
A P P L I C A T I O N N O T E

SystemC Verification
with ModelSim

w w w. m o d e l . c o m

Introduction

ModelSim was the first to put the award winning Single Kernel Simulator (SKS) technology in
the hands of engineers, enabling transparent mixing of Verilog and VHDL in one design, with a
common intuitive graphical interface for development and debug at any level, regardless of the
language.

ModelSim 5.8 was the first release to enhance the SKS technology by providing native support
for SystemC. As far as you are concerned, SystemC is just another design language. You are
now able to simulate and debug your SystemC designs basically the same way you have been
simulating and debugging your Verilog and VHDL designs. There are just a few new SystemC-
specific commands and compiler/simulator options but the methodology remains the same. In
addition to being easy to use, native implementation means no more PLI/FLI.

This document introduces SystemC verification with ModelSim, starting with setting up the
simulation environment, and followed by a discussion of the use model. Information on using
SystemC across Verilog and VHDL boundaries is also presented. A sample design is used to
illustrate the current capabilities in ModelSim.

Environment Setup

Similar to Verilog and VHDL, SystemC is a licensed feature. You need the systemc_c license
feature in your ModelSim license file to simulate SystemC designs. Please contact your Mentor
Graphics sales representatives if you currently do not have such feature.

SystemC is part of the ModelSim standard installation. You may download the latest ModelSim
release at http://www.model.com/products/release.asp. Note that SystemC support is only
available in ModelSim release 5.8 and later. Please refer to the Start Here for ModelSim document
for installation information. Table 1 illustrates the supported operating systems for SystemC and
the corresponding required versions of C++ compiler.

Table 1: Supported Operating Systems and Compilers for SystemC

1 When you install ModelSim 5.8 or later, you must also install the modeltech-gcc-3.2-sunos5<6/7/8/9>.tar.gz file

which is available at the same location from where you download ModelSim. It contains the version of gcc already

configured to work with ModelSim. This version of gcc is what ModelSim calls automatically to compile and link

SystemC code. We strongly recommend against the use of other gcc versions.

Platforms C++ Compiler Versions

SunOS 5.6 or Later gcc 3.21

Red Hat Linux 7.2 or Enterprise Linux 2.1 or Later gcc 3.2.32

HP-UX 11.0 or Later aCC 3.45 (with Associated Patches)3

Windows NT, 2000, XP4 MinGW gcc 3.2.3

SystemC Verification with ModelSim 1

2 On Red Hat Linux, you must also install the modeltech-gcc-3.2.3-rhe21.tar.gz file which is available at the same

location from where you download ModelSim. It contains the version of gcc already configured to work with

ModelSim. This version of gcc is what ModelSim calls automatically to compile and link SystemC code. We strongly

recommend against the use of other gcc versions.

3 On HP-UX, ModelSim automatically uses aCC from /opt/aCC. If aCC is installed somewhere else in your environ-

ment, you may specify the full path to aCC using the “CppPath” variable in the modelsim.ini file.

4 ModelSim 6.0 is the first release that supports SystemC on Windows. The required C++ compiler is MinGW gcc

3.2.3 which is automatically installed when you install ModelSim.

Note that SystemC is supported on the 32-bit mode only. Please contact your System
Administrator if you do not have the required operating systems or compiler versions installed.

Use Model

ModelSim provides a unified kernel for SystemC, Verilog, and VHDL. Figure 1 illustrates the
use model.

