Lab Workbook Profiling Applications and Create Accelerators

Profiling Applications and Create Accelerators

Introduction

Program hot-spots that are compute-intensive may be good candidates for hardware acceleration,
especially when it is possible to stream data between hardware and the CPU and memory and overlap
the computation with the communication. This lab guides you through the process of profiling an
application, analyzing the results, identifying function(s) for hardware implementation, and then profiling
again after targeting function(s) for acceleration.

Objectives

After completing this lab, you will be able to:

e Use TCF profiler to profile a pure software application

o Use TCF profiler to profile a software application that calls functions ported to hardware
e Use manual profiling method by using sds_lib API and counters

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises five primary steps: You will create an SDSoC project, profile the pure software project,
accelerate one function and profile, profile using sds_lib API, and finally add another function to
accelerators and profile.

General Flow for this Lab

Step 1: Step 2: Step 3: Step 4: Step 5:
Create an Profile the Accelerate Profiling _ b 'ﬁ?i .
SDSoC Application sharpen_filter |:> using sds_lib |:> sobe F ' (t?f 0
Project and Profile API accelerators
and Profile

i www.xilinx.com/university Zynqg 3-1
i‘ Xl LINX Xup@xilinx.com

© copyright 2015 Xilinx

Profiling Applications and Create Accelerators Lab Workbook

Create an SDSoC Project Step 1

1-1.

1-1-1.

1-1-2.

1-1-3.

1-1-4.

1-2.

1-2-1.

1-2-2.

1-2-3.

1-2-4.

Launch SDSoC and create a project, called lab3, using the Empty
Application template and then using the provided source files, targeting the
Zed or Zybo board.

Open SDSoC, and select c:\xup\SDSoC\labs as the workspace and click OK.
Create a new project called lab3, and select either zybo or zed
Select Standalone as the target OS, and click Next.

Select Empty Application and click Finish.

Note that the lab3 > src folder is empty.

Import the provided source files from the source\lab3\src folder. Create an
SDDebug configuration and build the project.

Right click on src under lab3 in the Project Explorer tab and select Import...

Click on File System under General category and then click Next.

I EE Import l B X]
Select \
=1

Import resources from the local file system into an existing project.

Select an import source:

type filter text

4 (= General
[E Archive File
1= Existing Projects into Workspace
El Preferences

s = CfC++

> (= Install

: = Remote Systems

¢ = Run/Debug

» = Team

Figure 1. Selecting import source location

For the From Directory, click on the Browse button and browse to c:\xup\SDSoC\source\lab3\src
folder and click OK.

Either select all the files in the right-side window or select src checkbox in the left-side window
and click Finish to import the files into the project.

The files will be copied into the src folder under lab3 folder. This can be verified by expanding the
src folder in the Project Explorer tab and also by using Windows Explorer.

Zyng 3-2 www.xilinx.com/university i' XI LINX

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Profiling Applications and Create Accelerators

EE Import (=] S
File system [117
Import resources from the local file system. <
From directory: I Chxup\SDSoC\sourcellab3\src I -
Eb src [v]}€l edge_detect.c -
L [|]€l edge_detecth
[¥]]<l lab_design.h
[}zl rgb_2_gray.c =
V)2 rgb_2_gray.h
[V1f< SDSoC_lab_design_main.c
[V1}€ sharpen.c
[]]€] sharpen.h -
l Filter Types... l I Select All l l Deselect All l
Into folder: lab3/src Browse...

Figure 2. Selecting path and files to be imported
1-2-5. Select Build Configurations > Set Active > SDDebug

1-2-6. Right-click on lab3 and select Build Project

This should only may take about one minute as it is a pure software compilation.

Profile the Application Step 2

2-1. Connect the board in the JTAG mode and power it ON. Start the Debug
session. Add the TCF Profiler view and configure it to include the
Aggregate per Function option.

2-1-1. Connect the board in the JTAG mode and power it ON.

2-1-2. Click on the Debug Application link under the Actions window in the lab3 tab on the right-side.

Actions

Connection: ‘Local hd @|

Command line arguments for lab3.elf

¥ Debug Application Q- Estimate Performance Speedup for HW Fu

Figure 3. Executing Debug Application action

A Confirm Perspective Switch window will appear asking you to switch to the Debug perspective.

i www.xilinx.com/university Zynqg 3-3
i‘ XI LINX‘*‘ Xup@xilinx.com

© copyright 2015 Xilinx

Profiling Applications and Create Accelerators

Lab Workbook

2-1-3.

Confirm Perspective Switch

[| Remember my decision

Do you want to open this perspective now?

This kind of launch is associated with the Debug perspective.

This Debug perspective is designed to support application debugging. It incorporates
views for displaying the debug stack, variables and breakpoint management.

