Lab Workbook Fine-Tuning with Vivado HLS

Fine-Tuning with Vivado HLS

Introduction

This lab introduces various techniques and directives of Vivado HLS which can be used in SDSoC to
improve design performance. The design under consideration performs discrete cosine transformation
(DCT) on an 8x8 block of data.

Objectives

After completing this lab, you will be able to:

e Improve performance using the PIPELINE directive

e Understand the DATAFLOW directive functionality

e Apply memory partitioning techniques to improve data access

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 7 primary steps: You will create an SDSoC project with the provided dct example,
carry out the performance estimation of the design which estimates the acceleration of the dct function in
hardware, invoke Vivado HLS and resynthesize, apply the PIPELINE directive to improve performance,
improve the memory bandwidth by applying the PARTITION directive, apply the DATAFLOW directive,
and finally carry out the performance estimation of the improved model.

General Flow for this Lab

Step 1 Step 2: Step 3: Step 4:
Create an |:> Performance Synthesize Apply
SDSoC Estimation :> the design in ':> PIPELINE :>
Project Vivado HLS directive
Step 5: Step 6: Step 7:
Improve the Apply Performance
Memory :> DATAFLOW :> Estimation
Bandwidth directive of gz:zlnzed

i www.xilinx.com/university Zynq 6-1
i‘ Xl LINX Xup@xilinx.com

© copyright 2015 Xilinx

Fine-Tuning with Vivado HLS Lab Workbook

Create an SDSoC Project Step 1

1-1.

Launch SDSoC and create a project, called lab6, using the Empty
Application template and then using the provided source files, targeting the
Zed or Zybo board and Standalone OS.

1-1-1. Open SDSoC, select c:\xup\SDSoC\labs as the workspace and click OK.

1-1-2. Create a new project called lab6, and select either zybo or zed

1-1-3. Select Standalone as the target OS, and click Next.

1-1-4. Select Empty Application and click Finish.

1-2. Import the provided source files from source\lab6\src folder.

1-2-1. Right click on src under lab6 in the Project Explorer tab and select Import...

1-2-2. Click on File System under General category and then click Next.

1-2-3. Click on the Browse button, browse to ¢:\xup\SDSoC\source\lab6\src folder, and click OK.

1-2-4. Either select all the files in the right-side window or select src checkbox in the left-side window
and click Finish to import the files into the project.

Performance Estimation Step 2

2-1. Mark dct for the hardware acceleration. Run an initial performance estimate
of the hardware only.

2-1-1. Click on the “+” sign in the Hardware Functions area to open up the list of functions which are in
the source files.

2-1-2. Select the dct function and click OK.

2-1-3. In the Actions panel of the SDSoC Project Overview, click on Estimate Performance Speedup for
HW functions.
This selects the SDEstimate build configuration and performs the estimation flow.

2-1-4. The Build project dialog appears and asks if you want to build the project. Click OK.
The SDSoC environment builds the project. A dialog box displaying the status of the build
process appears.

2-1-5. After the build is over, you can see an initial report. This report contains a hardware-only estimate

summary and has a link that can be clicked to obtain the software run data, which updates the
report with comparison of hardware implementation versus the software-only information.

Zynq 6-2 www.xilinx.com/university i' X”_INX

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Fine-Tuning with Vivado HLS

Note that the hardware accelerator performs the function in approximately 32000 clock cycles
(estimated) for Zybo, or 37000 clock cycles (estimated) for Zed.

Performance and resource estimation report for the 'lab6’ project

Click Here to get software-only application performance and speedup

Mote: Performance estimation assumes waorst-case latency of hardware accelerators, it also
assumes worst-case data transfer size for arrays (if transfer size cannot be determined at compile
time). If the accelerator latency and data transfer size at run-time is smaller than such
assumptions, the performance estimation will be mare pessimistic than the actual performance.

Details

Performance estimates for "dect’ function

HW accelerated (Estimated cycles) 32750

Resource utilization estimates for hardware accelerators

Resource Used Total % Utilization
DSP 1 220 0.45
BRAM 5 140 3.57
LUT 360 53200 0.68
FF 290 106400 0.27
(a) Zed
% labé |E) SDSoC Report Viewer 2 = g

Performance and resource estimation report for the ‘lab6’ project

Click Here to get software-only application performance and speedup

Mote: Performance estimation assumes worst-case latency of hardware accelerators, it also assumes
worst-case data transfer size for arrays (if transfer size cannot be determined at compile time). If the
accelerator latency and data transfer size at run-time is smaller than such assumptions, the performance
estimation will be more pessimistic than the actual performance.

Details
Performance estimates for 'dct’ function

HW accelerated (Estimated cycles) 37359

Resource utilization estimates for hardware accelerators

Resource Used Total % Utilization

DSP 1 80 1.25
BRAM 5 60 833

LUT 360 17600 | 2.05

FF 280 35200 0.8

(b) Zybo
b www.Xilinx.com/universit Zyng 6-3
& XILINX. Y ynd

Xup@xilinx.com
© copyright 2015 Xilinx

Fine-Tuning with Vivado HLS Lab Workbook

Figure 1. Initial estimate of hardware only performance

Synthesize the Design Using Vivado HLS Step 3

3-1.

3-1-1.

Analyze the source (dct.c) code.

Double-click on the dct.c under the source folder to open its content in the information pane.

78void dct(short input[N], short output[N])

794

80

81 short buf 2d_in[DCT_SIZE][DCT SIZE];
82 short buf_2d out[DCT_SIZE][DCT_SIZE];
83

84 // Read input data. Fill the internal buffer.
85 read_data(input, buf_2d in);

oD

87 dct_2d(buf 2d in, buf 2d out);

88

89 [/ Write out the results.

99 write data(buf_2d out, output};

911

Figure 2. The design under consideration

The top-level function dct, is defined at line 78. It implements a 2D DCT algorithm by first
processing each row of the input array via a 1D DCT then processing the columns of the resulting
array through the same 1D DCT. It calls read_data, dct_2d, and write_data functions.

The read_data function is defined at line 54 and consists of two loops — RD_Loop_Row and
RD_Loop_Col. The write_data function is defined at line 66 and consists of two loops which write
the result. The dct_2d function, defined at line 23, calls dct_1d function and performs a transpose.

