Lab Workbook Adding IP cores in PL

Adding IP cores in PL

Introduction

This lab guides you through the process of extending the processing system you created in the previous
lab by adding two GPIO (General Purpose Input/Output) IPs

Objectives

After completing this lab, you will be able to:

e Configure the GP Master port of the PS to connect to IP in the PL
e Add additional IP to a hardware design

e Setup some of the compiler settings

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 6 primary steps: You will open the project in Vivado, add and configure GPIO
peripherals in the system using IP Integrator, connect external ports, generate bitstream and export to
SDK, create TestApp application in SDK, and, finally, verify the design in hardware.

Design Description

The purpose of this lab exercise is to extend the hardware design (Figure 1) created in Lab 1

PL

AXI

AXIA-Lit J
Interconnect = GPIO
Block
AXl4-Lite J
4-(GPIO

Figure 1 Extend the System from the Previous Lab

Push-Buttons

1

DIP Switches

1

(' X|L|NX www.xilinx.com/university ZedBoard 2-1
. ° xup@xilinx.com
© copyright 2013 Xilinx

Adding IP cores in PL Lab Workbook

General Flow for this Lab

Step 1: Step 2: Step 3: Step 4:
Open the Add Two Connect Generate

Project in Instances of external |:> Bitstream
Vivado GPIO using |:> GPIO and Export to)

IP Integrator Peripheral SDK
Connections

Step 5: Step 6:
Generate Test in
TestApp Hardware
Application in |:>
SDK
Open the Project Step 1
1-1. Open the previous project, or the lab1 project from the labsolution

directory, and save the project as lab2. Open the Block Design.

1-1-1. Start the Vivado if necessary and open either the lab1 project (lab1.xpr) you created in the
previous lab or from the labsolution directory using the Open Project link in the Getting Started
page.

1-1-2. Select File > Save Project As ... to open the Save Project As dialog box. Enter lab2 as the
project name. Make sure that the Create Project Subdirectory option is checked, the project
directory path is c:\xup\embedded\labs\ and click OK.

This will create the lab2 directory and save the project and associated directory with lab2 name.

Add Two Instances of GPIO Step 2

2-1. Enable AXI_M_GPO interface, FCLK_RESETO0_N, and FCLK_CLKO ports,
Add two instances of an GPIO Peripheral from the IP catalog to the
processor system.

2-1-1. In the Sources panel, expand system_wrapper, and double-click on the system.bd file to invoke
IP Integrator. (The Block Design can also be opened from the Flow Navigator)

2-1-2. Double click on the Zynq block in the diagram to open the Zynq configuration window.

2-1-3. Select PS-PL Configuration page menu on the left, or click 32b GP AXI Master Ports block in
the Zynq Block Design view.

ZedBoard 2-2 www.xilinx.com/university i' XILINX

xup@xilinx.com
© copyright 2013 Xilinx

Lab Workbook Adding IP cores in PL

[l

32b GP
AXI
Slave
Ports

Figure 2 AXI Port Configuration

2-1-4. Expand General Purpose Master AX! Interfaces if necessary, and click on Enable M_AXI_GP0
interface check box under the field to enable the AXI GPO port.

' PS-PL Configuration

* Search:

Mame Select Description
- General

(- DMa Controller

EI P Master AxI Interface

= M AxI GPO inkerface

{Enables Gerneral purpose axi masker inkerface 0

é----Static remap

- Thread ID Width
[+-M A% GP1 interface
=+ GP Slave AXI Inkerface
=5 AXI GPO interface
-5 AxI GP1 interface
[+ HP Slawve AXI Interface
[+ AP Slave AxI Interface

Figure 3 Configuration of 32b Master GP Block

Enables static remap For GPO interface
Thread ID Width for GPO interface

Erables General purpose axi master inkerface 1

Enables General purpose 32-bit AXI Slave interface 0

OE O~O

Enables General purpose 32-bit AxI Slave interface 1

2-1-5. Expand General > Enable Clock Resets and select the FCLK_RESETO0_N option.