Figure 1: SystemC Use Model

vlog and vcom are the Verilog and VHDL compilers, respectively. The compilers compile the
Verilog or VHDL source code into machine-independent executables (.asm), which are stored
in the work library. When you load your design in ModelSim, as soon as an instantiation state-
ment is encountered the work library is searched for a matching design unit. Once it is found it
is pulled into elaboration. This methodology remains practically unchanged for SystemC

2 SystemC Verification with ModelSim

designs. Instead of using vlog and vcom, sccom is the compiler for SystemC source code.
sccom calls the C compiler (gcc on Linux, SunOS, Windows, and aCC on HP-UX) to compile
your SystemC source code and generates object files (.o). It also generates a .sc file to store
debug information. sccom is then used again to link the object files with other compiled
libraries, if any, to create a shared object (.so) in the current work library. During design elabo-
ration, when ModelSim encounters a .sc file instead of a .asm file, it knows immediately that it
is dealing with a SystemC component. The shared object is then pulled into elaboration. Note
that the process of collecting the object files and linking them (shown in the dotted box) is han-
dled by sccom. Such capability relieves you from having to manage the linking process so that
you can focus on the design.

Note that in the process of creating the SystemC source code, sc_module is supported instead
of sc_main. Please refer to the ModelSim User’s Manual for examples on converting sc_main
blocks to sc_module blocks.

Another advantage of ModelSim’s SystemC implementation over other solutions is the true
mixed-language capability. Figure 2 illustrates that you can have any combinations of
SystemC, Verilog, and VHDL components in a design.

Figure 2: Mixed-Language Environment

There are six scenarios of mixed-language instantiation:

1. SystemC-over-Verilog

2. SystemC-over-VHDL

3. Verilog-over-SystemC

4. VHDL-over-SystemC

5. Verilog-over-VHDL

6. VHDL-over-Verilog

SystemC Verification with ModelSim 3

Scenarios 5 and 6 involving Verilog and VHDL are well understood so will not be further dis-
cussed in this document. In scenarios 1 and 2, what is needed is a stub SystemC module that
stands in for each Verilog or VHDL design unit instantiated under SystemC. This is similar to
the concept of component declaration in VHDL. As you may know, once a Verilog module is
compiled into a library, you can use the vgencomp command to generate its equivalent VHDL
component declaration to standard output. Similarly, there is a new command called scgenmod
which generates the stub SystemC modules for you. For example:

scgenmod hdl_module

writes the stub SystemC module for the HDL (Verilog or VHDL) module hdl_module to the
standard output. Copy these stub SystemC modules as header (.h) files to a directory
(<Include/Source Dir> in Figure 3) and include them in the SystemC parent module for later
linking. In the example presented in the next section, you will see that the stub SystemC module
is nothing more than a wrapper with the HDL design unit declared as an sc_foreign_module.
Please refer to the ModelSim Command Reference for complete usage and option information
for scgenmod. Note that you can always create the stub SystemC modules by hand which is
required when custom port types are involved. The utility scgenmod is just provided as a con-
venience.

For scenario 3, all you have to do is instantiate the SystemC modules as if they were regular
Verilog modules in the Verilog source code.

For scenario 4, the command vgencomp is enhanced to create VHDL component declarations
for SystemC modules. What you need to do is copy the generated component declarations to
the VHDL source code. Please refer to the ModelSim Command Reference for complete usage
and option information for vgencomp.

4 SystemC Verification with ModelSim

Figure 3 summarizes the typical steps to handle a mixed-language design.

Figure 3: Mixed-Language Design Flow

sccom accepts any normal C++ compiler options with the exception of the –o and –c options.
By default, sccom compiles without debugging information. You must specify the –g argument,
as shown in Figure 3, to compile for debugging.

Note that the –link option of sccom is used to instruct ModelSim to link all the generated object
files (.o) to create the shared object (.so). You do not have to specify individual files to link.

Beginning in ModelSim 6.0, you can specify a library for sccom into which your SystemC code
is compiled. If you compile your SystemC design into a different library than the default work
library, you have to specify two options to sccom during the link process (sccom -link):

-lib: Specifies the library that contains the compiled object files. Multiple -lib
options can be specified if the design is compiled into multiple libraries.

-work: Specifies the library where the final shared object (.so) will reside.