Finally, the dct_1d function, defined at line 4, uses dct_coeff_table and implements a basic
iterative form of the 1D Type-Il DCT algorithm. The following figure shows the function hierarchy
on the left-hand side, and the loops in the order they are executed, and the flow of data, on the
right-hand side.

Zynqg 6-4 www.xilinx.com/university i' Xl LINX

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Fine-Tuning with Vivado HLS

Hierarchy Loops Dataflow
RD_Loop_Row: l
RD_Loop_Col:
}
}

Row_DCT_Loop:
DCT_Outer_Loop:
DCT_Inner_Loop:
}
}

}
Xpose_Row_Outer_Loop:
Xpose_Row_Inner_Loop:

}

}
Col_DCT_Loop:
DCT_Outer_Loop:
DCT _Inner_Loop:
}
}
}
Xpose_Col_Outer_Loop:
Xpose_Col_Inner_Loop:
}
}
WR_Loop_Row:
WR_Loop_Col:

) |

Figure 3. Design hierarchy and dataflow

3

%+

L

-

3-2. Invoke Vivado HLS. Synthesize the design with the defaults. View the
synthesis results.

3-2-1. Inthe lab6 SDSoC Project Overview tab, click on ("“L) to invoke the Vivado HLS program.

3-2-2. Click OK.

3-2-3. In Vivado HLS, select Solution > Run C Synthesis > Active Solution or click on the ¥ button
to start the synthesis process.

This is just to view the log file.

3-2-4. When synthesis is completed, the results will be displayed in the Synthesis(Solution) tab.

i' XI LINX www.xilinx.com/university Zynq 6-5

xup@xilinx.com
© copyright 2015 Xilinx

Fine-Tuning with Vivado HLS

Lab Workbook

Synthesis Report for 'dct’

General Information

Date: Sun Jan 03 07:28:07 2016

Version: 20154 (Build 1412921 on Wed Nov 18 09:58:55 AM 2015)
Project: dct

Solution: solution

Product family: zyng
Target device: xc/7z020clg484-1

Performance Estimates
= Timing (ns)
= Summary
Clock Target Estimated Uncertainty
|apck 595 5.5 074 |

= Latency (clock cycles)
= Summary
Latency Interval
min max | min max Type
5115 5115 5116 5116 none|

(a) Zed

Synthesis Report for 'dct’

‘General Information

Date: Mon Jan 11 04:15:14 2016

Version: 20154 (Build 1412921 on Wed Nov 18 09:58:55 AM 2015)
Project; dct

Solution: solution

Product family: zyng
Target device: xc7z010cig400-2

Performance Estimates
= Timing (ns)
= Summary
Clock Target Estimated Uncertainty
lapck 850 5.55 1.06 |

= Latency (clock cycles)
= Summary
Latency Interval
min max = min max Type
3963 2963 3964 3964 none |

(b) Zybo
Figure 4. Synthesis report showing performance estimate

Zynq 6-6 www.xilinx.com/university
xup@xilinx.com
© copyright 2015 Xilinx

& XILINX.

Lab Workbook Fine-Tuning with Vivado HLS

Notice that the estimated period is 5.15 ns for Zed whereas 5.55 ns for Zybo. For Zed, the latency
is 5115 clocks and the interval is 5116. For Zybo, the latency is 3963 clocks and the interval is
3964. The Type is none since no pipeline was implemented.

3-2-5. Expand the Source folder and double-click on the dct.c to view the source file.

4 £ dct
» b Includes
4 = Source
8= Test Bench
a Y= solution
4 & constraints
& script.icl
4 = impl
= N1e]
» (= vhdl
> (= syn

Figure 5. Project Explorer view
Note that the Synthesis Report section in the Explorer view shows dct_1d.rpt, dct_2d.rpt, dct.rpt,
read_data, and write_data entries.

3-2-6. Double-click on the directives.tcl entry and examine its content.

Notice that input and output ports are using single-port block RAM (RAM_1P), and the desired
latency is 1. You can verify this by selecting the dct.c tab and looking at the Directive tab. Also
notice the “%" for the directives which indicate that they are passed via the directives.tcl file.
Pragmas in the source code are indicated with a “#".

2= Qutline | Directive 2

“[1 col_outbuf
#[1 col_inbuf
%" Row_DCT_Loop
4 %' Xpose_Row_Outer_Loop
3 Xpose_Row_Inner_Loop
%" Col_DCT_Loop
4 %" Xpose_Col_Outer_Loop
%" Xpose_Col_Inner_Loop
4 © read_data
%" RD_Loop_Row
¥ RD_Loop_Col
4 @ write_data
4 %" WR_Loop_Row
%" WR_Loop_Col
4 @ dct
|% HLS LATENCY min=1|
@ input
|% HLS RESOURCE variable=input core:RAM_lPI
9b HLS INTERFACE bram port=input
® output
I% HLS RESOURCE variable=output core:RAM_1P|
9b HLS INTERFACE bram port=output
=[] buf_2d_in
=[1 buf_2d_out

h

Figure 6. The Directive tab showing the directives passed from SDSoC

i www.xilinx.com/university Zynq 6-7
i‘ XILINXJ‘ Xup@xilinx.com
© copyright 2015 Xilinx

Fine-Tuning with Vivado HLS

Lab Workbook

3-2-7. Select the Synthesis(solution) tab and then click on the Interface entry under the Outline tab.

The interface summary table will be displayed. It shows the six handshaking signals (ap_clk, ...,
ap_ready) and then shows the single port bram ports for the input and output parameters.

Interface

- Summary

RTL Ports
ap_clk
ap_rst_n
ap_start
ap_done
ap_idle
ap_ready
input_r_Addr_A
input_r_EN_A
input_r WEN_A
input_r_Din_A
input_r_Dout_A
input_r_Clk_A
input_r_Rst_ A
output_r_Addr_A
output_r_ EN_A
output_r WEN_A
output_r_Din_A
output_r_Dout_A
output_r_Clk_A
output_r_Rst_A

Bits

e T

Protocol
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs

bram
bram
bram
bram
bram
bram
bram
bram
bram
bram
bram
bram

bram

bram

Source Object
dct
dct
dct
dct
dct
dct

input_r
input_r
input_r
input_r
input_r
input_r
input_r
output_r
output_r
output_r
output_r
output_r
output_r

output_r

C Type
return value
return value
return value
return value
return value
return value

array
array
array
array
array
array
array
array
array
array
array
array
array

array

Figure 7. Interface summary showing single port bram interface for the input and output

3-2-8. Scroll through the Console tab to see the synthesis process log.