)

o]|

MNo

b

Figure 4. Perspective Switch dialog window

Click Yes to open the debug perspective.

The debug perspective will open showing various views: threads, variables,
SDSoC_lab_design_main.c source program, Outline tab showing various objects created in the

source program, and the console.

Notice that the program is suspended at the main() entry on line 68.

B Debug - lab3/sre/SDS0C_lab_design_main.c - Xilink SDS0C
.l"é Edit Source Refactor qum Search P‘ﬂ]m Xitinx Tools Run Window Help

Figure 5. The Debug perspective

2-1-4. Select Window > Show View > Other and then expand the Debug folder.

2-1-5. Select TCF Profiler and click OK.

==

2o O 1 1 B-0-BB A= S Do | | msosc emmg) ||
% Debug 1 Ml YT 0O ek Variables | % Breakpoints [E] XMD Console Il XSDB Consale =o|
+ §, Systern Debugger Local Host lab3.ell (Local) A=F G -
- g% APU Name Type Value
a® ARM Cortex-A9 MPCore #0 (Breakpoint: main) o ange int @ 3
= (00100580 main(: SDS0C_lab_design_main.c, line 68 * argy char ** ExE000N
= (w00101e80 _start(): xil-cnd.S, line 128 o i int 1857168
® ARM Cortex-AS MPCore #1 (Suspended) - anay ¢ uint32t* Ll
& %7010 * array g 1 uintd 1 * -
‘ 0
W lab3 | [8 SDSoC_lab_design_mainc 2 9 || & outline = Sk e e T 0O
4 ff lecal variables - M stdio.h -
int i; M stdlinh
. . . . M sds libh
& /[set up memory structures for moving frames of data
* uint32_t *arcay c = (uint32_t*) sds_alloc(FRAME_HEIGHT * FRAME WIDTH * sizeof(uint32_t)); // color frames - U lab designh
; uint8_t *array_g 1 = (uint8_t*) sds_alloc(FRAME_HEIGHT * FRAME_WIDTH * sizeof(uint8_t)); u rgh.2grayh
uint8_t *array_g 2 = (uint8_t*) sds_alloc(FRAME_HEIGHT * FRAME_WIDTH * sizeof(uint8_t)); U sharpenh
uint8 t "array_g 3 = (uintB8_t*) sds_alloc(FRAME_HEIGHT * FRAME_WIDTH * sizeof(uint8_t)); U edge_detecth
® sw_sds_counter_total : u
/{ let the user know what is happening. .. ® sw_sds_counter_num_calls : u
printf("Running frame operations. ® gw_sds_counter : u
/7 initialize the color frame buffer (initial imput into the processesing sequence # s sds_cli_start()
dummyfill{array_c); - # sw_sds_clk_stop() -
Il L3 L] *
4 Target Connect.. 2 = O || B Console 77 & Tasks| & Terminal 1 [Problems O Executables o Brriv ™ O |[sSDSOCLog Ris = 0
& 57 || TCF Debug Virtual Terminal - ARM Conex-A2 MPCore #1
& Hardware Server ©6:43:02 INFO : Context for processor 'ps7_cortexad @' is
. B6:43:02 INFO : 'con' command is executed.
& Linux TCF Agent 86:43:02 INFO © =--mcmemmmmmennn XSDE Script (After Launch)
& QEMU TefGdbClient tarpets -set -nocase -filter {name =- “ARM*m@" && jtap_cable
con
End of Script _
= il v

Zyng 3-4

www.xilinx.com/university
xup@xilinx.com

© copyright 2015 Xilinx

& XILINX.

Lab Workbook Profiling Applications and Create Accelerators

2-1-6.

2-1-7.

2-1-8.

2-2.

2-2-1.

2-2-2.

The TCF Profiler tab will open in the same window where Outline view was open.

In the TCF Profiler view, click the start button.
8= Qutline | & TCF Profiler 52 =
Figure 6. Opening the TCF Profiler configuration

The Profiler Configuration window will open.

Select the Enable stack tracing option and click OK.
The Aggregate per function option will collect the same function calls be collected together.

The Enable stack tracking option implements thread stack back tracing—essentially a summary
of how the program execution gets to where it is when sampled. This allows the determination of
parent/child relationships.

The Max stack frames count field sets the number of frames to count backwards. This option is
useful only if the Enable stack tracing is enabled.

The View update interval (msec) field indicates at what interval the profile data will be updated in
the TCF Profiler window.

2 Profiler Configuration &J

¥| Aggregate per function
v | Enable stack tracing

Max stack frames count: 3

View update interval (msec): 4000

OK] | Cancel

b

Figure 7. Selecting the options

Click OK.

Run the application for about 2 minutes, then suspend, and analyze the
data.

Click on the Resume button ('-'E') on the tool buttons bar or Press F8 to start the execution.