2-1-6. Select the Clock Configuration tab on the left. Expand the PL Fabric Clocks and select the
FCLK_CLKO option (with requested clock frequency of 100.000000 MHz) and click OK.

2-1-7. Notice the additional M_AXI_GPO interface, and M_AXI_GPO_ACLK, FCLK_CLKO0, and
FCLK_RESETO_N ports are now included on the Zynq block. You can click the regenerate button
(@) to redraw the diagram.

processing_system7_0

DDR <k
- X104
= M_AXI_GPO_ACL M_AXI_GPO<=

ZYNQ.™ mrses
FCLK_RESETO_N

DDR
FIXED_IO

ZYNQY Processing System
Figure 4 Zynq system with AXI and clock interfaces

v www.xilinx.com/university ZedBoard 2-3
iA XI I—INX® xup@xilinx.com

© copyright 2013 Xilinx

Adding IP cores in PL Lab Workbook

2-1-8. Click the Add IP icon ‘¥ and search for AXI GPIO in the catalog

Search: q (30 matches)

1
Marne

PR TR P TR ey per

=
{F Al chip2Chip Bridge
{F &¥I Ethernet Clocking

-

I A% GPIO
{F ax¥IReqgister Slice Ol
Select and press EMTER or drag and drop, ESC to cancel

Figure 5 Add GPIO IP

2-1-9. Double-click the AXI GPIO to add the core to the design. The core will be added to the design
and the block diagram will be updated.

processing_system?7_0
=

et DDR 4+ > DDR
FIXED_104- = FIXED_IO

M_AXI GPO_ACLK Z Y N O‘ M_AXI_GPO4E I

dk PIO = -_
areset FCLK_CLKQ =
FCLK_RESETO_M =
AXI GPIO - L.)

ZYMNQ7 Processing System
Figure 6 Zynq system with AXI GPIO added

2-1-10. Click on the AXI GPIO block to select it, and in the properties tab, change the name to sw_8bit

M
®

Block Properties S |
« >[5

{F axi_gpio_1

Marne: sw_Shit|

Parent name: [zvyng

General | Properties

Figure 7 Change AXI GPIO default name

2-1-11. Double click on the AXI GPIO block to open the customization window.

As the Zedboard was selected during the project creation in lab1, and a board support package is
available for the Zedboard, Vivado has knowledge of available resources on the board.

2-1-12. Click on Generate Board Based IO Constraints, and under Board Interface, for GPIO, click on
Custom to view the dropdown menu options, and select sws_8bits

ZedBoard 2-4 Xilinx.com/university v
WWWXXLLFI)@)Sininx.com iA XILINX@

© copyright 2013 Xilinx

Lab Workbook Adding IP cores in PL

ﬂ Re-customize IP @
AXI GPIO (2.0) ‘-JV

‘f’JDocumentation [IP Location

[7] Show disabled ports Component Mame zyng_axi_gpio_1_0

- Board | IF Configuration

Generate Board based IO Constraints

Associate IP interface with EM.AYNET.COM:ZYNQZED: D Board interface

GPIO s ” [P Interface Board Interface E
[aFIC Custam hd
[PIO2 (Custom
btns Shits N
leds Shits

[~ Enable Interrupt

5V [

K l Cancel

Figure 8 Configuring GPIO instance

2-1-13. Click the IP Configuration tab. Notice the GPIO Width is set to 8.

Notice that the peripheral can be configured for two channels, but, since we want to use only one
channel without interrupt, leave the GPIO Supports Interrupts and Enable Channel 2 unchecked.