3-3. Create a new solution (solutionl) copying the directives from the exisitng
solution (solution). Synthesize the design again. View the synthesis
results.

3-3-1. Select Project > New Solution or click on (e) from the tools bar buttons.

3-3-2. A Solution Configuration dialog box will appear. Click the Finish button (with copy from Solution
selected).

3-3-3. With the source code file open, in the directives tab, right-click on the HLS INTERFACE directive
of the input port, select Remove Directive.

3-3-4. Similarly, remove the HLS INTERFACE directive of the output port.

3-3-5. Click onthe ¥ button to start the synthesis process.

3-3-6. When synthesis is completed, the results will be displayed in the Synthesis(Solutionl) tab.

Zynq 6-8

www.xilinx.com/university
Xup@xilinx.com

© copyright 2015 Xilinx

& XILINX.

Lab Workbook Fine-Tuning with Vivado HLS

Notice that the performance estimations have changed slightly.

Note that the Synthesis Report section (under Solutionl) in the Explorer view now only shows
dct_1d.rpt, dct_2d.rpt, and dct.rpt entries. The read_data and write_data functions reports are
not listed. This is because these two functions are inlined. Verify this by scrolling up into the
Vivado HLS Console view.

@I [HLS-1@] Starting code transformations ...

@I [HLS-10] Checking synthesizability ...

@I [XFORM-682]|Inlining function 'read_data' into "dect' (../../../src/dct.c:85) automatically.
@I [XFORM-602]|Inlining function 'write_data' into 'dct' (../../../src/dct.c:90) automatically.
@I [XFORM-602]|Inlining function 'read_data' into "dct' (../../../src/dct.c:85) automatically.
@I [XFORM-602]|Inlining function 'write_data' into 'dct' (../../../src/dct.c:90) automatically.
@T [HLS-111] Elapsed time: 6.319 seconds; current memory usage: 91.1 MB.

@I [HLS-1@] Starting hardware synthesis ...

@I [HLS-1@] Synthesizing 'dct' ...

@W [SYN-187] Renaming port name 'dct/input' to 'dct/input_r' to avoid the conflict with HDL keywords or other object names.

@W TSYN-1071 Renaming port name ‘dct/output’' to 'dect/output r' to avoid the conflict with HDL kevwords or other obiect names.
4

Figure 8. Inlining of read_data and write_data functions

3-3-7. The report also shows the top-level interface signals generated by the tools.

Interface
- Summary
RTL Ports Dir Bits Protocol Source Object C Type
ap_clk in 1 ap_ctrl_hs dct return value
ap_rst in 1 ap_ctrl_hs dct return value
ap_start in 1 ap_ctrl_hs dct return value
ap_done out 1 ap_ctrl_hs dct return value
ap_idle out 1 ap_ctrl_hs dct return value
ap_ready out 1 ap_ctrl_hs dct return value
input_r_address0 out 6 ap_memaory input_r array
input_r_ce0 out 1 ap_memaory input_r array
input_r_q0 in 16 ap_memory input_r array
output_r_addressl out 6 ap_memaory output_r array
output_r_cel out 1 ap_memory output_r array
output_r_wel out 1 ap_memaory output_r array
output_r_dl out 16 ap_memory output_r array

Figure 9. Generated interface signals

The top-level function has input and output arrays without the HLS interface of bram directive. An
ap_memory interface is generated for each of them instead.

3-3-8. Open dct_1d.rpt and dct_2d.rpt files either using the Explorer view or by using a hyperlink at the
bottom of the dct.rpt in the information view. The report for dct_2d clearly indicates that most of
this design cycles (3668) are spent doing the row and column DCTs. Also the dct_1d report
indicates that the latency is 209 clock cycles ((24+2)*8+1).

i www.xilinx.com/university Zynq 6-9
i‘ XI LINXJ‘ Xup@xilinx.com

© copyright 2015 Xilinx

Fine-Tuning with Vivado HLS Lab Workbook

Apply PIPELINE Directive Step 4

4-1.

Create a new solution by copying the previous solution settings. Apply the
PIPELINE directive to DCT_Inner_Loop, Xpose_Row_Inner_Loop,
Xpose_Col_Inner_Loop, RD_Loop_Col, and WR_Loop_Col. Generate the
solution and analyze the output.

4-1-1. Select Project > New Solution or click on (8) from the tools bar buttons.

4-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with copy from Solutionl
selected).

4-1-3. Make sure that the dct.c source is opened in the information pane and click on the Directive tab.

4-1-4. Select DCT_Inner_Loop of the dct_1d function in the Directive pane, right-click on it and select
Insert Directive...

4-1-5. A pop-up menu shows up listing various directives. Select the PIPELINE directive.

4-1-6. Leave Il (Initiation Interval) blank as Vivado HLS will attempt to schedule the design with Il = 1;
one new input every clock cycle.

4-1-7. Click OK.

4-1-8. Similarly, apply the PIPELINE directive to Xpose_Row_Inner_Loop and
Xpose_Col_Inner_Loop of the dct_2d function, and RD_Loop_Col of the read_data function,
and WR_Loop_Col of the write_data function. At this point, the Directive tab should look like as
follows.

: — . : -
Zyng 6-10 www.xilinx.com/university i; X".INX;

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Fine-Tuning with Vivado HLS

<1 dct_coeff_table
4 %' DCT_Outer_Loop
4 % DCT_Inner_Loop
% HLS PIPELINE
4 @ dct 2d
=[1 row_outbuf
<[1 col_outbuf
«[1 col_inbuf
%" Row_DCT_Loop
a %' Xpose_Row_Outer_Loop
a Xpose_Row_Inner_Loop
% HLS PIPELINE
% Col_DCT_Loop
" Xpose_Col_Outer_Loop
4 ' Xpose_Col_Inner_Loop
% HLS PIPELINE
4 @ read data
4 &' RD_Loop_Row
4 % RD_Loop_Col
% HLS PIPELINE

3

WR_Loop_Col
% HLS PIPELINE

4 @ dct

Figure 10. PIPELINE directive applied

4-1-9. Click on the Synthesis button.

