Lab Workbook Debugging Software Application

Debugging Software Application

Introduction

This lab guides you through the steps involved in debugging a software application in SDSoC. SDSoC
supports Standalone and Linux application debugging. SDSoC also provides the Dump/Restore Data File
feature which can be used to dump a memory snapshot on a disk and restore the memory content from a
pre-defined file.

Objectives

After completing this lab, you will be able to:

e Use the SDSoC environment to debug Standalone applications
e Use the SDSoC environment to debug Linux application
Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises three primary steps: You will create an SDSoC project, debug a Standalone
application and debug a Linux application.

General Flow for this Lab

Step 1: Step 2: Step 3:
Create an Debugging Debugging

SDSoC Standalone Linux
Project Application Application

i www.xilinx.com/university Zyng 5-1
i‘ Xl LINX Xup@xilinx.com

© copyright 2015 Xilinx

Debugging Software Application Lab Workbook

Create an SDSoC Project Step 1

You can execute Step 1if you want to start from scratch otherwise skip to
Step 2.

1-1. Launch SDSoC and create a project, called lab5, using Standalone OS and
the Empty Application template targeting the Zed or Zybo board. Then add
the provided source files.

1-1-1. Open SDSoC, if not already open

The Workspace Launcher window will appear.
1-1-2. Click on the Browse button and browse to c:\xup\SDSoC\labs, if necessary, and click OK.
1-1-3. Select File > New > SDSoc Project to open the New Project GUI.

1-1-4. Enter lab5 as the project name, select either zybo or zed (depending on the board you are using)
via drop-down button, select Standalone as the target OS, and click Next.

1-1-5. Select Empty Application.

1-1-6. Click Finish.

1-2. Import the provided source files from the source\lab5\src folder.

1-2-1. Right click on src under lab5 in the Project Explorer tab and select Import...

1-2-2. Click on File System under General category and then click Next.

1-2-3. Click on the Browse hutton, browse to the c:\xup\SDSoC\source\lab5\src folder, and click OK.

1-2-4. Either select all the files in the right-side window or select src checkbox in the left-side window
and click Finish to import the files into the project.

1-3. Mark sharpen_filter for the hardware acceleration. Setup for the Debug
configuration.

1-3-1. Click on the “+” sign in the Hardware Functions area.
1-3-2. Select sharpen_filter function and click OK.
1-3-3. Right-click on lab5 and select Build Configurations > Set Active... > SDDebug

1-3-4. Right-click on lab5 and select Build Project

The project will be built, generating the bit stream, and an SD card image. Since this will take
about 20 minutes, we will import the pre-built project.

Zyng 5-2 www.xilinx.com/university i
Xup@xilinx.com i; Xl LINX;

© copyright 2015 Xilinx

Lab Workbook Debugging Software Application

Debugging Standalone Application Step 2

2-1.

2-1-1.

2-1-2.

2-1-3.

2-1-4.

2-1-5.

2-1-6.

2-2.

2-2-1.

2-2-2.

2-2-3.

2-2-4.

Skip Step 2-1if you are continuing from Step 1.

Import the pre-built lab5 project which has sharpen_filter marked for the
hardware acceleration. Uncheck the bitstream generation and SD card
image generation.

Select File > Import
Click on Existing Projects into Workspace under General and click Next.

Click on the Browse button of the Select archive file field, browse to c:\xup\SDSoC\source\lab5,
select lab5.zip and click Open.

Make sure that lab5 is checked in the Projects window.

Click Finish.

The project will be imported and lab5 folder will be created in the Project Explorer tab.

Expand the lab5 folder and double-click on the project.sdsoc entry.

The project file will be opened and the sharpen_filter function entry will be displayed in the
Hardware Functions window.

Uncheck the Generate Bit Stream and Generate SD Card Image options as they are already
generated.

Set the board to JTAG boot. Connect and power ON the board. Make
terminal connection. Start the debug session. Step through 5 statements.
Set a breakpoint on line 22 of the rgb_2 gray.c program.

Set the board to JTAG boot. Connect the board and power it ON.

Click on the Terminal tab in the Console view. Make a connection to an appropriate COM port,
setting 115200 baud rate.

Right-click on the lab5 project in the Project Explorer tab, and select Debug As > Launch on
Hardware (SDSoC Debugger)

The bitstream will be downloaded first to configure the board followed by the application
download.

Click Yes to switch to the debug perspective, if asked.