SystemC Verification with ModelSim 5

For example:

vlib final_work
vlib sc_work
sccom –g –I/usr/systemc/lib –work sc_work top.cpp
sccom –link –work final_work –lib sc_work
vcom –work final_work file1.vhd
vlog –work final_work file2.v

When you simulate the design in ModelSim 6.0, vsim has a new option called -sclib to specify
the library where the SystemC shared object (.so) is created. This option is only needed if the
shared object is in a library other than the default work library. For example:

vsim -sclib final_work top

ModelSim’s SystemC implementation is based on the SystemC specification version 2.0.1,
which includes support for the SystemC Verification (SCV) Library 1.0. SCV is included in the
standard ModelSim installation. If your design uses SCV library functions, you will have to
compile and link the SystemC source files with the –scv option. For example:

sccom –scv –g –I/usr/systemc/lib top.cpp
sccom –scv –link

Please refer to the ModelSim Command Reference for detailed description of all sccom options.

Crossing Language Boundaries

ModelSim provides a true mixed-language verification environment. Various cross-language
capabilities are described below.

Probing and Forcing HDL Signals from SystemC

Beginning in ModelSim 6.0, you can probe and force Verilog or VHDL signals and ports
(except Verilog registers and integers) from SystemC. For example, in order to have a SystemC
signal (including sc_signal, sc_buffer, sc_signal_resolved, sc_signal_rv) force an HDL signal,
you can do the following in your SystemC code:

sc_signal<T> force_sig;
force_sig.control_foreign_signal(“<hdl_signal_path>”);

Whenever the SystemC signal force_sig changes value, the HDL signal it is controlling will be
updated with the value of force_sig. The forced value on the HDL signal remains until there is
a subsequent driver transaction.

6 SystemC Verification with ModelSim

Similarly, in order to probe an HDL signal from SystemC, you can do the following in your
SystemC code:

sc_signal<T> probe_sig;
probe_sig.observe_foreign_signal(“<hdl_signal_path>”);

Whenever the HDL signal changes value, the SystemC signal probe_sig will be updated with
the value of the HDL signal. The value on the SystemC signal remains until there is a subse-
quent driver transaction.

The argument (“<hdl_signal_path>”) to the control_foreign_signal and observe_foreign_signal
member functions is the full hierarchical path to the HDL signal or port being probed or forced.

Please refer to the tables for Verilog data type mapping and VHDL data type mapping in the
ModelSim User’s Manual for the list of types supported at the mixed language boundary. If it is
a supported boundary type, it is supported for hierarchical references.

Once the sc_signal probes or forces an HDL signal, the effect stays throughout the entire simu-
lation. Subsequent calls to control_foreign_signal or observe_foreign_signal are not allowed.

The primitive channel sc_signal is used in the above example. The same also works for
sc_signal_resolved, sc_signal_rv, and sc_buffer.

Passing Parameters/Generics between HDLs and SystemC

Also new in ModelSim 6.0 is the ability to pass parameters and generics between HDLs and
SystemC.

SystemC modules can receive parameters and generics from HDL parents. The following meth-
ods can be used in SystemC modules which have immediate HDL parents:

int sc_get_int_param(const char* param_name);
double sc_get_real_param(const char* param_name);
sc_string sc_get_string_param(const char* param_name, char format_char = ‘a’);

The argument param_name is the name of the parameter of type integer, real, or string and
format_char is used for retrieving string value in binary, octal, decimal, hexadecimal, or ASCII
format. Note that format_char is only useful for getting parameter value from Verilog parent. It
can be ‘b’ or ‘B’ for binary, ‘o’ or ‘O’ for octal, ‘d’ or ‘D’ for decimal, ‘h’ or ‘H’ for hexadecimal,
‘a’ or ‘A’ for the default ASCII format.

In order to pass generics from VHDL to SystemC, you need to provide a stub entity for the
SystemC module instantiated in the VHDL parent. The file name of the stub entity must be
_<module_name>.vhd and it must be copied to the <current work library>/_sc directory after
sccom -link and before the VHDL parent is compiled. For examples of HDLs passing parameters
and generics to SystemC, please refer to the ModelSim User’s Manual.