4-1-10. When the synthesis is completed, select Project > Compare Reports... or click on 5 to
compare the two solutions.

4-1-11. Select Solutionl and Solution2 from the Available Reports, click on the Add>> button, and then
click OK.

4-1-12. Observe that the latency has reduced from 5111 to 1984 clock cycles for Zed or 3959 to 1850
clock cycles for Zybo.

i www.xilinx.com/university Zyng 6-11
i‘ XI LINXJ‘ Xup@xilinx.com

© copyright 2015 Xilinx

Fine-Tuning with Vivado HLS Lab Workbook

Performance Estimates Performance Estimates
=l Timing (ns) = Timing (ns)
Clock solution2 solutionl Clock solution? solutionl
ap_clk Target 5.95 5.95 ap_clk Target 8.50 8.50
Estimated 5.15 5.15 Estimated 6.34 5.55
-1 Latency (clock cycles) -1 Latency (clock cycles)
solution2 solutionl solution? solutionl
Latency min 1984 5111 Latency min 1850 3959
max 1984 5111 max 1850 3959
Interval min 1985 5112 Interval min 1851 3960
max 1985 5112 max 1851 3960
(@) Zed (b) Zybo

Figure 11. Performance comparison after pipelining

4-1-13. Scroll down in the comparison report to view the resources utilization. Observe that the LUTs
utilization increased whereas BRAM and DSP48E remained same.

Utilization Estimates Utilization Estimates
solution?2 solutionl solution2 solutionl
BRAM_18K 5 5 BRAM_18K 5 5
DSP48E 1 1 DSP48E 1 1
FF 282 282 FF 255 278
LUT 481 354 LuT 458 354
(a) Zed (b) Zybo

Figure 12. Resources utilization after pipelining

4-2. Open the Analysis perspective and determine where most of the clock
cycles are spent, i.e. where are the large latencies.

4-2-1. Click on the Analysis perspective button.

4-2-2. In the Module Hierarchy, select the dct entry and observe the RD_Loop_Row_RD_Loop_Col
and WR_Loop_Row_WR_Loop_Col entries. These are two nested loops, flattened, and given
the new names. The new names are formed by appending the inner loop name to the outer loop
name. You can also verify this by looking in the Console view message. Notice that the
DCT_Outer_Loop could not be flattened.

Zyng 6-12 www.xilinx.com/university i
Xup@xilinx.com i. XI LINXs

© copyright 2015 Xilinx

Lab Workbook Fine-Tuning with Vivado HLS

@I [HLS-18] Checking synthesizability ...

@I [XFORM-602] Inlining function 'read_data' into 'dct' (../../../src/dct.c:85) automatically.

@I [XFORM-602] Inlining function 'write_data' into 'dct’ (../../../fsrc/dct.c:98) automatically.
@I [XFORM-602] Inlining function 'read_data' into 'dct' (../../../src/dct.c:85) automatically.

@I [XFORM-602] Inlining function 'write_data' into 'dct’ (../../../src/dct.c:98) automatically.

@I [XFORM-541] |Flattening a loop nest 'RD_Loop Row' (../../../src/dct.c:59:67) in function 'dct’.
@I [XFORM-541] |Flattening a loop nest 'WR_Loop Row' (../../../src/dct.c:71:67) in function 'dct’.
@I [XFORM-541] |Flattening a loop nest 'Xpose Row Outer_Loop" (../../../src/dct.c:38:1) in function "dct_2d].
@I [XFORM-541] |Flattening a loop nest 'Xpose Col Outer_Loop" (../../../src/dct.c:49:1) in function "dct_2d].
@W [XFORM-542] |Cannot flatten a loop nest 'DCT_Outer_Loop' (../../../src/dct.c:13:67) in function 'dct_1d'|:
the outer loop is not a perfect loop because there is nontrivial logic in the loop latch.

@I [HLS-111] Elapsed time: 6.873 seconds; current memory usage: 90.2 MB.
4

Figure 13. The console view content indicating loops flattening

t= Module Hierarchy
BRAM DSP FF LUT Latency Interval Pipeline type
4| @ dct 5 1 282 481 1984 1985 none
4 o dct dct_2d 3 1 199 341 1849 1849 none
@ dct_dct 1d2 0 1 86 123 105 105 none
E£F Performance Profile .| . Resource Profile E = B8

Pipelined Latency Initiation Interval Iteration Latency Trip count

4 ® dct - 1984 1985 - -
@ RD_Loop_Row_RD_Loop_Col vyes 65 1
e WE_Loop_Row_WR_Loop_Col yes 65 1
() Zed
£ Module Hierarchy E = 8
BRAM DSP FF LUT Latency Interval Pipeline type
4 o dct 5 1 255 458 1850 1851 none
4 o dct _dct 2d 3 1 194 320 1717 1717 none
® dct_dct_1d2 0 1 117 122 97 a7 none
£° Performance Profile 22 . | . Resource Profile B = 8

Pipelined Latency Initiation Interval Iteration Latency Trip count

4 ® dct - 1850 1851 - -
@ RD_Loop_Row_RD_Loop_Cal vyes 64 1 2 64
@ WR_Loop_Row WR_Loop_Col yes b4 1 64
(b) Zybo

Figure 14. The performance profile at the dct function level

4-2-3. In the Module Hierarchy tab, expand the dct hierarchy completely. Notice that the most of the
latency occurs is in dct_2d function. Select the dct_1d entry.