The debug perspective should show up. If it doesn’t then click on the Debug perspective
(J =1 [EIE SDSoC | #% Debug

) button.

£ XILINX www.xilinx.com/university Zynq 5-3

Xup@xilinx.com
© copyright 2015 Xilinx

Debugging Software Application Lab Workbook

Note that the program counter is at the main function entry point- line 75. In the Debug view you
will see the same information. The Variables tab shows various variables visible in the current
scope, the type, and their content.

2-2-5. Click on the Breakpoints tab and notice that two breakpoints are defined as default: (i) main and
(i) _exit

[Detiug - abi5/SDDebug/. sds/swstuteSD50C_lab, design_ main.c - Xiir SDS0C = =y X
File Ecit Source Refactor Nawigate Search Project Xilinx Tools Run Window Help
i & - He BrD-B® - = s S0%0C [Debug
[Debug =] o 1 ([Varisties 12| % Breakpoini3) (8] XMD Console B XSDB Conscle
s System Debugger Local Host labS.elf {Local Nama Type Walue
F - argr i L]
FM Corex-AS MPCore #0 (Breakpomit: main) » 2y char ** 000000
0010060 main(: SDSL_iab_design_manc, line 75 et 1056924
* arayc w3zt 800000000
o ® amay gl . 5
@ acT » amayg.? wng g
» amay g g g
< lab3 = lab3a | K laba « 050 tab_design | % lab% £ S050C_lab_desgn_maing = Outtine N LR R
- 4nt madn(int arge, char® argv(]) { -
fi local var Moy
int i; o
z z U Lab_desigah
w1 wint32_t *array_c = (uint32_t*) sds_alloc(FRAME_HETGHT * FRAME_WIDTH * sizeof{uint32_t)); // color frames are 24 bits per pixel, 32 bits is the smallest 2 U rgh 2 grayh
uint_t "array_g 1 = (uint8_t*) sds_alloc(FRAME_HEIGHT * FRAME_WIDTH * sizeof{uintB_t)); pray frames are B bits per pixel U sapenh
uintB_t "array_g 2 = (uint8_t*) sds_alloc(FRAME_HETGHT * FRAME_WIDTH * sizeof{uintB_t}); U edge detecth
uintB t Tarcay_g 3 = (Lint8_t*) sds_alloc(FRAME_HETGHT * FRAME_WIDTH * sizeof{uint8_t)); & sw_schs_counter_total
- * ow_sds_counter_mum_calls
i - o ® ow_sds_counter
printf("Rur rame opera # o sdic
® s _sdds O 30
dumeryFill{array_c); B ow_avg_epu6
& R 1)
. * & SHARPEN
4 Target Connections £ £ 2 0 || Console | & Tasks [Terminal 1 1] Problems| O Execusabies 0 IE & -~ o || $650€ Log s
& Hardware Server Serial: {COMG, 115200, 8, 1, None, Nane - CONNECTED) - Encoding: (I50-8850-1)
Lirwax TCF Agera - “Digil
QEMU TefGdtrClient
elec
Figure 1. Debug perspective
2-2-6. Click on the Step Over button about five times (™ "® G L or press F6) to

execute the printf statement (line 81).

When the statement is executed, you will see a message is being printed in the Terminal tab.

|5 SDSoC |[% Debug

2-2-7. Click on the SDSoC button on the top-right (J =
C/C++ perspective.

) to change to the SDSoC

The Project Explorer will show up.
2-2-8. Expand lab5 > src and double-click on the rghb_2_gray.c entry to open the file.

2-2-9. Double-click in the left border of the line (line 22) to set the breakpoint.

#pragma AP PIPELINE II =1
index = (i * FRAME_WIDTH + j);

Figure 2. Set a breakpoint

2-2-10. Switch back to the Debug perspective by clicking on the Debug button.

Zyng 5-4 www.xilinx.com/university i
Xup@xilinx.com iA XI LINX@

© copyright 2015 Xilinx

Lab Workbook Debugging Software Application

2-2-11. Click on the Breakpoints tab and notice that another entry is added.

2-3.

2-3-1.

2-3-2.

2-3-3.

2-3-4.

2-3-5.

Continue with the execution. Inspect index variable. Observe memory
content of gr variable changing.

Click on the Resume button (}9* AR R o) which will start executing until
one of the breakpoints is encountered.

Note that the program stops at line 22 of rgb_2_gray.