Wait for about two minutes and/or when about 3200 samples are collected as indicated in the
TCF Profiler’s view and click the Suspend button (1H).

Note that the number of collected samples may vary depending on your PC’s performance and
connection speed with the board.

£ XILINX www.xilinx.com/university Zynq 3-5

Xup@xilinx.com
© copyright 2015 Xilinx

Profiling Applications and Create Accelerators

Lab Workbook

5% Outline | & TCF Profiler 2

Profiler runnning.)3241 samples

Figure 8. The TCF Profiler view showing the collected nhumber of samples

2-2-3. Click on the Maximize view button (5= Outline | & TCF Profiler &

o # =[5,

Note that it shows three sections. The top-section shows various calls made after the execution
started. The first function called is _start. In the Called From sub-window, nothing is listed as it
the root function. In the Child Calls window, it shows main as the function being called from

_start.

Profiler runnning. 3239 samples

Address % Exclusive % Inclusive Function File Line
:00101e30 .000 _start xil-crt0.S 82
0010056¢c .000 main SDSoC_lab_design_main.c 63
00100094 [|f1.85 ' sabel filter edge_detect.c 76
0010133c¢ [5.8? 45.8 sharpen_filter sharpen.c 63
001009a4 .8 sobel_operator edge_detect.c 34
00101228 16.1 9 sharpen_operator sharpen.c 34
0010108c (1B.6 136 window_getval edge_detect.c 204
00101834 @.83 B.EB window_getval sharpen.c 191
00101734 ﬁ.Sl ﬂ’.Sl window_shift_right sharpen.c 168
00100f8c E».?Ei |]5.?6 window_shift_right edge_detect.c 181
001010e0 [3.30 330 rgb_2_gray rgb_2_gray.c 6
00101600 |2.32 232 linebuffer_shift_up sharpen.c 134
00100e58 |2.25 2.25 linebuffer_shift_up edge_detect.c 147
001017e0 216 216 window_insert sharpen.c 183
0010169¢ 191 191 linebuffer_getval sharpen.c 146
00100ef4 1.39 139 linebuffer_getval edge_detect.c 159
00101038 1.05 1.05 window_insert edge_detect.c 196
00101678 772 72 linebuffer_insert_bottom sharpen.c 158
00100fs0 710 710 linebuffer_insert_bottom edge_detect.c 171
00100714 .525 525 dummyfill SDSoC_lab_design_main.c 134
Called From
Child Calls
0010056¢ main SDSoC_lab_design_main.c 63
(a) Zed

Zyng 3-6 www.xilinx.com/university

Xup@xilinx.com
© copyright 2015 Xilinx

& XILINX.

Lab Workbook

Profiling Applications and Create Accelerators

Profiler runnning. 3282 samples

Address % Exclusive % Inclusive
:00101e30 .000

0010056c 000

00100094 [6.12

0010133c k.78 397
001009a4 (2217 374
00101228 3.2 214
0010108c [14.7 14.7
00101834 [8.20 820
00101734 [1.07 §.07
00100f8c [6.92 6.92
001010e0 [3.23 3.3
0010058 [2.29 229
001017e0 2.10 2.10
00101600 2.07 207
00101038 186 1.86
0010169c 140 140
00100ef4 131 131
0010168 945 945
00100f50 609 609
00100714 548 548
Called From

Child Calls

0010056¢
(b) Zybo

Figure 9. The TCF Profiler result

Function File Line
_start xil-crt0.S 82
main S5DSoC_lab_design_main.c 63
sobel_filter edge_detect.c 76
sharpen_filter sharpen.c 63
sobel_operator edge_detect.c 34
sharpen_operator sharpen.c 34
window_getval edge_detect.c 204
window_getval sharpen.c 191
window_shift_right sharpen.c 168
window_shift_right edge_detect.c 181
rgb_2_gray rgb_2_gray.c 6
linebuffer_shift_up edge_detect.c 147
window_insert sharpen.c 183
linebuffer_shift_up sharpen.c 134
window_insert edge_detect.c 196
linebuffer_getval sharpen.c 146
linebuffer_getval edge_detect.c 159
linebuffer_insert_bottom sharpen.c 158
linebuffer_insert_bottom edge_detect.c 171
dummyfill S5DSoC_lab_design_main.c 134
main SDSoC_lab_design_main.c 63

Address is the location of the function in memory that will match what is shown in the
Disassembly view.

% Exclusive is the percentage of samples encountered by the profiler for that function only
(excluding samples of any child functions). This can also be seen as exclusive percentage for that
particular function.

% Inclusive is the percentage of samples of a function, including samples collected during
execution of any child functions.

Function is the name of the function being sampled.

File is the name of the file containing the function.

Line indicates the line number where the function is found in the source file.