4-2-4. In the Performance Profile tab, select the DCT_Inner_Loop entry

4-2-5. In the Performance view, right-click on the node_60 (write) block in the C3 state, and select Goto
Source. Naotice that line 19 is highlighted which is preventing the flattening of the
DCT_Outer_Loop.

i www.xilinx.com/university Zynqg 6-13
i‘ XI LINX‘*‘ Xup@xilinx.com

© copyright 2015 Xilinx

Fine-Tuning with Vivado HLS

Lab Workbook

2] Module Hierarchy £ Synthesis(solut [€ dct.c £ Synthesis(solut 12 Synthesis(solut £l Sy
BRAM | DSP | FE | LUT |Latency | Interval | Pipeline type Current Module : dct > det det 2d > det det 1d
4 e dct 5 1 249 458 1850 1851 none
4 e dctdctad 3 1 188320 1717 1717 none |oneratiom\contrals...| co | ¢c1 | c2 | c3 | ca |
e dctdctld 0 1 111122 97 97 none 1 | tmp 11 read(read)
2 tmp 1 read(read)
3 FDCT outer Loop
4 k (phi mux)
5 exitcondl (icmp)
6 k 1(+)
7-... HDCT Inner LOOp
18 | tmp 2(+)
19 p addr3(+)
20 node 60 (write)

Performance| Resource

£F Performance Profile 2 . | Resource Profile ~ O |/ Properties| [é C Source 2

Pipelined latency Initiation Interval Iteration Latency Trip count ||| File: C:\xup\SDSoC\labs\lab6\src\dct.c

4 ® dct dct 1d 97 97 - - 19 dst[k] = DESCALE(tmp, CONST_BITS);
4 @ DCT_Outer_Loop no 96 12 8 20}
e DCT Inner_Loop yes 9 1 8 21}
() Zed
t Module Hierarchy = O ||] Synthesis(solution) [€ dct.c 1=l Synthesis(solution1) il Synthesis(solutic
BRAM) DSP) |FF | LUT | Latency Interval | Pipeline type Current Module : dct > det det 2d > det det 1d2
4 @ dct 5 1 255 458 1850 1851 none
4 edctdct2d 3 1 194320 1717 1717 none |oneration\Contral s | co | c1 | 2 | 3 | ca
® dctdet 1d2 0 1117 122 97 97 none] 2wl rea),
2 tmp 2 read(read)
3 FDCT Quter Loop
4 k (phi mux)
5 exitcondl (icmp)
£F Performance Profile 2 . | Resource Profile = 6 k 1(+)
Pipelined Latency Initiation Interval Iteration Latency Trip caunt 7 e
ipelined Latency Initiation Interval Iteration Latency Trip coun 8. ®DCT Inmer Loop
4 e dct dct 1d2 - 97 97 - 10 tmp s(+)
: @ DCT_Outer_Loop no 96 12 8 20 node 60 (write)
Performance | Resource
O Properties | € C Source &2
File: C:\xup\SDSoC\labs\lab6\src\dct.c
15 for(n = 0, tmp = 0; n < DCT_SIZE; n++) {
16 int coeff = (int)dct_coeff_table[k][n];
17 tmp += sre[n] * coeff;
18}
19 dst[k] = DESCALE(tmp, CONST_BITS),
20 %Y
(b) Zybo

Figure 15. Understanding what is preventing DCT_Outer_Loop flattening

4-2-6. Switch to the Synthesis perspective.

4-3. Create a new solution by copying the previous solution settings. Apply
fine-grain parallelism of performing multiply and add operations of the
inner loop of dct_1d using PIPELINE directive by moving the PIPELINE
directive from inner loop to the outer loop of dct_1d. Generate the solution
and analyze the output.

4-3-1. Select Project > New Solution.

4-3-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution2 selected).

4-3-3. Close all inactive solution windows by selecting Project > Close Inactive Solution Tabs.

4-3-4. With the source code open, in the Directive pane, select the PIPELINE directive of the
DCT_Inner_Loop of the dct_1d function, right-click on it and select Remove Directive.

Zyng 6-14 www.xilinx.com/university i' X”_INX

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Fine-Tuning with Vivado HLS

4-3-5. Click No to not to remove the label.

4-3-6. In the Directive pane again, select the DCT_Outer_Loop of the dct_1d function, right-click on it
and select Insert Directive...

4-3-7. A pop-up menu shows up listing various directives. Select the PIPELINE directive

4-3-8. Click Yes and then OK.

@ dct_1d

=1 dct_coeff_table

%" DCT_Outer_Loop
% HLS PIPELINE
%' DCT Inner_Loop

Figure 16. PIPELINE directive applied to DCT_Outer_Loop
By pipelining an outer loop, all inner loops will be unrolled automatically (if legal), so there is no
need to explicitly apply an UNROLL directive to DCT_Inner_Loop. Simply move the pipeline to

the outer loop: the nested loop will still be pipelined but the operations in the inner-loop body will
operate concurrently.

4-3-9. Click on the Synthesis button.

4-3-10. When the synthesis is completed, select Project > Compare Reports... to compare the two
solutions.

4-3-11. Select Solution2 and Solution3 from the Available Reports, click on the Add>> button, and then
click OK.

4-3-12. Observe that the latency reduced from 1984 to 960 for Zed whereas 1850 to 874 for Zybo.

-1 Latency (clock cycles) -l Latency (clock cycles)
solution3 solution2 solution3 solution2
Latency min 960 1984 Latency min 874 1850
max 960 1984 max 874 1850
Interval min 961 1985 Interval min 875 1851
max 961 1985 max 875 1851
(a) Zed (b) Zybo

Figure 17. Performance comparison after pipelining

4-3-13. Scroll down in the comparison report to view the resources utilization. Observe that the utilization
of all resources (except BRAM) increased. Since the DCT_Inner_Loop was unrolled, the parallel
computation requires 8 DSP43E.

i www.xilinx.com/university Zynqg 6-15
t‘ Xl LINX Xup@xilinx.com

© copyright 2015 Xilinx

Fine-Tuning with Vivado HLS

Lab Workbook

Utilization Estimates

solution3
BRAM_18K 5
DSP48E 8
FF 669
LUT 568

() Zed

Utilization Estimates

solution2

5 BRAM_18K 5

1 DSP48E 8
282 FF 677
481 LUT 534

(b) Zybo

Figure 18. Resources utilization after pipelining

solution3

solution2
5

1

255

458

4-3-14. Open the dct_1d report and observe that the pipeline initiation interval (Il) is four (4) cycles, not
one (1) as might be hoped, and there are now 8 BRAMs being used for the coefficient table.