Click on the Variables tab and note the content of various variables. Select index and note the
value (2073599) and its address 0x815eaa4.

%s Breakpoints| i1 Registers| 3 XMD Console | @l XSDB Consol

Name Type Value
- =% color uint32_t* Bx0B2660000
: »ogray uint8_t * "\224\026\r@" \275R5\ 30t
69= int 8
69 int)
9= index int 2673599
= red uint32_t BxB0200000
td= green uint32_t BxB01137b8
= blue uint32_t BxB000RRRe
9= thisPixel uint32_t BxBBleldba
&= gr uintle_t BxB008
2873599

Hex: 801fa3ff, Dec: 2873599, Oct: 87721777
Bin: 0006 ,0000,0001,1111,1610,0011,1111,1111

Size: 4 bytes, Type: int
Address:
Figure 3. Variables content

Click on the Step Over button five times so that line 29 is highlighted. Note the variables content.

The blue variable is highlighted as that was the last variable whose content changed while
executing line 27 statement.

Note the next statement which will be executed will compute the variable gr.
Select gr and note the value (0) and the address 0x815ea92.

You can see its content in the Memory tab also. Select the Memory tab and click on “+” to open
up the Monitor Memory dialog box. Enter 0x815ea92 in the address bar and click OK.

£ XILINX www.xilinx.com/university Zynq 55

Xup@xilinx.com
© copyright 2015 Xilinx

Debugging Software Application

Lab Workbook

2-3-6.

=x=)

Enter address or expression to monitor:

EE Manitor Memory

0x815e392 -

@ o]|

Cancel

("

Figure 4. Monitor Memory window

The memory content will be displayed. The upper 16-bits represent the value.

Click on the Step Over button one more time and notice that the new value was computed and
the memory content change is reflected. The variable tab’s content also changed.

- o

m|

El Console | & Tasks | El SDK Terminal | %1 Problems | Executables| @ Memory 52 &1 [§ = || H_| ag ¥

Monitors 4 % % |0x815e392 : 0x815EA92 <HexInteger> & . == New Renderings..

Address @ - 3 4-7 8 -8 C-F -
0815£A90 [IJELLI70 0000001E 00000014 GOOOEEOA
0815EAAG QOPATA1E 0DOO0AA0 00000000 00OEEO0O
0815EABO 00QE001E OS1SEAEC 00000000 00000000 =
815EACO @81SEADA @O1@BFF4 FFFFFFFF 01300000
815EADG 01000060 0DCOPAE0 00200000 000OOOOS
P815EAE@ 00000003 0PAAPOIE PAAEAARO ©0O101E00 -

Figure 5. Variable gr's updated value in the Memory tab

2-3-7. Move the mouse close to gray array in line 31 and notice that it is a pointer to an array of type

unit8_t. The pointer is stored at 0x815ea88. The pointer value of which is 0x00C00000.

MName Type Value
4 » gray uint8_t * "\2240\B26N\r@ ' \275R5\388N333#>.
(9= # uintd_t *\224°

"\224\826N\r@" \275R5\306Y\333#>\021\20021282 \tg\364\237\024Yt; R\278"\217\B210E@\ 347\ 246\884\2644,023

Size: 4 bytes, Type: uint8_t *
Address: 8x815ea88

Figure 6. Array gray

Hex: 68000680, Dec: 12582912, Oct: 660000000, At: _heap + Oxael510
Bin: 6006, 0000,1106, 0000, 0000, 0000, 0000, 008G

2-3-8. Scroll up the Memory tab 1 line to view the contents of location 0x815ea88 and notice that it is
pointing to 0x00c00000.
Zyng 5-6 www.xilinx.com/university i' XILINX

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Debugging Software Application

Address @ - 3 4 -7 8 -B C-F o
P815EAS0 0815EAEC @01021B8 P0200000
@815EA90 0000GO1E 00000014 GOOOEODA
P315EAAG 0@RA141E 0000EODG 0MPOBERO PEAEPOABO
P315EAB@ 0@BPA1E O81SEAEC 00P0BAR0 PEBEPOABO
@315EAC@ ©815EADA @O1@BFFA FFFFFFFF 91300000
P315EAD@ 01000008 0OCPEODE 00200000 POAOPOAS -

[

Figure 7. Pointer’s content

2-4. Add 0x00CO00000 (array_g_1 address) in the Memory tab, click the Resume
button four times and observe the changing content. Remove the
breakpoint set at line 22 and click the Step Return button to complete the
function execution return to the main program.

