
Lab Workbook Pragmas and Data Motion Networks

 www.xilinx.com/university Zynq 2-1
 xup@xilinx.com
 © copyright 2015 Xilinx

Pragmas and Data Motion Networks

Introduction
This lab guides you through the process of handling data transfers between the software and hardware
accelerators using various pragmas and the SDSoC API.

Objectives

After completing this lab, you will be able to:
 Use pragmas to select ACP or AFI ports for data transfer
 Use pragmas to select different data movers for your hardware function arguments
 Understand the use of sds_alloc() and sds_free() calls
 Understand the use of malloc() and free() calls
 Analyze built hardware

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises five primary steps: You will create an SDSoC project, mark two functions for hardware
implementation, use sys_port and data_mover pragmas and analyze the built hardware, and, use
malloc() and free() calls and see their impact on the hardware.

General Flow for this Lab

Step 1:

Create an
SDSoC
Project

Step 2:

Mark Functions
for Hardware

Implementation

Step 3:

Use sys_port
Pragma

Step 4:

Use
data_mover

Pragma

Step 5:
Use malloc()

and free()
calls

Pragmas and Data Motion Networks Lab Workbook

Zynq 2-2 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Create an SDSoC Project Step 1

1-1. Launch SDSoC and create a project, called lab2, using the matrix-multiply
and add template, targeting the Zed or Zybo board.

1-1-1. Open SDSoC by selecting Start > All Programs > Xilinx Design Tools > SDSoC 2015.4 >
SDSoC 2015.4

The Workspace Launcher window will appear.

1-1-2. Click on the Browse button and browse to c:\xup\SDSoC\labs, if necessary and click OK.

1-1-3. Click OK.

Click X on the Welcome tab, if displayed, to close it.

1-1-4. Select File > New > SDSoc Project to open the New Project GUI.

1-1-5. Enter lab2 as the project name, select either zybo or zed (depending on the board you are using)
via drop-down button, select Linux as the target OS, and click Next.

The Templates page appears, containing source code examples for the selected platform.

1-1-6. Select Matrix Multiply-Add (area reduced) in case of zybo or Matrix Multiplication and
Addition in case of zed as the source.

1-1-7. Click Finish.

The Project Explorer tab will display the lab2 project directory. The lab2 folder also shows the
project.sdsoc file. Double-clicking on it will display what you see in the right-side pane.

Mark Functions for Hardware Implementation Step 2

2-1. Mark madd and mmult functions for the hardware accelerations with
default clock speed.

2-1-1. Expand mmult.cpp and madd.cpp under lab2 > src in the Project Explorer tab, right click on
mmult and madd functions.

Alternatively, click on the “+” sign in the Hardware Functions area to open up the list of functions
which are in the source file. Using Ctrl key and mouse clicks, select mmult and madd entries and
click OK.

The two function names will be added into the Hardware Functions window. Notice that they will
be using the default clocks.

2-1-2. Select Build Configurations > Set Active > SDRelease

2-1-3. In the SDSoC Project Overview pane on right, deselect the Bitstream and SD card image
generation options since we want to explore the generated system hardware.

Lab Workbook Pragmas and Data Motion Networks

 www.xilinx.com/university Zynq 2-3
 xup@xilinx.com
 © copyright 2015 Xilinx

(a) Zed

(b) Zybo

Figure 1. Deselecting Bitstream and SD card image generation options

2-2. Build the project. When done, analyze the data motion network through the
report and built hardware using Vivado IPI.

2-2-1. Right-click on lab2 and select Build Project

This may take about 5 minutes.

2-2-2. Expand the lab2 directory in Project Explorer and observe that SDRelease folder is created along
with virtual folders of Binaries and Archives. Expanding the SDRelease folder shows _sds and
src folders along with lab2.elf (executable), lab2.elf.bit (hardware bit file) and several make files.

2-2-3. In the SDSoC Project Overview window, under the Reports pane, click on Data motion link to
view the Data Motion Network report.