& XILINX.

www.xilinx.com/university
Xup@xilinx.com
© copyright 2015 Xilinx

Zynq 3-7

Profiling Applications and Create Accelerators Lab Workbook

2-2-4. Note that _start and main functions are 100% under the %inclusive column as all other functions
are called from main. They are essentially 0% under the %exclusive column as a negligible time
spent in those functions. Also note that _exit function is not listed since we did not profile to the
completion (it would have taken about 10 minutes).

2-2-5. Looking under the %inclusive column, notice that the CPU spent about 50% of its time executing
the sharpen_filter function and its sub-functions.

2-2-6. Click on the sharpen_filter entry to see that the source code window shows up.

You can view the source code and see that it processes some data and calls several functions.

2-2-7. Switch back to the TCF Profile result window and observe that the sharpen_filter function calls
sharpen_operator, window_shift_right, linebuffer_shift_up, linebuffer_getval, and window_insert
functions.

The same Child Calls window shows how much time the CPU spent in each of those functions.

00100b94 Hﬂ.SS
10010133¢c [b.87

sobel_filter

sharpen_filter
00100924 [19.8 sobel_operator

00101228 [16.1 249 sharpen_operator

Child Calls
00101228 1249 sharpen_operator
00101734 EY.81 window_shift_right
00101600 2.32 linebuffer_shift_up
0010170 2.16 window_insert
0010169c¢ 191 linebuffer_getval
0010168 d72 linebuffer_insert_bottom
(a) Zed
Zyng 3-8 www.xilinx.com/university i: XILINXS

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Profiling Applications and Create Accelerators

00100094 [6.12 565 sobel_filter
10010133c [4.78 397! sharpen_filter
00100924 1227 374 sobel_operator
00101228 _ﬂ32 rﬂ4 sharpen_operator

o‘gogw"wh

Child Calls
00101228 rﬂA sharpen_operator
00101734 b.07 window_shift_right
0010170 2.10 window_insert
00101600 2.07 linebuffer_shift_up
0010169c¢ 140 linebuffer_getval
001016f8 945 linebuffer_insert_bottom
(b) Zybo

Figure 10. Child Calls from sharpen_filter function

2-2-8. Also note that window_shift_right, linebuffer_shift_up, linebuffer_getval, and window_insert
appear multiple times. This is because they are called from different places. Click on any of these
entries and notice that it only has a Called From entry and not a Child Calls indicating that these
functions do not have any sub-functions, or they are leaf functions.

2-2-9. Looking at the results sorted in the %inclusive column, we can see that sharpen_filter may be a
good candidate for the hardware acceleration. The function and sub-functions should be carefully
considered to determine suitability for acceleration. Typical candidates for acceleration are
functions that can process a stream of data, or can be implemented in parallel, without excessive
resource utilization.

2-2-10. Click on the %Exclusive column to sort the results.

You can see that the CPU spends a large proportion of the total time in the sharpen_operator
function. This may be a good candidate for acceleration.

2-2-11. Click on the Disconnect button (¥¥) to terminate the session.

Accelerate sharpen_filter and Profile Step 3

3-1. Add sharpen_filter function for hardware acceleration. Change SDSCC
compiler setting to define TIME_SHARPEN symbol. Build the project and
analyze the data motion network.

3-1-1. Switch back to the SDSoC perspective.

i' XI LINX www.xilinx.c_qm/university Zynqg 3-9

Xup@xilinx.com
© copyright 2015 Xilinx

Profiling Applications and Create Accelerators Lab Workbook

3-1-2. Click on the “+” sign in the Hardware Functions area to open up the list of functions which are in
the source files.
3-1-3. Select sharpen_filter function and click OK.
3-1-4. Double-click the SDSoC lab_design_main.c under lab3 > src.
3-1-5. Note several conditional compilation statements around lines 83 to 103.
3-1-6. Right click on lab3 in the Project Explorer window and select C/C++ Build Settings.
3-1-7. Select Symbols under SDSCC Compiler and click “+” button to define a symbol.
3-1-8. Enter TIME_SHARPEN in the field and click OK.
3-1-9. Click OK again.
m Properties for lab3 =l P
type filter text Settings 7 w7
» Resource
Builders
4 C/C++ Build Configuration: lSDDebug [Active] '] lManage Conﬁgurations...l
Build Variables
Environment
Logging & Tool Settings |.3°‘ Build Steps Build Artifactl Binary Parsersl @ Error Parsers|
Sellings 4 1 SDSCC Compiler Defined symbols (-D)
Tool Chain Editor
» C/C++ General | (2 Warnings
Project Referencesy |
Run/Debug Setting 15| Enter Value
Defined symbols (-D)
| TIME_SHARPEN |
OK l ’ Cancel
Figure 11. Defining symbol for conditional compilation
3-2. Build the project and analyze the data motion network.
3-2-1. Right-click the top-level folder for the project and click on Clean Project in the menu.
3-2-2. Right-click the top-level folder for the project and click on Build Project in the menu.
This may take about 20 minutes.
: — . . -
Zyng 3-10 www.xilinx.com/university iA XILINX;;

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Profiling Applications and Create Accelerators

3-2-3.