ﬂ Re-customize IP @

AXI GPID (2.0) '\\v

ﬁj Dacurentation | =) IF Location

[7] Show disabled ports Component Mame 2vng_axi_gpio_1_0

- Board IP Configuration

GFIO

Al Inputs

Al Cutputs

m

| GPIC Width g Range: 1...32
GPIO':E: ” Default Output Walue | 000000000

Defaulk Tri State Yalue 0xFFFFFFFF

[7] Enable Dual Channel

GPIO 2

I T, i

- : [Enable Interrupt

oK] l Cancel

Figure 9 Configuring GPIO instance
2-1-14. Click OK to save and close the customization window

2-1-15. Notice that Design assistance is available. Click on Run Connection Automation, and select
/sw_8bit/S_AXI

(' X”_lNX www.xilinx.com/university ZedBoard 25
- ° xup@xilinx.com
© copyright 2013 Xilinx

Adding IP cores in PL Lab Workbook

2-1-16. Click OK when prompted to automatically connect the master and slave interfaces

4~ Run Connection Automation ﬁ

(0) Connect Slave interface (/sw_8bit/S_AXI) to a selected Master address
=" space.

Master: /processing_system7_0/M_AXI_GP0

ok || cancel

Figure 10 Run connection automation

2-1-17. Notice two additional blocks, Proc Sys Reset, and AXI Interconnect have automatically been
added to the design. (The blocks can be dragged to be rearranged, or the design can be

redrawn.)
proc_sys_reset pmces;lng_svstem?_{l_axl_perlph
+
clowest_syne_clk mib_reset B — | S00_AXI
et _reset_in bus_struct_resat{0:0] = ACLK)
i : . sw_Bhit
={aux_reset_in paripheral_reset{0:0] m= | ARESETN
=—{mb_debug sys_rst interconned_aresetn[0:0] g——{500_ACLK MO0_AXD- 1
—{dem_lacked perpheral_anesetn[0:0] S00_ARESETN
MOD_ACLK
Proc Sys Reset » MOD_ARESETN
AXI GPIO

AX] Interconnect

DOR = ||} DDR
FIXED_10 1 ||} BFIED_IO
M_AII_CHJ_ACLKZ\I/NG‘ M_AXE_GPD s [t

FOLK_CLKO
FOLK_RESETO_M

processing_system?_0

ZYNQ7T Processing System
Figure 11 Design with SW_8bit automatically connected

2-1-18. Add another instance of the GPIO peripheral (Add IP), and using the board flow, configure it to
connect to the btns_5bit

2-1-19. Change the name of the block to btns_5bit (Click on the block to select it, and change the name
in the properties view)

At this point connection automation could be run, or the block could be connected manually. This time the
block will be connected manually.

2-1-20. Double click on the AXI Interconnect and change the Number of Master Interfaces to 2 and click
OK

ZedBoard 2-6 www.xilinx.com/university v
xup@xilinx.com i‘ XILINX@
© copyright 2013 Xilinx

Lab Workbook Adding IP cores in PL

ﬁ Re-customize IR IEI
AXI Interconnect (2.1) ‘:\’
ﬁj Documentation | =) IP Location

Component Mame | system_processing_system?_0_axi_periph_0

Slawe Interfaces | Master Intetfaces

Mumber of Slave Interfaces 1 -
Mumber of Master Interfaces 2 -
Interconnect Opkimization Strategy Custam -

A% Interconnect includes IP Integrator automatic converter insertion and configuration.

wWhen the endpoint IPs attached to the interfaces of the AXI Interconnect differ

inwidth, cock or protoceol, a converter IP will automatically be added inside the interconnect.
If a converter IP is inserted, IP inkegrator's parameter propagation automatically

configures the converter to match the design.

To see which conversion IPs have been inserted, use the IP integrator

‘epand hierarchy' buttons to explore inside the AXI Interconnect hierarhcy.,

m

MOTE: Addressing information For A%1 Interconnect is specified in the IP Integrator address editor,

|| Enable Advanced Canfiguration Options

[0K] [Cancel

Figure 12 Add slave port to AXI Interconnect

2-1-21. Click on the s_axi port of the new AXI GPIO block, and drag the pointer towards the AXI
Interconnect block. The message Found 1 interface should appear, and a green tick should
appear beside the M071_AXI port on the AXI Interconnect indicating this is a valid port to connect
to. Drag the pointer to this port and release the mouse button to make the connection.