SystemC Verification with ModelSim 7

SystemC modules can also pass parameters to HDL instances through the arguments of
sc_foreign_module:

sc_foreign_module(sc_module_name nm, const char*
hdl_name, int num_generics, const char** generic_list);

The third argument is the number of generics. The fourth argument is an array of string of size
num_generics. Each array element is a string of the format “param_name=param_value”. Note
that if param_value is a string, you need to enclose it with double quotes.

As mentioned before, scgenmod can be used to generate stub SystemC modules that stand in
for each HDL design unit instantiated under SystemC. scgenmod will create extra arguments
for passing parameters if parameters exist in the modules. For examples of SystemC passing
parameters to HDLs, please refer to the ModelSim User’s Manual.

Language Templates

The language templates that you are familiar with for Verilog and VHDL have been enhanced
in ModelSim 6.0 to support SystemC as well. The templates are architected to help you easily
create SystemC designs and test benches. They are a collection of wizards, menus, and dialogs
that produce code for new designs, language constructs, logic blocks, etc.

To use the templates, select File > New > Source > SystemC in the menu bar in the Main win-
dow to create a new file. Once the file is open, select View > Source > Show Language
Templates. This displays a pane that shows the available templates. Double-click an item on
the list to begin creating code. Some of the items bring up wizards while others insert code into
your SystemC file. The templates work for Verilog and VHDL as well. You can easily create a
mixed-language design using this feature. Please refer to the ModelSim User’s Manual for
detailed description of the language templates.

Debug Capabilities

The integrated debug features that apply to Verilog and VHDL designs in ModelSim will apply to
SystemC designs in phases. Several enhancements have been made in ModelSim 6.0. For example:

• Primitive channels such as sc_buffer, sc_fifo, sc_mutex, and sc_semaphore are now supported
for debug in addition to sc_signal.

• Member variables inside an SC_MODULE are now supported for debug.
• Aggregates of signals and ports are now supported for debug. Aggregates may be arrays,

classes, or structures where all members are signals or ports.
• As discussed earlier, test bench development is made easier with the probing and forcing

capability of HDL signals from SystemC modules.
• Windows is now a supported platform for SystemC. MinGW gdb 6.0 is part of the standard

installation to enable debugging on Windows.

8 SystemC Verification with ModelSim

Let us consider a primitive channel sc_fifo. In ModelSim, the values contained in sc_fifo appear in
a definite order. The top-most or left-most value is always the next to be read from the FIFO. The
command examine can be used to examine a single element or multiple elements of the FIFO and
display the current writing to and reading from an sc_fifo<long> which has ten elements. Note
that if you try to examine an empty element explicitly by itself (examine {fifo(7)}) as shown in
the example below, ModelSim will display “-Unused-”.

100: writing 0
Executing ‘examine fifo’ yields
{{0}}
200: writing 1
Executing ‘examine {fifo(0 to 1)}’ yields
{{0 1}}
300: writing 2
400: writing 3
500: writing 4
600: writing 5
700: writing 6
Executing ‘examine {fifo(0 to 7)}’ yields
{{0 1 2 3 4 5 6}}
Executing ‘examine {fifo(7)}’ yields
-Unused-
800: writing 7
900: writing 8
1000: writing 9
1100: Available: 10
1100: reading 0
1200: Available: 9
1200: reading 1
{{2 3 4 5 6 7 8 9}}
1300: Available: 8
1300: reading 2
1400: Available: 7
1400: reading 3
1500: Available: 6
1500: reading 4
1600: Available: 5
1600: reading 5
1700: Available: 4
1700: reading 6
{{7 8 9}}

Figure 4: Sample sc_fifo Outputs

SystemC Verification with ModelSim 9

You may also view the contents of the FIFO in the Wave window:

Figure 5: Sample sc_fifo Waveforms

The following example illustrates some of the other debug techniques for SystemC in
ModelSim. You may have already downloaded the source code of the example along with this
application note. Otherwise, you may first register and then download technical information at
http://echo.model.com/model/appnotes/techpubs_reg.asp.