3-2-4.

3-3.

3-3-1.

3-3-2.

3-3-3.

3-3-4.

3-3-5.

When build process is done, select the lab3 tab so you can access Data Motion link.

Click on the Data Motion report link and analyze the result.

Data Motion Network

Accelerator |Argument| IP Port | Direction | Declared Size(bytes) Pragmas Connection

sharpen_filter 0 |input input r |IN 2073600%1 « buffer depth:2073600|S_AXI HPO:AXIDMA SIMPLE

output output r |OUT 2073600%1 + buffer depth:2073600|S AXI HP0O:AXIDMA SIMPLE

return ap_return| OUT 4 M_AXI_GPO:AXILITE:0xCO
Accelerator Callsites

Accelerator Callsite IP Port | Transfer Size(bytes) | Paged or Contiguous | Cacheable or Non-cacheable

sharpen_ filter 0|SDSoC lab design main.c:93:3 |input r | 2073600 * 1 contiguous cacheable

output_r | 2073600 * 1 contiguous cacheable

ap_return |4 paged cacheable

Figure 12. Data Motion network showing buffer_depth pragmas

Open Vivado IPI design.

Open Vivado by selecting Start > All Programs > Xilinx Design Tools > SDSoC 2015.4 >
Vivado Design Suite > Vivado 2015.4

Open the design by browsing to c:\xup\SDSoC\labs\lab3\SDDebug\ sds\pO\ipi and selecting
either the zybo.xpr or zed.xpr.

Click on Open Block Design in the Flow Navigator pane. The block design will open. Note
various system blocks which connect to the Cortex-A9 processor (identified by ZYNQ in the
diagram).

Click on the show interface connections only (é}) button followed by click on the regenerate
layout (@9) button.

Follow through both input and output data paths of the sharpen_filter_0 instance and observe that
they are connected to the S_AXI_HPO port of PS7.

axi_interconnect_M_AXI_GPO

a
Bl mo0_a- > |[
il s0g mﬂgﬂ\m 01|

2 A0

sharpen_filter_0_if

datamaver_1

.5 a1
= s masa

o] 15 mar_LiTe

y M_AX] S0 |
= s IS s2m

s ps?
axi_interconnect_S_AX]_HPD n
; i |2 5.1 rPa_Frvo_eTR -
q [EYLSEREPORY .. iy ZYNQ
AT Interconnect
ZYNQ7 Processing System

Notice that two data movers are used; one for input and another for output data. They both
connectto S_AXI_HPO of PS7 through the axi_interconnect_ S _AXIl_HPO instance. The two data
movers and the sharpen_filter_0_if instance can be configured by their S_AXI_LITE interfaces
which are connected to the ps7 via the axi_interconnect_ M_AXI_GPO0 instance.

M_AXIS 0.7

Figure 13. Built design

£ XILINX www.xilinx.com/university Zynq 3-11

Xup@xilinx.com
© copyright 2015 Xilinx

Profiling Applications and Create Accelerators Lab Workbook

3-3-6. Close Vivado by selecting File > Exit. Do not save the block design.

3-4. Connect the board and power it ON. Start the Debug session. Add the TCF
Profiler view and configure it to include the Aggregate per Function option.

3-4-1. Connect the board and power it ON.

3-4-2. Click on the Debug Application link under the Actions window in the lab3 tab on the right-side.
Notice that the Done LED on the board goes OFF and then goes back ON this time as the FPGA
fabric gets configured using the built hardware design.

3-4-3. Click Yes to open the debug perspective, if prompted.

Notice that the program is suspended at the main() entry on line 75 (instead of 68 in Figure 5).
If you scroll up into the main() function window, you will notice code is added on lines 63 to 69
which declares _p0_sharpen_filter_0 function prototype.

63 #ifdef cplusplus

64 extern "C" {

65 #endif

66 int _p®_sharpen_filter_@(uint8 t * input, uint8 t * output);

67 #ifdef cplusplus

68 }

69 #endif

Figure 14. Function prototype for the accelerated function

3-4-4. Add TCF Profiler view as before, and configure the TCF Profiler view to include the Aggregate
per function option.

3-5. Run the application for about 2 minutes, then suspend, and analyze the
data.

3-5-1. Press the Start button of the TCF Profiler.

3-5-2. Click on the Resume button (Green box) on the tool buttons bar to start the execution.