Ic Diagram X 5 Address Editor X [
3| fzyma »
Q| (g Designer Assistance available. Eun Connection Automation
o
Gy
.-'_:"-,
&
= processing system?_0_axi_perph
N :
L fosona [Found 1 interfacq
-
g
[proc_sys_meset gl
in] P ACLE o
— s et —soo pmeseny S = 1. -
et_reset_in bus_stnuct_reset[0:0] ACLK B s ax

—_resat_in peripheral_resa] 0-0] s _ARESETN ad_ack gpode "_

=imb_gebug eys re interconnect_aresen000] —P01_ADLK _a_aresetn

=dom_locked peripheral_aremetn| 0] =01 _ARESETH

Proc Sys Reset ACT Intest
processing_system? 1
oon 4 [} [300R
L FoED_104p [}) FDED_IO
M_AE_GPO_ACLK 3 AT _ GO [t
ZYNQ™ e
FOLK_RESETO_N p—rd
Figure 13 Connect the ports
v www.xilinx.com/university ZedBoard 2-7
& XILINX.

xup@xilinx.com
© copyright 2013 Xilinx

Adding IP cores in PL

Lab Workbook

2-1-22. In a similar way, connect the following ports:
btns_5bit s_axi_aclk -> Zynq7 Processing System FCLK_CLKO
btns_5bit s_axi_aresetn -> Proc Sys Reset peripheral_aresetn
AX! Interconnect MO1_ACLK -> Zynq7 Processing System FCLK_CLKO
AX! Interconnect MO1_ARESETN -> Proc Sys Reset peripheral_aresetn

The block diagram should look similar to this:

processing_system?7_0

oor4: || [DDR
- FIxED_10 ||| {3 FIXED_IO
M_AXI_GPO_ACLK ZYNO M_x1 603 [||—— processing_system?_0_axi_periph
FOLK_CLKO
FCLK_RESETO_N 4F500_AXL
g = ACLE
ZYNQY Processing System ARESETN sw_Bhit
.mm M00_At1 3f [|| 415001
proc_sys_resel 100_ACLK MOL_AXI4- —=ls_axi_aclk crio4x |||
ldowest_sync_dk mib_resetf 100_ARESETN e Presen
t_reset_in bius_struct_neset[0:0] g 01_ACLK AXI GPIO
=—aux_reset_in . peripheral_reset{0: 0] g= 01_ARESETN btns_5bit
—mb_debug_sys_rst interconnect_aresetn[0:0]
=dem_locked peripheral_aresetn[0:0] AXT Interconnect || AES_AXI
= 5_awi_aclk GPIO "
Proc Sys Reset s avi_aresetn

AXI GPIO

Figure 14 System Assembly View after Adding the Peripherals

2-1-23. Click on the Address Editor, and expand processing_system7_0 > Data > Unmapped Slaves if

necessary

2-1-24. Notice that sw_8bit has been automatically assigned an address, but btns_5bit has not. Right
click on btns_5bit and select Assign Address

Note that both peripherals are assigned in the address range of 0x40000000 to 0x7FFFFFFF (GPO

range).

EaDiagram X | B Address Editor x

O] cel Interface PFin Base Mame Offset Address Range High Address
E E-{F processing_system?_0

gin =M Data (32 address bits : 443)

X omm sw_ghit 5_axl Req Ox 41200000 64k v Ox41Z0FFFF
B ‘== btns_Shit 5_Axl Reg 0x4lZ10000 g4K + OxdlZ1FFFF

Figure 15 Peripherals Memory Map

ZedBoard 2-8

www.xilinx.com/university
xup@xilinx.com
© copyright 2013 Xilinx

& XILINX.

Lab Workbook Adding IP cores in PL

Make GPIO Peripheral Connections External Step 3

3-1.

3-1-1.

3-1-3.

3-1-4.

3-1-5.

3-1-6.

The push button and dip switch instances will be connected to
corresponding pins on the ZedBoard. This can be done manually, or using
Designer Assistance. The location constraints are automatically applied by
the tools as the information for the ZedBoard is already known. Normally,
one would consult the ZedBoard user manual to find this information.