Looking closely at the synthesis log, notice that the coefficient table was automatically partitioned,
resulting in 8 separate ROMs: this helped reduce the latency by keeping the unrolled computation
loop fed, however the input arrays to the dct_1d function were not automatically partitioned.

-1 Loop
Latency Initiation Interval
Loop Name min max Iteration Latency achieved target Trip Count Pipelined
- DCT_OQuter_Loop 38 39 12 1 8 yes
(a) Zed
-1 Loop
Latency Initiation Interval
Loop Name min max Iteration Latency achieved target Trip Count Pipelined
- DCT_OQuter_Loop 34 34 7 1 8 yes

(b) Zybo

Figure 19. Increased resource utilization of dct_1d

@I [RTMG-279] Implementing memory 'dct_dct_1d_dct_coeff_table @ rom' using distributed
@I [RTMG-279] Implementing memory 'dct dct 1d dct coeff table 1 rom' using distributed
@I [RTMG-279] Implementing memory ‘dct dct 1d dct coeff table 2 rom' using distributed
@I [RTMG-279] Implementing memory ‘dct dct 1d dct coeff table 3 rom' using distributed
@I [RTMG-279] Implementing memory ‘dct_dct_1d_dct_coeff_table_4 rom' using distributed
@I [RTMG-279] Implementing memory 'dct_dct_1d_dct_coeff_table 5 rom' using distributed
@I [RTMG-279] Implementing memory 'dct dct 1d dct coeff table 6 rom' using distributed
@I [RTMG-279] Implementing memory ‘dct dct 1d dct coeff table 7 rom' using distributed
@I [RTMG-278] Implementing memory ‘dct dct 2d row outbuf ram® using block RAMs.

@I [RTMG-278] Implementing memory ‘dct_dct_2d_col_inbuf_ram' using block RAMs.

Figure 20. Automatic partitioning of dct_coeff_table

ROMs .
ROMs .
ROMs .
ROMs .
ROMs .
ROMs.
ROMs .
ROMs .

@w ESCHED—GQj Unable to schedule 'load’ Sper*;ation ('src_load 5', ../../../srcfdct.c:17) on array 'src' due to limited memory ports.
@I [SCHED-61] Pipelining result: Target II: 1, Final II: 4, Depth: 8.

Figure 21. Initiation interval of 4

4-4. Perform design analysis by switching to the Analysis perspective and
looking at the dct_1d performance view.

4-4-1. Switch to the Analysis perspective, expand the Module Hierarchy entries, and select the dct_1d
entry.

Zyng 6-16 www.xilinx.com/university

Xup@xilinx.com
© copyright 2015 Xilinx

& XILINX.

Lab Workbook Fine-Tuning with Vivado HLS

4-4-2. Expand, if necessary, the Performance Profile tab entries and notice that the DCT_Outer_Loop
is now pipelined and there is no DCT_Inner_Loop entry.

t2l Module Hierarchy # = T O |[lg detc |£] Synthesis(solut | Synthesis(solut | = Performance(sol 2 . &

BRAM |DSP | Ff |LUT | Latency | Interval | Fipeline type Current Module : det > det det 2d > det det 1d2

4 @ dct 5 8 669 568 960 961 none
4 © detdet2d 3 8 586 427 825 835 none laneratiom\control 5| co | c1 | ez | ¢3 | ca
o det.dct 0 8 473 191 41 41 none 1l Erp 2 memel(mzas))
2 tmp 2 read(read)
3 tmp 10([)
4 tmp 12(])
5 tmp 14(])
£F Performance Profile 2 . |~ Resource Profile = E = 8 6 tmp 16(])
- . . - 7 | tmp 18(])
Pipelined Lat: Initiation Int | Iteration Lat: Ti it
ipelined Latency Initiation Interval Iteration Latency Trip coun 8 tmp 20(])
4 ® dct.dct 1d2 - 41 41 - 9 tmp 23(])
e DCT_Quter_Loop 39 4 12 8 1... EDCT Outer Loop
(a) Zed
3 Module Hierarchy F B < O |[[@ dctc /) Synthesis(solution3) £° compare reports |l Synthesis(solution3) &' Performance(solutior

BRAM |\ DSP ik Ty Latency) Interval Pipeline type Current Module : det > det det 24 > det det 1d2

4 e dct 5 8 677 534 874 875 none
4 e detdct2d 3 8 616395 741 74l none |oneratiom\controls..| co | c1 | ¢ | ez | ca | e5 | c6 | e7 |
o detdet 0 8 339179 36 36 none 1 |RenpRelgreadiicead)
2 | tmp 2 read(read)
3 | tmp 10(])
4 | tmp 12(])}
5 | tmp 14(])
£F Performance Profile 32 |- Resource Profile s =] 6 | tmp 16(I)
tmp 18
Pipelined Latency InitiationInterval Iteration Latency Trip count ; tmg ZUEH
4 © detdct 1d2 - 36 36 o | tmp 23(])
e DCT_Quter_Loop yes 34 4 7 1... ®DCT Quter Loop
Performance | Resource
(b) Zybo

Figure 22. DCT_Outer_Loop flattening

4-4-3. Select the Resource tab, expand the Memory Ports entry and observe that the memory accesses
on BRAM src are being used to the maximum in every clock cycle. (At most a BRAM can be dual-
port and both ports are being used). This is a good indication the design may be bandwidth
limited by the memory resource.

Current Module : dct > dct dct 2d > det det 1d

IResource\Control Sten] co | c1 | c2 | c3 | ca | 5 | co
1-6 BEI/0 Ports
7 [PMemory Ports |
8 dct coeff tabl... read
g src (p0) read read read read
10 src(pl) read read read read
11 dct coeff tabl... read
12 dct coeff tabl... read
13 dct coeff tabl... read
14 dct coeff tabl... read
15 dct coeff tabl... read
16 dct coeff tabl... read
L7 dct coeff tabl... read
18 dst (p0)
1... FExpressions

Performance
(a) Zed

i www.xilinx.com/university Zynq 6-17
f‘ XI LINX& Xup@xilinx.com

© copyright 2015 Xilinx

Fine-Tuning with Vivado HLS Lab Workbook

IResource\ControlSten] co | c1 | 2 | ca | ca |l o5 | c6 | ¢z

1-6 ®I/0 Ports

7 BEMemory Ports

8 dct coeff tabl... read

g src(pl) read read read read

10 src (p0) read read read read

11 dct coeff tabl... read

12 dct coeff tabl... read

13 dct coeff tabl... read

14 dct coeff tabl... read

i5 dct coeff tabl... read

16 dct coeff tabl... read

17 dct coeff tabl... read

i8 dst (p0) write
(b) Zybo

Figure 23. The Resource tab

4-4-4. Switch to the Synthesis perspective.