3-5-3. Wait for about two minutes and/or when about 3200 samples are collected as indicated in the
TCF Profiler’s view and click the Suspend button (green oval).

Note that the number of collected samples may vary depending on your PC’s performance and
connection speed with the board.
o= Outline | & TCF Profiler &
Profiler runnning. 3295 samples
Figure 15. The TCF Profiler view showing the collected number of samples
3-5-4. Click on the Maximize view button.
- — - - -
Zyng 3-12 www.xilinx.com/university i; X".INX;

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook

Profiling Applications and Create Accelerators

Address

00101e80
00100df0
0010075¢
0010056¢
00100c54
00100b54
00100a20
00100ca8
00100c00
00100abc
00100b18
00101074
001016dc
0010blec
00112038

% Exclusive
000
000
fos3
36.6
256
s
h.28

330
.18
.23
128
595
000
000
059

% Inclusive = Function

100 _start

100 main

96.1 sobel_filter
sobel_operator
255 window_getval

window_shift_right
linebuffer_shift_up
rgb_2_gray
window_insert
linebuffer_getval
linebuffer_insert_bottom
dummyfill

|_p[}_5harpen_filter_[} |

cf_wait
axi_dma_simple_wait

Figure 16. The TCF Profiler result (Zed)

Address

0010180
0olo00dfo
0010075c
0010056¢
00100c54
00100b54
00100a20
0010000
00100ca8
00100abc
00100b18
00101074
001016dc
0010blec
00112038

% Exclusive | % Inclusive

000
000

8.0
392
5
18
3.90
315
3.06
219
1.08
240
000
000
060

Function
100 _start
100 main
6.7 sobel_filter
64.7 sobel_operator
25.5 window_getval

window_shift_right
linebuffer_shift_up
window_insert
rgb_2_gray
linebuffer_getval

linebuffer_insert_bottom

dummyfill
I_pt}_sharpen_filter_[} I

cf wait

axi_dma_simple_wait

Figure 16. The TCF Profiler result (Zybo)

File

xil-crt0.5
SDSoC_lab_design_main.c
edge_detect.c
edge_detect.c
edge_detect.c
edge_detect.c
edge_detect.c
rgb_2_gray.c
edge_detect.c
edge_detect.c
edge_detect.c
SDSoC_lab_design_main.c
sharpen.c

File

xil-crt0.5
SDSoC_lab_design_main.c
edge_detect.c
edge_detect.c
edge_detect.c
edge_detect.c
edge_detect.c
edge_detect.c
rgb_2_gray.c
edge_detect.c
edge_detect.c
SD5oC_lab_design_main.c
sharpen.c

Line
82
70
76
34
204
181
147

19
159
171
141
141

Line
82
70
76
34
204
181
147
196

159
171
141
141

Note that _start and main functions are 100% under the %inclusive column as all other functions
are called from main. Now the CPU spent most of its time executing the sobel_filter function and
its sub-functions and very small amount of time is spent on the _p0_sharpen_filter_0 call (the
hardware accelerator).

3-5-5.

Click on the Resume button and wait for little longer (3 more minutes) and see that the application

runs to the end and the profiling stops at around 8600 samples in case of Zed or 5600 samples in
case of Zybo.

& XILINX.

www.xilinx.com/university

Xup@xilinx.com

© copyright 2015 Xilinx

Zynqg 3-13

Profiling Applications and Create Accelerators

Lab Workbook

4 ¥, System Debugger Local Host lab3.elf (Local) i Profiler runnning. 8663 samples |
+ 5% APY Address % Exclusive % Inclusive Function
4|g® ARM Cortex-A9 MPCore #0 (Breakpoint: _exit) | 00101680 .000 FOO oot
= 0x00110e0c _exit(): _exit.c, line 43 0010040 000 E ;'nain
= gxggigiﬂtg EXT'T?T o en e 108 0010075¢ [0l [8637] sobel filter
= Uxl ee stal . XIl-C . ine
— - ' 0010056¢ @ m sobel_operator
» 4 ARM Cortex-A9 MPCore #1 (Suspended) ggiggz‘z %ﬁ %ﬁ i::gzx_?r::a:igm
& xc72020 . - = =
e 00100220 429 la2e linebuffer_shift_up
00100ca8 [ESS |3.38 rgb_2_gray
0010000 [3.29 [2.2 window_insert
00100abe [232 232 linebuffer getval
(a) Zed
a & System Debugger Local Host lab3.elf (Local) c |Profi|er runnning. 4744 samples |
+ &% APU Address % Exclusive % Inc‘lusive Function
dle‘:‘* ARM Cortex-A9 MPCore #0 (Breakpoint: e)(it)l 00101e80 .000 E ctart
= 0x00110e0c _exit(): _exit.c, line 43 00100df0 000 E ;nain
= 0x001020: it §
- ccexitd _ 0010075¢ [8.88 565 sobel filter
= 0x00101ee0 _start(): xil-crt0.5, line 144 0010056¢ @ m sobel_operator
= 00100c54 window_getval
> o ARM Cortex-A9 MPCore #1 (Suspended) E'F E-ﬁ i = .
& 72010 00100054 [18 fs window_shift_right
00100a20 [3.67 B.6 linebuffer_shift_up
(b) Zybo

Figure 17. Execution suspended at _exit

3-5-6. Click on the Disconnect button (¢7) to terminate the execution.