In the Diagram view, notice that Designer Assistance is available. This will be ignored for now,
and a port will be manually created and connected for the sw_8bit instance. Designer Assistance
will be used to connect the bitns_5bit peripheral.

Right-Click on the gpio port of the sw_8bit instance and select Make External to create the
external port. This will create the external port named gpio and connect it to the peripheral.

Select the gpio port and change the name to sw_8bit in its properties form.
The width of the interface will be automatically determined by the upstream block.

Connection automation will be used to create a port for the btns_5bit block. Add the port for the
btns_5bit component automatically, by clicking on Run Connection Automation, and selecting
/btns_5bit/GIO

In the Select Board Interface drop down menu, select btns_5bits, and click OK to create and
connect the external port.

gi‘.-‘_=. Run Connection Automation @

,'0‘, Connect Board Interface to IF interface: fbtns_Shitfgpio

Select Board Interface: | btns_Shits -

| QK | | Cancel

Figure 16 Run Connection Automation

Run Design Validation (Tools -> Validate Design) and verify there are no errors.

The design should now look similar to the diagram below

i' X| L| NX www.xilinx.com/university ZedBoard 2-9

xup@xilinx.com
© copyright 2013 Xilinx

Adding IP cores in PL Lab Workbook

processing_system?_0

oor-+ |} DDR
o FIXED_10-+ ||| FIXED IO
M_AXL_GPO_ACLK ZYNQ M_AXL GPO b [|lmy proressing_system?_0_axi_periph
? FCLK_CLKO
FOLK_RESETO_N ! s00_Ax1
ZYNGQT P ing Syst
K 7 Processing System
eIy btns_Shit
= MOO_AXI
ar b
S00_ARESETN B F_” L-5_Axl
proc_sys_reset voo_pcige oL e axi_aclk GPIO -4 [[[——3, bitns_Sits
slowest_syne_clk mb_reset M00_ARESETN —_axi_aresetn
ext_reset_in Ibits_struet_reset[0:0] MOL_ACLKE -
r 3
—laux_reset_in peripheral_reset[0:0] MOL_ARESETN AXLGRTC
—{mb_debug_sys _rst interconnect_aresetn[0:0] sw_8hit
=—ldem_lacked eripheral_anesetn[0:0 ! Srennnes
L peripheral []I AXT Interconnect Il 5.axa
Proc Sys Reset s_aud_achk GPIO - [} 3, sw_8bit
——c awi_aresetn

AXI GPIO

Figure 17 Completed design

3-1-7. In the sources view, Right Click on the block diagram file, system.bd, and select Create HDL
Wrapper to update the HDL wrapper file. When prompted, click OK
3-1-8. In the Flow Navigator, click Run Synthesis. (Click Save when prompted) and when synthesis
completes, select Open Synthesized Design and click OK
3-1-9. In the shortcut Bar, select I/0 Planning from the Layout dropdown menu
99 110 Planining -
Figure 18 Switch to the 10 planning view
3-1-10. In the 1/O ports tab, expand BTNs_5bit_tri i, and notice pins have already been assigned to this
peripheral. The pin information was included in the board support package, and automatically
assigning when the IP was automatically connected to the port. The sw_8bit_tri_i have also been
automatically assigned pin locations, along with the other Fixed ports in the design.
/O Ports
‘_3\ Name Direction Neg Diff Pair Site Fixed E
Z =@ Al ports (143)
23| B btns_Sbits_tri_i (5) Input
D% @r btns_S5bits_tri_i[4] Input T18
-~br btns_Sbits_tri_i[3] Input R18
ap [btns_S5bits_tri_i[2] Input N15
_>;:‘I] b btns_Sbits_tri_i[1] Input R16
T “§ btns_S5bits_tri_i[0] Input P16
[+ DDR_addr (15) In/Out
v | &% DDR_ba (3) In/Out
[+ DDR_dm (4) In/Qut
¥ DDR_dq (32) In/Out
[+ DDR_dgs_n (4) In/Out
-9 DDR_dgs_p (4) In/Qut
[+ FIXED_IO_mio (54) In/Qut
=H2 sw_8bit_tri_i (8) Input
[sw_8bit_tri_i[7] Tnput M15
B sw_sbit_tri_i[6] Input H17
Figure 19 Check the IP port pin constraints
ZedBoard 2-1 Xilinx.com/universi v
edBoard 2-10 www.xilinx.com/university iA XILINX@