The report shows the connections made by the SDSoC environment and the types of data
transfers for each function implemented in hardware. You can also open this report file by double-
clicking data_motion.html entry in SDRelease > _sds > reports of Project Explorer. This will be
used for reference later.

Pragmas and Data Motion Networks Lab Workbook

Zynq 2-4 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Figure 2. Data motion network and accelerator callsites

There are two accelerated functions- madd and mmult. They are given instance names as
madd_0 and mmult_0. Each function has three arguments and hence three ports. Notice that the
out_C port of mmult_0 is directly connected to A_PORTA port of madd_0 port, whereas the other
two ports of each hardware are connected in the system via AXIDMA_SIMPLE channels on ACP.

The transfer size id 4096 bytes or 1024 words on each ports of the two accelerators.

2-2-4. As before, open Vivado by selecting Start > All Programs > Xilinx Design Tools > SDSoC
2015.4 > Vivado Design Suite > Vivado 2015.4

2-2-5. Open the design by browsing to c:\xup\SDSoC\labs\lab2\SDRelease_sds\p0\ipi and selecting
either the zybo.xpr or zed.xpr.

2-2-6. Click on Open Block Design in the Flow Navigator pane. The block design will open. Note
various system blocks which connect to the Cortex-A9 processor (identified by ZYNQ in the
diagram).

Lab Workbook Pragmas and Data Motion Networks

 www.xilinx.com/university Zynq 2-5
 xup@xilinx.com
 © copyright 2015 Xilinx

Figure 3. The generated block design

2-2-7. Click on the show interface connections only () button followed by click on the regenerate

layout () button.

2-2-8. Follow the connections, and notice a data path from in_A and in_B of mmult_0 and observe that
there is a master connection to the S_AXI_ACP port of PS7 through the datamover.

Figure 4. Tracing input datapath of mmult_0

Notice that input data in_A (Master) is connected to AP_FIFO_IARG_0 (Slave), which in
connected to M_AXIS_MM2S of datamover_1 (Master) through S_AXIS_0 (Slave) (corresponds
to AP_FIFO_IARG_0). The M_AXI_MM2S (data fetch) is connected to S01_AXI of the
axi_interconnect_S_AXI_ACP instance. Similarly, the datapath of in_B is in_B >
AP_FIFO_IARG_1 > S_AXIS_1 > M_AXIS_MM2S of datamover_0 > M_AXI_MM2S of
datamover_0 > S00_AXI of axi_interconnect_S_AXI_ACP. Both operands (input data to mmult)
are provided by axi_interconnect_S_AXI_ACP (Master) which is connected to the S_AXI_ACP
(ACP Slave) of PS7.

2-2-9. Close Vivado by selecting File > Exit. Do not save the block design.

Using sys_port Pragma Step 3

3-1. Add sys_port pragma in mmult.h file. Build the project and analyze the data
motion network.

3-1-1. Expand lab2 > src and double-click on main.cpp to see its content.

Pragmas and Data Motion Networks Lab Workbook

Zynq 2-6 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

If line numbers are not visible then you can right-click in the left border of the file and select Show
Line Numbers.

3-1-2. Double-click the mmult.h file in the Project Explorer view, to open the file in the source editor.

3-1-3. Immediately preceding the declaration for the mmult function (line 9), insert the following to
specify the system port for each of the input arrays

#pragma SDS data sys_port(in_A:ACP, in_B:AFI)

ACP is the default connection type, but it will be specified explicitly for in_A. in_B will have an AFI
type which will connect it to one of the PS7 HP ports.

3-1-4. Save the file by selecting File > Save

3-1-5. Right-click the top-level folder for the project and click on Clean Project in the menu.

3-1-6. Right-click the top-level folder for the project and click on Build Project in the menu.

3-1-7. When build process is done, select the lab2 tab so you can access Data Motion link.

3-1-8. Click on the Data Motion report link and analyze the result.