2-4-1. Add 0x00C00000 in the Memory tab to view its content.

2-4-2. Click on Resume button four times and observe the array content changing.

Address @ - 3 4 - 7 8 -8B C-F
0000000 87DFA3BC 13BBCOE® CDSEEAAA
00CEEO1® 79F93597 8DFFFID7 63E8SBDS AG6FF603D
00COe020 3EEE7CFS F72D7F3C 3EFFAZFD 23F25FB9
00COeO30 EEFFEAEE FEGEASIF F2BEEDBE CF3CF7D5
0eCeea4e FD7DDDF7 DDA91BBD O7FFDABD BAD3SFOF
00Cee@50 DFFEB77F OF99CFFC 7E39E93D 76DEDO@BF

Figure 8. Array content changing

2-4-3. Select the Breakpoints tab and uncheck the rgb_2_gray.c — line 22 check box. This will disable
the breakpoint.

2-4-4. Click on the Step Return button (* "® M 2 CEP) to execute the function and
stop on line 100 of the SDSoC_lab_design_main.c program (_p0O_sharpen_filter_0).

2-4-5. Select the Variables tab and select array_g_1. Note its content and the address.

i www.xilinx.com/university Zynq 5-7
i‘ XI LINX“‘ Xup@xilinx.com

© copyright 2015 Xilinx

Debugging Software Application Lab Workbook

Mame Type Value

)= argc int 5]

» argv char ** 8xB00006000

- | int 5

® array_c uint32_t* 9x00200000

® array g_1 uint8_t * "\821408214821\02148214821021\0821\021. . .
> = array_g_2 uint8_t * "32145\335p\2677\2310\2350\334kN\367\227 . . .

® array_g_3 uint8_t * "\256\2640\235p\223\237\225\335\317\36. ..

"482146214621462146214621462146214621%621462146211621%621%621%621,621"621"621"621"82
Hex: 68000080, Dec: 12582912, Oct: 660000000, At: _heap + Oxael510

Bin: 6000, 0000,1106,0000, 0000, 0000, 0000, 008G

Size: 4 bytes, Type: uint8_t *

Address: Gx815eadd

Figure 9. The processed content of array_g_1

2-5. Use Dump/Restore Data File feature of XSDK to update the array_g_1's
content with the provided binary data file stored in the source/lab5
directory.

After the color buffer has been converted to gray, you will replace the
content of array_g_1 with the binary data provided to you in the
lab5_array _g_2.bin file.

2-5-1. Select Xilinx Tools > Dump/Restore Data File

2-5-2. Click the Select button, choose Name=Xilinx Hardware Server from the Peers section.

2-5-3. Expand the APU entry in the Contexts section and select ARM Cortex-A9 MPCore #0.

2-5-4. Click OK.

2-5-5. Click the Browse button, browse to C:\xup\SDSoC\source\lab5\, choose lab5_array_g_1.bin
and click Save.

2-5-6. Select the Restore Memory option as we want to read the file content.

2-5-7. Enter 0x00C00000 in the Start Address field and 2073600 in the Size field.

Where 2073600 is the number of pixels (1920 x 1080).

2-5-8. Click OK.

Zyng 5-8 www.xilinx.com/university i
Xup@xilinx.com i; Xl LINX;

© copyright 2015 Xilinx

Lab Workbook

Debugging Software Application

-

“1) Dump/Restore Memory

)

Dump/Restore Memory P
Dumps Memory Contents to File or Restores File Contents to Memory 0
Processor. /APU/ARM Cortex-A9 MPCore #0 | select. |
Connection: | TCP:127.0.0.1:3121
File Location: Chxup\SDSoC\sourcet\lab5\lab5_array_g_l.bin l Browse... I
(C) Dump Memory (@) Restore Memory
Memaory Details
Start Address: 0x00C00000
Size(in bytes): 2073600
':?:' OK] l Cancel
|]

Figure 10. Updating memory content with a pre-created binary content

This will load the content into the array (you can see the progress in the SDK log window). You

can see the updated content in the Memory tab.

Note that the next statement which will be executed will be using the hardware accelerator (line

100).

2-5-9. Click the Step Over button.

The array_g_2 content will be updated due to the execution of the statement.

2-5-10. Click the Disconnect (¥¥) button to terminate the session.

