double-click on File System

5-1-12. Browse to c:\xup\embedded\sources\lab2 folder.

5-1-13. Select lab2.c and click Finish.

A snippet of the source code is shown in figure below.

Figure 22 Snippet of source code

Adding IP cores in PL Lab Workbook

ZedBoard 2-14 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

5-1-14. Right click on standalone_bsp and select Board support package settings.

5-1-15. Select drivers and click in the Driver column for btns_5bit (where is currently shows generic) and
select gpio

5-1-16. Do the same for sw_8bit

Figure 23 Select the GPIO driver

Test in Hardware Step 6

6-1. Connect and power up the board. Establish the serial communication using
SDK’s Terminal tab.

6-1-1. Connect and power up the ZedBoard.

6-1-2. Select the tab. If it is not visible then select Window > Show view > Terminal.

6-1-3. Click on and if required, select appropriate COM port (depends on your computer), and
configure it with the parameters as shown. (These settings may have been saved from previous
lab).

6-2. Program the FPGA by selecting Xilinx Tools > Program FPGA. Run the
TestApp application and verify the functionality.

6-2-1. Select Xilinx Tools > Program FPGA

6-2-2. Click Program to download the hardware bitstream. When FPGA is programmed, the DONE
LED (blue color) will be lit.

6-2-3. Select TestApp in Project Explorer, right-click and select Run As > Launch on Hardware (GDB)
to download the application, execute ps7_init, and execute TestApp.elf.

6-2-4. You should see the something similar to the following output on Terminal console.

Lab Workbook Adding IP cores in PL

 www.xilinx.com/university ZedBoard 2-15
 xup@xilinx.com
 © copyright 2013 Xilinx

Figure 24 SDKTerminal Output

6-2-5. Select Console tab and click on the Terminate button () to stop the program.

6-2-6. Close SDK and Vivado programs by selecting File > Exit in each program.

6-2-7. Power OFF the board.

Conclusion

GPIO peripherals were added from the IP catalog and connected to the Processing System through the
32b Master GP0 interface. The peripherals were configured and external FPGA connections were
established. Pin location constraints, since we used the pre-defined port names, were automatically
applied to connect the peripherals to the push buttons and DIP switches of the ZedBoard. A TestApp
application project was created and the functionality was verified after downloading the bitstream and
executing the program.