Figure 5. Data Motion network after applying sys_port pragma

Compared to Figure 2, observe that the Pragmas column has two sys_port entries for the
mmult_0 instance. The same column shows that in_A port is connected to ACP whereas in_B is
connected to AFI (HPx). The connections are made to the S_AXI_ACP and S_AXI_HP0 ports of
the PS7. The AXIDMA_SIMPLE transfer is also selected.

3-2. Open Vivado IPI design.

Lab Workbook Pragmas and Data Motion Networks

 www.xilinx.com/university Zynq 2-7
 xup@xilinx.com
 © copyright 2015 Xilinx

3-2-1. Open Vivado by selecting Start > All Programs > Xilinx Design Tools > SDSoC 2015.4 >
Vivado Design Suite > Vivado 2015.4

3-2-2. Open the design again by browsing to c:\xup\SDSoC\labs\lab2\SDRelease_sds\p0\ipi and
selecting either the zybo.xpr or zed.xpr.

3-2-3. Click on Open Block Design in the Flow Navigator pane. The block design will open. Note
various system blocks which connect to the Cortex-A9 processor (identified by ZYNQ in the
diagram).

3-2-4. Click on the show interface connections only () button followed by click on the regenerate

layout () button.

3-2-5. Follow through the data path of in_B of mmult_0 and observe that there is a connection to the
S_AXI_HP0 port of PS7.

Figure 6. Tracing in_B input datapath of mmult_0

Notice that input_data in_B (Master) connects to AP_FIFO_IARG_1, which is connected to
M_AXIS_MM2S of datamover_0 through S_AXIS_1. The M_AXI_MM2S is connected to S00_AXI
of the axi_interconnect_S_AXI_HP0 instance. The axi_interconnect_S_AXI_HP0 connects to
S_AXI_HP0 of PS7 to provide the requested data. Four datamover instances, all of AXI DMA
type, are used.

3-2-6. Close Vivado by selecting File > Exit. Do not save the block design.

Using data_mover Pragma Step 4

4-1. Comment out the sys_port pragma and add data_mover pragma in mmult.h
file. Build the project and analyze the data motion network.

4-1-1. Double-click the mmult.h under lab2 > src.

4-1-2. Comment out the pragma that you had inserted in the previous section.

4-1-3. Add the following pragma statement above the mmult function declaration.

#pragma SDS data data_mover(in_A:AXIDMA_SG, in_B:AXIDMA_SIMPLE,
out_C:AXIFIFO)

Pragmas and Data Motion Networks Lab Workbook

Zynq 2-8 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

4-1-4. Save the file by selecting File > Save

4-1-5. Right-click the top-level folder for the project and click on Clean Project in the menu.

4-1-6. Right-click the top-level folder for the project and click on Build Project in the menu.

4-1-7. When build process is done, select the lab2 tab so you can access Data Motion link.

4-1-8. Click on the Data Motion report link and analyze the result.

Figure 7. Data Motion network after applying data_mover pragma

Compared to Figure 2, observe that Pragmas columns has three data mover entries for the
mmult_0 instance. The same column shows that in_A port is using AXIDMA_SG data mover,
in_B is using AXIDMA_SIMPLE data mover, and out_C is using AXIFIFO data mover. The
connection column indicates that in_A and in_B are connected to ACP whereas out_C is
connected to GP0 of the PS7.

4-2. Open Vivado IPI design.

4-2-1. Open Vivado by selecting Start > All Programs > Xilinx Design Tools > SDSoC 2015.4 >
Vivado Design Suite > Vivado 2015.4

4-2-2. Open the design by browsing to c:\xup\SDSoC\labs\lab2\SDRelease_sds\p0\ipi and selecting
either the zybo.xpr or zed.xpr.

4-2-3. Click on Open Block Design in the Flow Navigator pane.

4-2-4. Click on the show interface connections only button followed by click on the regenerate
layout button.

