Course Aim

To present theory, algorithms, design techniques and actual practicalities of the implementation of DSP algorithms and digital communications architectures using Xilinx FPGA technology.

Course Presentation Style

This is an intensive 2 day course that will educate using a comprehensive set of notes on DSP for FPGAs. Key points will be lectured upon with derivations and technical details provided in the course notes for later self study. Following each lecture, hands-on lab sessions will be run using Xilinx FPGA hardware and software.

Delivery will be 40% lecture, 20% demonstrations, and 40% hands-on labs using FPGA hardware and software.

Who Should Attend?

- University lecturers interested in using Xilinx devices for teaching, research and development.
- Analog, RF, digital, DSP or FPGA/ASIC engineers who are interested in knowing the relevant design strategies and philosophies for implementing algorithms and applications on FPGAs may find the course beneficial. A background in some of the fundamentals of DSP (sampling, quantization, frequency domain, digital filtering).

Course Notes, Hardware, and Software

All attendees will receive printed and electronic copies of the “DSP for FPGAs Primer” notes. These materials are open source and available for attendees to reuse by appropriate reference to original source. University lecturers and professors with direct involvement in teaching DSP and/or FPGA design who attend the course can receive the hardware and software via donation from the Xilinx University Program (XUP).

Attendees will use Xilinx System Generator for DSP for MATLAB®/Simulink® software to flow into the ISE™ Foundation™ development tools to design DSP systems for the XUP Virtex™-II Pro development kit.

Learning Objectives

- Understand the current and relevant DSP applications for FPGAs
- When to use an FPGA or a DSP processor -or both!
- Arithmetic issues -How to implement multiplies and adds -efficiently!
- The (sometimes serious!) impact of rounding versus truncation
- Dealing with overflow and underflow scenarios
- Advanced Arithmetic -When we need square roots, divides and more?
- Design techniques for minimizing sample word lengths
- Efficient FIR (finite impulse response) filter design and implementation
- The use of IIR (infinite impulse response) filters in DSP for FPGA applications
- The importance of retiming, pipelining, and multi-channel filters
- The cost and relevance of special filters such as CIC (cascade integrate-comb) filters
- The requirements and implementation of adaptive filtering algorithms
- The implementation of IF modulation and demodulation techniques
- Why and how to implement numerically controlled oscillators (NCOs)
- Techniques for synchronization & digital communications timing recovery
- System architecture and implementation of direct Digital Down Converter (DDC)
- DSP/FPGA components to implement a QAM (Quadrature Amplitude Modulator) transceiver
- How to efficiently implement multi-channel filters for 3G applications
- Design strategies for implementation of orthogonal frequency division multiplexing (OFDM)
- Using the QR algorithms for adaptive equalization and beam forming

DSP for FPGA Technology & Application
- DSP for FPGA applications
- Word-lengths issues -DSP on Xilinx FPGAs is not just 16 bit!
- Design for applications sampling at > 100MHz
- FPGA applications examples: 3G, 802.16, cdma2000
- FPGAs, DSP processors, ASIC -what to use -when and where
- Linear algebra -matrices, vectors
- Calculating the matrix inverse and DSP requirements

FPGA Technology
- The Xilinx DSP for FPGA technology roadmap
- Clocking rates, data rates and sample rates
- Bits, Slices, Configurable Logic Blocks, and Multipliers
- MIPs and MACs performance ratings
- FPGA families and sources
- Case Study -the Virtex 4 and DSP48 slices
- Review of an HDL design flow from algorithm to implementation

Tools for DSP for FPGA Design
- Working with Matlab and Simulink
- Xilinx System Generator
- High level design flow – from algorithm to Simulink to FPGA
- Hardware in the loop

Arithmetic Fundamentals
- 2’s complement fixed point arithmetic
- Adders and multipliers, and introducing...division and square root
- Wordlength issues & Fixed point arithmetic
- Overflow/Underflow and Truncation/Rounding issues
- Complex arithmetic (real and imaginary) requirements for DSP
- The role of arithmetic approximation algorithms and CORDICs

Digital Filtering for FPGAs
- Symmetric / Linear Phase Filters -Xilinx efficiency & optimization
- Up-sampling/interpolation & Down-sampling/decimation
- Trade-offs with word-length, sampling rate and filter lengths.
- Retiming techniques
- Cut-set delay for transpose and systolic FIR filters
- Half-band, moving average, comb filters and CIC filters
- Multi-channel filter implementation
- Polyphase filters

Adaptive Filtering for FPGAs
- The issues from numerical feedback and how to deal with them
- The LMS (least mean square) algorithm
- LMS implementation and application
- The RLS (recursive least squares) algorithm
- RLS implementation -the QR algorithm -Classical linear algebra
- Numerical integrity and stability issues

QAM (Quadrature Amplitude Modulation) Systems
- The DSP enabled IF Radio architecture (software radio)
- Design of numerically controlled oscillators (NCOs)
- Design of transmit and receive matched digital filters
- Carrier timing recovery, and symbol synchronisation techniques
- Constellations, phase rotations, and test scenarios
- Spread spectrum strategies and requirements

FPGA System Level DSP Applications
- A 3G, fs = 80MHz, 4 x 5MHz oversampled multichannel filters
- Bluetooth compatible direct digital downconverter (DDC) design
- Adaptive LMS based equalisation for wireline applications
- Adaptive QR algorithm for wireless digital beamforming
- Design of NCO, FIR filter for Generic QAM transmitter