Debugging Linux Application

Step 3

For this portion of the lab, you will need an Ethernet port on the PC
configured to 192.168.0.1 as an IP address and an Ethernet cable

connected between the PC and the board.

You can execute Step 3-1 and Step 3-2 if you want to start from scratch

otherwise skip to Step 3-3.

3-1. Create a new empty application project called lab5a targeting Linux OS.
Import the provided source files from source\lab5\src folder

3-1-1. Select File > New > SDSoc Project to open the New Project GUI.

3-1-2. Enter lab5a as the project name, select either zybo or zed (depending on the board you are

using) via drop-down button, select Linux as the target OS, and click Next.

& XILINX.

www.xilinx.com/university
Xup@xilinx.com
© copyright 2015 Xilinx

Zyng 5-9

Debugging Software Application Lab Workbook

The Templates page appears, containing source code examples for the selected platform.
3-1-3. Select Empty Application.
3-1-4. Click Finish.
3-1-5. Right click on src under lab5a in the Project Explorer tab and select Import...
3-1-6. Click on File System under General category and then click Next.
3-1-7. Click on the Browse button, browse to c:\xup\SDSoC\source\lab5\src folder, and click OK.

3-1-8. Either select all the files in the right-side window or select src checkbox in the left-side window
and click Finish to import the files into the project.

3-2. Mark sharpen_filter for the hardware acceleration. Build the SDDebug
project.

3-2-1. Click on the “+” sign in the Hardware Functions area to open up the list of functions which are in
the source files.

3-2-2. Select sharpen_filter function and click OK.
3-2-3. Right-click on lab5a and select Build Configurations > Set Active... > SDDebug

3-2-4. Right-click on lab5a and select Build Project
The project will be build, generating bit stream, and the SD card image.

Since this will take about 20 minutes, we will import the pre-build project.
If you are continuing from Step 3-2, then skip Step 3-3.

3-3. Import the pre-built lab5 project which has sharpen_filter marked for the
hardware acceleration. Uncheck the bitstream generation option.

3-3-1. Select File > Import
3-3-2. Click on Existing Projects into Workspace under General and click Next.

3-3-3. Click on the Browse button of the Select archive file field, browse to c:\xup\SDSoC\source\lab5,
select lab5a.zip and click Open.

Make sure that lab5a is checked in the Projects window.

3-3-4. Click Finish.

The project will be imported and lab5a folder will be created in the Project Explorer tab.

3-3-5. Expand the lab5a folder and double-click on the project.sdsoc entry.

Zyng 5-10 www.xilinx.com/university i
Xup@xilinx.com i; Xl LINX;

© copyright 2015 Xilinx

Lab Workbook Debugging Software Application

The project file will be opened and the sharpen_filter function entry will be displayed in the
Hardware Functions window.

3-3-6. Uncheck the Generate Bit Stream option making sure that the Generate SD Card Image option is
still checked.

3-4. Copy the sd_card content on the SD Card. Configure the board to boot
from the SD card. Connect and power up the board. Setup the ip addresses
both on the board and the PC Ethernet adaptor.

3-4-1. Using the Windows Explorer copy the content of the lab5a > SDDebug > sd_card onto the SD
card. Place the SD card into the board.

3-4-2. Configure the board to boot from the SD card.

3-4-3. Connect the board, including network cable, and power it ON.

The board will boot.
3-4-4. Make the serial connection using the appropriate COM port.
3-4-5. Press the PS-SRST button on the board to reboot and notice Linux booting.

3-4-6. Once the board boot is complete, set the ip address of the board to 192.168.0.10 typing the
following command at the Linux prompt:

ifconfig and note if any address is being assigned. If not assigned then execute the following
command to assign to the correct Ethernet adaptor.

sh-2. 3¢ [Feontiz]
2th@) Link encap:Ethernet HWaddr @0:8A:35:00:01:22
UP BROADCAST RUNNING MULTICAST MTU:150@ Metric:1
ackets:501 errors:@ dropped:@ overruns:@ frame:@
No IP address Bckets:23 errors:0 dropped:@ overruns:® carrier:@
sions:@ txqueuelen:1000
RX bytes:53968 (52.7 KiB) TX bytes:7866 (7.6 KiB)
Interrupt:143 Base address:@xb2o@

lo Link encap:Local Loopback
inet addr:127.8.0.1 Mask:255.08.0.9
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:@ errors:@ dropped:@ overruns:@ frame:@
TX packets:@ errors:® dropped:@ overruns:@ carrier:@
collisions:@ txqueuelen:@
RX bytes:0 (0.2 B) TX bytes:0 (8.8 B)

sh-4.3# |ifconfis(eth@) 192,168,0.10|

Figure 11. Assigning an IP address

3-4-7. Using the control panel on the PC, configure the PC Ethernet adaptor with the static IP address to
192.168.0.1.