Lab Workbook Pragmas and Data Motion Networks

 www.xilinx.com/university Zynq 2-9
 xup@xilinx.com
 © copyright 2015 Xilinx

4-2-5. Follow through the data path of in_A of mmult_0 and observe that there is a connection to the
S_AXI_ACP port of PS7 using AXI DMA SG data mover (datamover_0).

Figure 8. Tracing in_B input datapath of mmult_0 through SG datamover

Notice that in_A is connected to AP_FIFO_IARG_0, which is connected to M_AXIS_1 of
axis_rtl_datamover_0. The data to axis_rtl_datamover_0 is connected through s_axis_txd which
is connected to datamover_0. The M_AXIS_SG connects to S00_AXI of
axi_interconnect_S_AXI_ACP which connects to S_AXI_ACP of PS7.

4-2-6. Close Vivado by selecting File > Exit. Do not save the block design.

Using malloc() Step 5

5-1. Comment out the data_mover pragma in mmult.h file. Replace sds_alloc
and sds_free calls with malloc and free calls in the main.cpp file. Build
the project and analyze the data motion network.

The sds_alloc() call uses a single physical memory space which may or
may not be available in Linux OS. The sds_alloc() call uses simple DMA
data mover. Linux OS can translate contiguous virtual address into
multiple physical address ranges. In Linux OS, malloc() can be used to
enable single virtual address space mapping to multiple physical address
space segments however it must use Scatter Gather (SG) DMA. Memory
allocated using sds_alloc call must be released using sds_free call
whereas memory allocated using malloc must be freed using free calls.

5-1-1. Double-click the mmult.h under lab2 > src.

5-1-2. Comment out the pragma for data_mover that you had inserted in the previous section and save
the file.

5-1-3. Save the file by selecting File > Save

5-1-4. Double-click the main.cpp under lab2 > src.

Pragmas and Data Motion Networks Lab Workbook

Zynq 2-10 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

5-1-5. Replace 5 sds_alloc() calls with malloc() and 10 sds_free calls with free()(CTRL+F to access Find
and Replace) and save the file.

5-1-6. Right-click the top-level folder for the project and click on Clean Project in the menu.

5-1-7. Right-click the top-level folder for the project and click on Build Project in the menu.

5-1-8. When the build process is complete, select the lab2 tab so you can access Data Motion link.

5-1-9. Click on the Data Motion report link and analyze the result.

Figure 9. Data Motion network after applying data_mover pragma

Compared to Figure 2, observe that Paged or Contiguous column has paged type of data
movement instead of contiguous. The Connection column shows AXIDMA_SG on S_AXI_ACP.

5-2. Open Vivado IPI design.

5-2-1. Open Vivado by selecting Start > All Programs > Xilinx Design Tools > SDSoC 2015.4 >
Vivado Design Suite > Vivado 2015.4

5-2-2. Open the design by browsing to c:\xup\SDSoC\labs\lab2\SDRelease_sds\p0\ipi and selecting
either the zybo.xpr or zed.xpr.

5-2-3. Click on Open Block Design in the Flow Navigator pane.

5-2-4. Click on the show interface connections only button followed by click on the regenerate
layout button.

5-2-5. Notice that there are only two datamover instances and only the S_AXI_ACP port on the PS7 is
used.

Lab Workbook Pragmas and Data Motion Networks

 www.xilinx.com/university Zynq 2-11
 xup@xilinx.com
 © copyright 2015 Xilinx

Figure 10. Tracing in_B input datapath of mmult_0 through SG datamover

5-2-6. Close Vivado by selecting File > Exit. Do not save the block design.

5-2-7. Close SDSoc by selecting File > Exit

Conclusion

In this lab, you used various pragmas to control the generated data motion network and number of data
movers. You used sys_port and data_mover pragmas and observed the type of ports used. You also
used malloc() and free() calls instead of sds_alloc() and sds_free() calls to handle the non-contiguous
memory usage. The built hardware design was analyzed using Vivado IPI and you observed that the
number of data movers IP and type of data movers are controlled by the type of pragma used and the
type of memory allocation call used.