Profiling Using sds_lib API

Step 4

4-1. Re-launch the application in the Debug perspective. Start the terminal

session and run the application to the end.

4-1-1. In the Debug view, right-click on the disconnected entry and select Relaunch.

% Debug £ | K[> |V 7 |
. System Debugger Local Host lab3.elf (Local: Disconnected) l
Copy Stack a

Find... c

P sl g NS

ke (ix
%% Remove All Terminated

@, Relaunch

%. Edit System Debugger Local Host lab3.elf...

E, Edit Source Lookup...

¥, Terminate and Remove
Terminate/Disconnect All

Figure 18. Re-launching the debugger

4-1-2. Click on the SDK Terminal window and make a connection.

Zynq 3-14 www.xilinx.com/university
xup@xilinx.com
© copyright 2015 Xilinx

& XILINX.

Lab Workbook Profiling Applications and Create Accelerators

4-1-3. Click on the Resume button.

4-1-4. You will see dots being displayed as the execution is continuing. You will also see progress is
made in the TCF Profiler view.
Wait for about five minutes to complete the execution and the result is displayed in the Terminal
window.
Running frame operations...
Average SW cycles for all of the image functions: 16344568146
Average SW cycles for sharpen: 9696221
() Zed
Running frame operations...
Average SW cycles for all of the image functions: 16363538526
Average SW cycles for sharpen: 13504170
(b) Zybo
Figure 19. The sharpen function profiling

4-1-5. Click on the Disconnect button ().

Add sobel filter to Accelerators and Profile Step 5

5-1. Add sobel_filter function for hardware acceleration. Change SDSCC
compiler setting to define TIME_EDGE_DETECT symbol. Build the project.
Since this will take time to build, you will import lab3a project from the
source\lab3 folder and then profile the application. The precompiled project
has the sobel_filter already added for hardware with the compiler setting
added.

5-1-1. Switch back to the SDSoC perspective.

5-1-2. Select File > Import

5-1-3. Double-click on Import Existing Projects into Workspace.

5-1-4. In the Import Projects window, click on the Browse button of the Select archive file option,
browse to c:\xup\SDSoC\source\lab3, select lab3a.zip and click Open.

t' XlLINX www.xilinx.com/university Zyng 3-15

Xup@xilinx.com
© copyright 2015 Xilinx

Profiling Applications and Create Accelerators Lab Workbook

Make sure that lab3a is checked in the Projects window.

rEE Import { | =l H&r
Import Projects B
Select a directory to search for existing Eclipse projects. -
() Select root directory: - Browse...
@) Select archive file: Chxup\SDSoC\sourcellab3\lab3a.zip - [Browse l
Projects:
| | [Z]lab3a (ab3a) Select All | ||

Figure 20. Importing an existing project in the workspace

5-1-5. Click Finish.

The project will be imported and the sobel_filter and sharpen_filter function entries will be
displayed in the Hardware Functions window.

5-1-6. Double-click on the project_sdsoc under lab3a to access the SDSoC Project Overview.
5-1-7. Uncheck the Generate Bit Stream and Generate SD Card Image options.

5-1-8. Click on the Debug Application link under the Actions section.

5-1-9. Click Yes to switch to the debug perspective if prompted.

5-1-10. Select Window > Show View > Other and then expand the Debug folder. Select TCF Profiler
and click OK.

5-1-11. In the TCF Profiler view, click the start button, select the Aggregate per function option and click
OK.

5-2. Start serial communication. Profile the complete application and observe
the improvements.

5-2-1. Select the Terminal tab and make serial communication.
5-2-2. Click on the Resume button.

5-2-3. You will see dots being displayed as the execution progresses. You will also see progress is
made in the TCF Profiler view.

Zyng 3-16 www.xilinx.com/university i
Xup@xilinx.com iA XI LINxs

© copyright 2015 Xilinx

Lab Workbook

Profiling Applications and Create Accelerators

The execution should complete in under a minute and the result is displayed in the Terminal

window.

Running

Average
Average
Average

(a) Zed

Running

Average
Average
Average

(b) Zybo

frame operations...