Improve Memory Bandwidth Step 5

5-1. Create a new solution by copying the previous solution (Solution3) settings.
Apply ARRAY_PARTITION directive to buf_2d_in of dct (since the
bottleneck was on src port of the dct_1d function, which was passed via
in_block of the dct_2d function, which in turn was passed via buf_2d_in of
the dct function) and col_inbuf of dct_2d. Generate the solution.

5-1-1. Select Project > New Solution to create a new solution.

5-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution3 selected).

5-1-3. With dct.c open, select buf_2d_in array of the dct function in the Directive pane, right-click on it
and select Insert Directive...
The buf_2d_in array is selected since the bottleneck was on the src port of the dct_1d function.
This array was passed via in_block of the dct_2d function, which in turn was passed via
buf_2d_in of the dct function).

5-1-4. A pop-up menu shows up listing various directives. Select the ARRAY_PARTITION directive.

5-1-5. Make sure that the type is complete. Enter 2 in the dimension field and click OK.

Zyng 6-18 www.xilinx.com/university i' X”_INX

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Fine-Tuning with Vivado HLS
Vivado HLS Directive Editor
Type

5-1-6.

5-1-7.

5-1-8.

5-1-9.

5-1-10.

5-1-11.

Directive: | ARRAY_PARTITION

Destination
Source File

Q) Directive File

Options

variable (required): buf_2d_in

type (optional): complete

factor (optional):

dimension (optional): 2

Figure 24. Applying ARRAY_PARTITION directive to memory buffer

Similarly, apply the ARRAY_PARTITION directive with dimension of 2 to the col_inbuf array of

the dct_2d function.

Click on the Synthesis button.

When the synthesis is completed, select Project > Compare Reports... to compare the two

solutions.

Select Solution3 and Solution4 from the Available Reports, and click on the Add>> button.

Observe that the latency reduced from 960 to 545 for Zed and from 874 to 508 for Zybo.

-1 Latency (clock cycles)

solutiond solution3
Latency min 545 960 Latency min
max 545 960 max
Interval min 546 961 Interval =~ min
max 546 961 max
(a) Zed (b) Zybo

Figure 25. Performance comparison after array partitioning

-l Latency (clock cycles)

solutiond solution3
508 874
508 874
509 875
509 875

Scroll down in the comparison report to view the resources utilization. Observe the increase in
the FF resource utilization (almost double) and BRAM_18K utilization reduced as the two

selected arrays were completely partitioned.

& XILINX.

www.xilinx.com/university
Xup@xilinx.com
© copyright 2015 Xilinx

Zyng 6-19

Fine-Tuning with Vivado HLS Lab Workbook

solutiond solution3 solutiond solution3
BRAM_18K 3 5 BRAM_18K 3 3
DSP48E 3 8 DSPABE 8 8
FF 1040 669 FF 1243 677
LUT 647 568 LUT 634 534
(a) Zed (b) Zybo

Figure 26. Resources utilization after array partitioning

5-1-12. Expand the Loop entry in the dct.rpt entry and observe that the Pipeline Il is now 1.

=l Detail
+ Instance
=l Loop
Latency Initiation Interval
Loop Name min max [Iteration Latency achieved target Trip Count Pipelined
- WE_Loop_Row_WR_Loop_Col B85 B85 3 1 1 64 yes
(a) Zed
- Detail
+ Instance
-1 Loop
Latency Initiation Interval
Loop Name min max [teration Latency achieved target Trip Count Pipelined
- WE_Loop_Row_WR_Loop_Col 64 b4 2 1 1 B4 yes
(b) Zybo
Figure 27. 11=1 achieved
Apply DATAFLOW Directive Step 6
6-1. Create a new solution by copying the previous solution (Solution4) settings.
Apply the DATAFLOW directive to improve the throughput. Generate the
solution and analyze the output.
6-1-1. Select Project > New Solution.
6-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution4 selected).
6-1-3. Close all inactive solution windows by selecting Project > Close Inactive Solution Tabs.
6-1-4. Select function dct in the directives pane, right-click on it and select Insert Directive...
6-1-5. Select the DATAFLOW directive to improve the throughput.
6-1-6. Click on the Synthesis button.
: — . : -
Zyng 6-20 www.xilinx.com/university $‘ XILINX;

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Fine-Tuning with Vivado HLS

6-1-7. When the synthesis is completed, the synthesis report is automatically opened.

6-1-8. Observe that dataflow type pipeline throughput is listed in the Performance Estimates.

Latency (clock cycles) - Latency (clock cycles)
- Summary = Summary
Latency Interval Latency Interval
min max min max Type min max min max Type
544 544 409 409 dataflow 507 507 374 374 dataflow
(@) Zed (b) Zybo

Figure 28. Performance estimate after DATAFLOW directive applied

o0 The Dataflow pipeline throughput indicates the number of clock cycles between each set of
inputs reads (interval parameter). If this value is less than the design latency it indicates the
design can start processing new inputs before the currents input data are output.

0 Note that the dataflow is only supported for the functions and loops at the top-level, not those
which are down through the design hierarchy. Only loops and functions exposed at the top-
level of the design will get benefit from dataflow optimization.

6-1-9. Look at the console view and notice that dct_coeff_table is automatically partitioned in dimension
2. The buf_2d_in and col_inbuf arrays are partitioned as we had applied the directive in the
previous run. The dataflow is applied at the top-level which created channels between top-level
functions read_data, dct_2d, and write_data.