xup@xilinx.com
© copyright 2013 Xilinx

Lab Workbook Adding IP cores in PL

Generate Bitstream and Export to SDK Step 4

4-1. Generate the bistream, and export the hardware along with the generated
bitstream to SDK.

4-1-1. Click on Generate Bitstream, and click Yes if prompted to Launch Implementation (Click Yes if
prompted to save the design)

4-1-2. Select Open Implemented Design option when the bitstream generation process is complete
and click OK. (Click Yes if prompted to close the synthesized design.)

You should have the block design and the implemented design open (since we have a portion of
the design in the PL section) before you export the hardware to SDK.

4-1-3. Start SDK by clicking File > Export > Export Hardware for SDK.
The export to SDK GUI will be displayed.

Note: Since we have hardware in Programmable Logic (PL) and we have generated the
bitstream, the check box is selectable.

4-1-4. Check the Launch SDK box (all three should be checked) and click OK.

.0. Export hardware platform for SDK.

Options
Source: %, system.bd
Exportto: | &) <Local to Project>

Workspace: | @) <Local to Project>

V| Export Hardware

V| Include bitstream (Note: an implemented design m...

[OK H Cancel]

Figure 20 Export the design to SDK

4-1-5. Click Yes to overwrite the exported module (from lab 1).

Generate TestApp Application in SDK Step 5

5-1. Generate software platform project with default settings and default
software project name.

i' X”_lNX www.xilinx.com/university ZedBoard 2-11
- ° xup@xilinx.com
© copyright 2013 Xilinx

Adding IP cores in PL

Lab Workbook

5-1-1. In SDK, right click on the mem_test project from the previous lab and select Close Project
5-1-2. Do the same for mem_test_bsp (The bsp could be reused for this project, but a new one will be
created instead. The existing hardware platform project, hw_platform_0, has been overwritten
and updated by the new export from Vivado, and will be reused for this lab.)
5-1-3. From the File menu select File > New > Board Support Package
5-1-4. Change the name to standalone_bsp and click Finish with the standalone OS selected.
5-1-5. Click OK to generate the board support package named standalone_bsp.
5-1-6. From the File menu select File > New > Application Project
5-1-7. Name the project TestApp and in the Board Support Package section, select Create New and
type the name standalone_bsp and click Next
@ Mew Project = @
Application Project —
Create a rmanaged make application project. .-“ 7
Project name:
| Use default location
Chxuphernbeddedilabs_ternphlab2ilab 2, sdkAS0ENSDE_Expod Browwse..,
default
Target Hardware
Hardware Platfarm ‘hw_platfurm_[l v|
Processar ‘ps?_cor‘texag_lﬁl v|
Target Software
05 Platform |standa|0ne v|
Language @ C C++
Board Support Package @) Create Mewr
Ise existing
':?:' = Back Mext = | [Finish] | Cancel
Figure 21 Board Support Package settings
ZedBoard 2-12 www.xilinx.com/university

xup@xilinx.com
© copyright 2013 Xilinx

& XILINX.

Lab Workbook Adding IP cores in PL

5-1-8. Select Empty Application and click Finish

This will create a new Application project, and a new Board Support Package Project

5-1-9. The library generator will run in the background and will create the xparameters.h file in the
C:\xup\embedded\labs\lab2\lab2.sdk\SDK\SDK_Export\standalone_bsp\ps7_cortexa9 0\inc
lude directory

5-1-10. Expand TestApp in the project view, and right-click on the src folder, and select Import

5-1-11. Expand General category and double-click on File System

5-1-12. Browse to c:\xup\embedded\sources\lab2 folder.

5-1-13. Select lab2.c and click Finish.
A snippet of the source code is shown in figure below.