i www.xilinx.com/university Zyng 5-11
i‘ XI LINX‘*‘ Xup@xilinx.com

© copyright 2015 Xilinx

Debugging Software Application Lab Workbook

You can verify the connectivity by using ping 192.168.0.1 command from the board’s prompt.

3-5. Make target connection and start debugging the application.

3-5-1. Inthe Target Connections tab, expand Linux TCF Agent and double-click on Linux Agent
[default]

4k Target Connections &
» = Hardware Server
4 = Linux TCF Agent
A Linux Agent [default]
+ (= QEMU TcfGdbClient

Figure 12. Accessing Linux Agent

Alternately, in the Actions panel, for the connection, click on the New button.

3-5-2. Enter 192.168.0.10 in the Host field and then click OK making sure that the Port field is set to
1534.

[Target Connection Details [ﬁ

Edit Target Connection

Edit Target Connection

Target Mame Linux Agent

| [v]Set as default target

I} Specify the connection type and properties
Type | Linux TCF Agent

Host 192.168.0.10

Port 1534

Advanced ==

Cancel

I

Figure 13. Making connection for Linux target

3-5-3. Click on the Debug Application link in the Actions panel.
The connection will be made.
The debug perspective should show up. If it doesn't then click on the Debug perspective button.

Note that the program counter is at the main function - line 70. The Variables tab shows various
variables visible in the current scope, the type, and their content.

3-5-4. Click on the Step Over button six times to execute the printf statement. When executed, you will
see the message in the Console tab.

The variables tab will show various variables and arrays. Note that the value may be same as in
the Standalone application but the addresses where they are defined will be different as the
application is running under Linux.

Zyng 5-12 www.xilinx.com/university i
Xup@xilinx.com i‘. Xl LINX;

© copyright 2015 Xilinx

Lab Workbook Debugging Software Application

3-5-5. Click on the SDSoC button on the top-right to change to the SDSoC C/C++ perspective.

The Project Explorer will show up.
3-5-6. Expand lab5a > src and double-click on the rgb_2_gray.c entry to open the file.
3-5-7. Double-click in the left border of the line (line 22) to set the breakpoint.
3-5-8. Switch back to the Debug perspective by clicking on the Debug button.
3-5-9. Click on the Resume button which will start executing until one of the breakpoints is encountered.
3-5-10. Note that the program stops at line 22 of rgb_2 gray.

3-5-11. Select index and note the value (2073599) and its address 0x3ee04c74. Note the address may
be different as MMU is used to translate virtual address into a physical address.

3-5-12. Click on the Step Over button five times such that line 29 is highlighted. Note the variables
content.

The blue variable is highlighted as that was the last variable whose content changed while
executing line 27 statement.

Note the next statement which will be executed will compute the variable gr.

3-5-13. Select gr and note the value (0) and the address 0x3ee04c62. Note the address may be different
as MMU is used to translate virtual address into a physical address.

3-5-14. You can see its content in the Memory tab also. Select the Memory tab and click on “+” to open
up the Monitor Memory dialog box. Enter the address and click OK.

The memory content will be displayed. The upper 16-bits represent the value.

Since MMU is used in Linux, you won't be able to see the content of the arrays as well as you
won't be able to use the Dump/Restore Data File feature of SDSoC.

3-5-15. Remove the breakpoint and click Resume to execute the program to the completion.

This may take about 30 seconds.
3-5-16. Click on the Disconnect button.

3-5-17. Turn OFF the board and exit the SDSoC program.

Conclusion

In this lab, you debugged Standalone and Linux applications. The Standalone application was debugged
using JTAG connection whereas the Linux application was debugged over Ethernet. In Standalone
application you were able to look into various arrays using the addresses and able to use the
Dump/Restore Data File feature of SDSoC. In Linux application this was not possible as MMU translates
the virtual addresses of arrays and pointers into physical addresses.

i www.xilinx.com/university Zyng 5-13
i‘ Xl LINX Xup@xilinx.com

© copyright 2015 Xilinx