The design is a ring buffer. Data comes into the buffer at a constant rate and then it is sent back
out in frames at a higher rate. The design is implemented in SystemC, VHDL, and Verilog.
Figure 6 shows the design hierarchy.

Figure 6: Sample Design Hierarchy

10 SystemC Verification with ModelSim

The test bench (test_ringbuf.h) and the top level chip (ringbuf.h) are implemented in SystemC.
There are lower level modules implemented in Verilog and VHDL (store.v, control.vhd, retrieve.v).
In other words, we have a SystemC-over-HDL configuration. The scgenmod command is used to
generate the stub SystemC modules (store.h, control.h, retrieve.h). Examining the stub SystemC
modules reveals that they are simply wrappers with the corresponding HDL design unit declared
as sc_foreign_module.

The blocks store, control, and retrieve are instantiated in the top level chip (ringbuf.h). Note
that the stub SystemC modules (store.h, control.h, retrieve.h) are included in ringbuf.h.

The test bench (test_ringbuf.h) includes and instantiates ringbuf.h. It also declares, registers, and
implements various processes such as clock_generator, reset_generator, generate_data, etc. The
test_ringbuf.cpp file is merely a wrapper for test_ringbuf.h so that it can be compiled by sccom.

The commands to compile, link, and load the design are as follows:

vlib work
sccom –g –I<path to stub SC modules> test_ringbuf.cpp
sccom -link
vcom –93 control.vhd
vlog store.v retrieve.v
vsim test_ringbuf –do run.do

The integrated C Debugger in ModelSim is a very useful tool for debugging SystemC designs.
The required version of gdb is automatically installed during installation and will be picked up by
ModelSim when the C Debugger is used. If you have specific reasons to use your own version of
gdb, you may use the command cdbg_set_debugger, as shown in the run.do macro file, to specify
the location of gdb. However, we strongly recommend against the use of customized gdb. The
command cdbg_balloon_on enables the source balloon so that if you hover the mouse cursor over
a variable in the Source window the current simulation value of that variable is displayed. Please
refer to the ModelSim User’s Manual for more information about the C Debugger.

Executing the commands mentioned above compiles, links, and loads the design. In the
ModelSim GUI. The Workspace window displays the design hierarchy. In addition to the light
blue and dark blue icons, which represent Verilog and VHDL objects, respectively, SystemC
objects are represented by green icons. Expand the ring_INST instance by clicking on the +
icon to see the instantiated Verilog and VHDL blocks. The circular icons that you see when
you expand, for example, the block1 instance indicate design processes. Selecting a process,
outstrobe_gen for example, will open the Source window with an arrow pointing to the corre-
sponding code. The same process is also highlighted in the Active Processes window which
displays all processes which are ready to be executed. If the process that you select contains
local (internal) variables, they will be shown in the Locals (formerly the Variables) window.

SystemC Verification with ModelSim 11

When you transverse the design hierarchy in the Workspace window, the design objects (con-
stants, nets, registers, signals, variables, generics, and parameters) in the selected region are
synchronously displayed in the Objects (formerly the Signals) window. You can always right-
click on an item in the Workspace window and select View Declaration or View Instantiation to
locate the selected item in the source code.

You can easily add waveforms to the Wave window for analysis by simply dragging an entire
design region from the Workspace window or individual signals from the Objects window to
the Wave window. You can do the same to add signals to the List window to observe simula-
tion deltas. For post-simulation analysis purposes, SystemC waveforms can be exported in
VCD as well as WLF formats.