@I [XFORM-582] Unrolling all sub-loops inside loop 'DCT_Outer_Loop' (../../../src/dct.c:13) in function 'dect_1d' for pipelining.
@I [XFORM-50@1] Unrolling loop 'DCT_Inner_Loop' (../../../src/dct.c:15) in function "dct_1d' completely.
@I [XFORM-102] Partitioning array 'dct_coeff_table' in dimension 2 automatically.
@I [XFORM-101] Partitioning array 'buf_2d_in' (../../../src/dct.c:81) in dimension 2 completely.
@I [XFORM-1@1] Partitioning array 'col_inbuf' (../../../src/dct.c:27) in dimension 2 completely.
@I |[[XFORM-712] Applying dataflow to function 'dct' (../../../src/dct.c:78), detected/extracted 3 process function(s):
'read_data’
‘det_2d’
‘'write_data’.
@I [XFORM-11] Balancing expressions in function 'det_1d' (../../../src/dct.c:4)...8 expression(s) balanced.

Figure 29. Console view of synthesis process after DATAFLOW directive applied

6-2. Save the directives as pragmas in the dct.c file and exit Vivado HLS.

6-2-1. Double-click on the directives.tcl entry under solutions5 > constraints.

B B R R

This file is generated automatically by Vivado HLS.

Please DO NOT edit it.

Copyright (C) 2015 Xilinx Inc. All rights reserved.
B B S B B S 1 S

set _directive resource -core RAM 1P "dct" input

set directive resource -core RAM 1P "dct" output
set_directive_latency -min 1 “dct"

set_directive_pipeline "write_data/WR_Loop_Col"
set_directive_pipeline "read_data/RD_Loop_Col"
set_directive_pipeline "dct_2d/Xpose_Col_Inner_Loop"

set_directive pipeline "dct 2d/Xpose Row_Inner_Loop"

set _directive pipeline "dct 1d/DCT_QOuter Loop"

set _directive_array partition -type complete -dim 2 "dct"™ buf 2d in
set _directive array partition -type complete -dim 2 "dct_2d" col_inbuf
Fet_directive_dataflow “det"

Figure 30. The applied directives

i www.xilinx.com/university Zynqg 6-21
i‘ XI LINXJ‘ Xup@xilinx.com

© copyright 2015 Xilinx

Fine-Tuning with Vivado HLS Lab Workbook

6-2-2. Since SDSoC does not use the directives.tcl file, we will need to move all the desired directives
and implement them as pragmas in the dct.c source file.

6-2-3. Inthe Directives tab, select one directive at a time, right-click on it, select and Modify Directive.

6-2-4. Select Source file as the destination and click OK.
When all eleven directives are transferred to the source file, you should see #pragma directives
on lines 14, 29, 43, 56, 69, 83, 90, 91, 92, 93, and 96.

6-2-5. Select File > Save.

6-2-6. Close Vivado HLS by selecting File > Exit.

Performance Estimation of Optimized Model Step 7

7-1. Clean the project and re-estimate the performance.

7-1-1. Right-click the top-level folder for the project and click on Clean Project in the menu.

7-1-2. In the Actions panel of the SDSoC Project Overview, click on Estimate Performance Speedup for
HW functions.
This selects the SDEstimate build configuration and performs the estimation flow.

7-1-3. The Build project dialog appears and asks if you want to build the project. Click OK.
The SDSoC environment builds the project. A dialog box displaying the status of the build
process appears.

7-1-4. After the build is over, you can see an initial report. This report contains a hardware-only estimate
summary.

Zynq 6-22 www.xilinx.com/universit =

ynd y & XILINX.

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Fine-Tuning with Vivado HLS

Performance and resource estimation report for the ‘lab6’ project

Click Here to get software-only application performance and speedup

Mote: Performance estimation assumes worst-case latency of hardware accelerators, it also
assumes worst-case data transfer size for arrays (if transfer size cannot be determined at compile
time). If the accelerator latency and data transfer size at run-time is smaller than such
assumptions, the performance estimation will be more pessimistic than the actual performance.

Details

Performance estimates for 'dct’ function

HW accelerated (Estimated cycles) 11311

Resource utilization estimates for hardware accelerators

Resource Used Total % Utilization
DSP 8 220 | 364
BRAM 4 140 | 286
LUT 636 53200 12
FF 1306 106400 123
(a) Zed

Performance and resource estimation report for the 'lab6’ project

Click Here to get software-only application performance and speedup

Mote: Performance estimation assumes worst-case latency of hardware accelerators, it also assumes
warst-case data transfer size for arrays (if transfer size cannot be determined at compile time). If
the accelerator latency and data transfer size at run-time is smaller than such assumptions, the
performance estimation will be more pessimistic than the actual performance.

Details

Performance estimates for 'dct’ function

HW accelerated (Estimated cycles) 14895

Resource utilization estimates for hardware accelerators

Resource Used Total % Utilization
DSP 8 g0 [10
BRAM 4 60 6.67
LuT 623 17600 | 3.54
FF 1509 35200 I 4.29
(b) Zybo

Figure 31. Initial estimate of hardware only performance of the optimized code

i www.xilinx.com/university Zynq 6-23
i‘ XI LINX“‘ Xup@xilinx.com

© copyright 2015 Xilinx

Fine-Tuning with Vivado HLS Lab Workbook

The Summary section shows that the estimated HW acceleration is 11311 compared to the initial
hardware acceleration of 32750 for Zed, and 14895 compared to the initial hardware accelerator
of 37359, yielding a 2.9x (for Zed) and 2.5x (for Zybo) improvement.

Conclusion

In this lab, you learned various techniques to improve the performance using Vivado HLS. These
directives can be used with SDSoc through pragma statements. The PIPELINE directive when applied to
outer loop will automatically cause the inner loop to unroll. When a loop is unrolled, resources utilization
increases as operations are done concurrently. Partitioning memory may improve performance but will
increase BRAM tilization. When the DATAFLOW directive is applied, the default memory buffers (of
ping-pong type) are automatically inserted between the top-level functions and loops. The Analysis
perspective and console logs can provide insight on what is going on.

Zyng 6-24 www.xilinx.com/university i
Xup@xilinx.com i; Xl LINX;

© copyright 2015 Xilinx