EWith Profiler running L\

SW cycles for all of the image functions: 6001461064
SW cycles for sharpen: 21728298
SW cycles for edge detect: 22476573

frame operations...

(With Proﬁlerg

SW cycles for all of the image functions: 4692222236
SW cycles for sharpen: 22760834
SW cycles for edge detect: 21106570

Figure 21. The sharpen and sobel filter functions profiling

5-2-4. Switch to the TCF Profiler tab and see the results.

Note that now CPU spends time in rgb_2 grap function. The _p0_sobel_filter 0 takes very little
time and you don't see the _p0_sharpen_filter_0 entry does not appear at all since it's execution
time is so short that the profiler does not see it.

& XILINX.

www.xilinx.com/university
Xup@xilinx.com
© copyright 2015 Xilinx

Zynq 3-17

Profiling Applications and Create Accelerators Lab Workbook

Address % Exclusive % Inclusive Function File Line
100102080 .000 99.6 _start xil-crt0.S 82
001006b4 .000 main SDSoC_lab_design_main.c 77
0010056¢ W‘ W‘ rgb_2_gray rgb_2_gray.c 6

00100a14 @.?9 @,?9 dummyfill SDSoC_lab_design_main.c 148
0010b3ec .000 .35 of_wait

00112338]335 .35 axi_dma_simple_wait

00101158 .000 1.67 _p0_sobel_filter_0 edge_detect.c 154
00101904 .000 1.67 _p0_sharpen_filter_0 sharpen.c 141
001023b8 .000 419 printf

001025¢c0 .000 419 _vfprintf_r

00109500 .000 419 _ sprint_r.part.0

001065d4 .000 419 _ sfvwrite_r

00105¢58 .000 419 _ sflush_r

0010a998 .000 418 _write_r

00111388 .000 A18 _write write.c 84
00111ed4 418 A18 XUartPs_SendByte x¥uartps_hw.c 31

Figure 22. Profiled data (Zed)

Address % Exclusive % Inclusive Function File Line
00102080 .000 B8 start xil-crt0.S 82
001006b4 .000 main SDSoC_lab_design_main.c 77
0010056c [G04 T B0 1gb_2_gray rgb_2_gray.c 6

0010b3ec .000 4.79 cf_wait

00112338 h.79 4.79 axi_dma_simple_wait

00100a14 ﬂ4.19)4.19 dummyfill SDSoC_lab_design_main.c 148
00101158 .000 2.40 _p0_sobel_filter_0 edge_detect.c 154
00101904 .000 2.40 _p0_sharpen_filter_0 sharpen.c 141
001023b8 .000 .599 printf

001025¢c0 .000 .599 _vfprintf_r

00109500 .000 .599 _sprint_r.part.0

001065d4 .000 .599 _ sfvwrite_r

00105c58 .000 .599 _ sflush_r

00102998 .000 .599 _write_r

00111388 .000 .599 _write write.c 84
0011led4 .599 599 XUartPs_SendByte Xuartps_hw.c 81

Figure 22. Profiled data (Zybo)

5-2-5. Click on the Disconnect button (¥¥) to terminate the execution.

5-3. Profile the application without running the profiler and compare the result.
5-3-1. In the Debug view, right-click on the disconnected entry and select Relaunch

5-3-2. This time do not click on the start button of the TCF Profiler.

Zyng 3-18 www.xilinx.com/university i
Xup@xilinx.com iA XI LINX@

© copyright 2015 Xilinx

Lab Workbook Profiling Applications and Create Accelerators

5-3-3. Click on the Resume button.
5-3-4. You will see dots being displayed quickly as the execution is continuing.

5-3-5. Notice the terminal output.

Running frame operations...

Without TCF
Profiler running

Average SW cycles for all of the image functions: 731594608
Average SW cycles for sharpen: 9695774

Average SW cycles for edge_detect: 9694562

(a) Zed

Running frame operations...

Without TCF
Profiler running

Average SW cycles for all of the image functions: 769662714
Average SW cycles for sharpen: 13583676

Average SW cycles for edge_detect: 13582574

(b) Zybo

Figure 23. The terminal window output

Compared to output with the profiler running, the execution takes significantly fewer cycles.
5-3-6. Click on the Disconnect button (¢7) to terminate the execution.
5-3-7. Close SDSoc by selecting File > Exit

5-3-8. Turn OFF the power to the board.

Conclusion

In this lab, you profiled a pure software application which consist of three major functions. You saw the
amount of time those three functions took to execute. Then you ported one of the most time-consuming
function into hardware and profiled again. You then ported second most time-consuming function into
hardware and profiled again and observed the performance improvement. You used the TCF profiler and
sds_lib API to collect the data.

i www.xilinx.com/university Zyng 3-19
i‘ XI LINX‘*‘ Xup@xilinx.com

© copyright 2015 Xilinx