#include "xparameters.h"
#include "xgpio.h"
#include “"xutil.h"

int main (void)

{

XGpio dip, push;
int i, psb_check, dip _check;

xil printf("-- Start of the Program --\rin");

XGpio Initialize(&dip, XPAR SW 8BIT DEWICE ID);
XGpio SetDataDirection{&dip, 1, Qxffffffff);

XGpio Initialize{&push, XPAR_BTNS SBIT DEWICE ID};
XGpio SetDataDirection{&push, 1, Qxffffffff);

while (1}
{
psb _check = XGpio DiscreteRead(&push, 1);
xil printf("Push Buttons Status %xhryn", psb_check);
dip check = XGpio DiszcreteRead(&dip, 1);
¥xil printf("DIP Switch Status %xhryn", dip_check);

for (i=0; 1<9999999; i++);

3

Figure 22 Snippet of source code

iv X”_lNX www.xilinx.com/university ZedBoard 2-13
- ° xup@xilinx.com
© copyright 2013 Xilinx

Adding IP cores in PL Lab Workbook

5-1-14. Right click on standalone _bsp and select Board support package settings.

5-1-15. Select drivers and click in the Driver column for btns_5bit (where is currently shows generic) and
select gpio

5-1-16. Do the same for sw_8bit

@ Board Support Package Settings @
Board Support Package Settings
Contral various settings of your Board Support Package,
a Owervien
standalone
4 drivers
cpu_cortexad The table below lists all the caomponents found in your hardware systern, You can modify the driver (or its wersion) assigned for each
component, If ywou do notuwant to assign a driver to a component or peripheral, please choose 'none’,
Component Cornpaonent Type Criver Dri...
cpu_cortexad L.
- 3.
genetic L.
genetic L.
genetic 10.
genetic L.
ARnEFE in

Figure 23 Select the GPIO driver

Test in Hardware Step 6

6-1. Connect and power up the board. Establish the serial communication using
SDK’s Terminal tab.

6-1-1. Connect and power up the ZedBoard.

6-1-2. Selectthe < Terminal tap. If it is not visible then select Window > Show view > Terminal.

6-1-3. Clickon ' andif required, select appropriate COM port (depends on your computer), and
configure it with the parameters as shown. (These settings may have been saved from previous
lab).

6-2. Program the FPGA by selecting Xilinx Tools > Program FPGA. Run the
TestApp application and verify the functionality.
6-2-1. Select Xilinx Tools > Program FPGA

6-2-2. Click Program to download the hardware bitstream. When FPGA is programmed, the DONE
LED (blue color) will be lit.

6-2-3. Select TestApp in Project Explorer, right-click and select Run As > Launch on Hardware (GDB)
to download the application, execute ps7_init, and execute TestApp.elf.

6-2-4. You should see the something similar to the following output on Terminal console.

ZedBoard 2-14 www.xilinx.com/university v
xup@xilinx.com SA X”_INX®
© copyright 2013 Xilinx

Lab Workbook Adding IP cores in PL

Push Buttons Status 10
DIP Switch Status 28

Push Buttons Status 10
DIP Switch Status 28

Push Buttons Status 10
DIP Switch Status 28

Push Buttons Status 10
DIP Switch Status 28
Figure 24 SDKTerminal Output

6-2-5. Select Console tab and click on the Terminate button (®) to stop the program.
6-2-6. Close SDK and Vivado programs by selecting File > Exit in each program.

6-2-7. Power OFF the board.

Conclusion

GPIO peripherals were added from the IP catalog and connected to the Processing System through the
32b Master GPO interface. The peripherals were configured and external FPGA connections were
established. Pin location constraints, since we used the pre-defined port names, were automatically
applied to connect the peripherals to the push buttons and DIP switches of the ZedBoard. A TestApp
application project was created and the functionality was verified after downloading the bitstream and
executing the program.

iv X”_lNX www.xilinx.com/university ZedBoard 2-15
- ° xup@xilinx.com
© copyright 2013 Xilinx