You may control simulation runs by using the tool bars in the Main window and Wave window.
You can advance simulation time by pressing the Run button in conjunction with specifying the
Run Length. Simulation may be interrupted at any time by using the Break button. Break-
points are supported for SystemC code. If you place a break-point on an executable line of
SystemC code, you are taken to the CDBG> prompt when simulation stops on that line.
ModelSim recognizes that you are debugging SystemC code automatically. Note that you can
use the Step and Step Over functions to single-step your SystemC code the same way you do
with Verilog and VHDL code.

To examine SystemC signal and variable values at the current simulation time, you may hover
the mouse cursor over the signal or variable of interest in the Source window to see its value in
the pop-up balloon. There is a new Monitor window in ModelSim 6.0. You can drag and drop
any SystemC primitive channels and ports to it to observe their values throughout the entire
simulation.

If you prefer to control simulation on the command line, the commands that you are familiar
with, such as bp, bd, examine, step, run, change, add, and delete continue to apply to SystemC
designs in the Transcript window. Please refer to the ModelSim Command Reference for
detailed information about these commands.

Beginning in ModelSim 6.0, you can use verror <error number> to obtain more information
on SystemC errors that you may encounter.

The Dataflow window allows you to explore the physical connectivity of your design; to trace
events that propagate through the design; and to identify the cause of unexpected outputs.
Currently such capabilities apply to Verilog and VHDL designs only. The support for SystemC
designs in the Dataflow window will be available in a future release.

To learn about other debug features in ModelSim, please consult the Introduction to ModelSim
6.0 Debug GUI application note and the ModelSim User’s Manual.

12 SystemC Verification with ModelSim

Summary

ModelSim provides a unified kernel for SystemC, Verilog, and VHDL. Our native implementa-
tion treats SystemC as just another design language. The simulation methodology and debug
capabilities that designers have grown to praise continue to apply to SystemC designs. If you
are familiar with the ModelSim methodology, simulating and debugging SystemC designs
require no additional training. The same flow and features that apply to Verilog and VHDL
designs apply to SystemC as well. For those who are new to ModelSim, you will be delighted
by our powerful and easy-to-use verification environment. Our solutions allow you to evaluate
and adopt SystemC in your methodology very efficiently. Furthermore, our integrated environ-
ment can also help you significantly shorten your verification cycle. For detailed technical
information, please refer to the ModelSim User’s Manual or contact our Support Center at
support@model.com.

Corporate Headquarters
Mentor Graphics Corporation
8005 S.W. Boeckman Road
Wilsonville, Oregon 97070 USA
Phone: 503-685-7000
North American Support Center
Phone: 800-547-4303
Fax: 800-684-1795

Pacific Rim
Mentor Graphics Taiwan
Room 1603, 16F,
International Trade Building
No. 333, Section 1, Keelung Road
Taipei, Taiwan, ROC
Phone: 886-2-27576020
Fax: 886-2-27576027

Europe
Mentor Graphics
Deutschland GmbH
Arnulfstrasse 201
80634 Munich
Germany
Phone: +49.89.57096.0
Fax: +49.89.57096.400

Silicon Valley
Mentor Graphics Corporation
1001 Ridder Park Drive
San Jose, California 95131 USA
Phone: 408-436-1500
Fax: 408-436-1501

Japan
Mentor Graphics Japan Co., Ltd.
Gotenyama Hills
7-35, Kita-Shinagawa 4-chome
Shinagawa-Ku, Tokyo 140
Japan
Phone: 81-3-5488-3030
Fax: 81-3-5488-3031

For more information, call us or visit: www.model.com

Copyright © 2004 Mentor Graphics Corporation. This document contains information that is proprietary to Mentor Graphics Corporation and may be duplicated in whole or in part by the original recipient
for internal business purposed only, provided that this entire notice appears in all copies. In accepting this document, the recipient agrees to make every reasonable effort to prevent the unauthorized use of
this information. Mentor Graphics is a registered trademark of Mentor Graphics Corporation. All other trademarks are the property of their respective owners.

C&A 7-04 TECH6460-w

