

在云端设计FPGA – 从编译到时序优化 Designing FPGAs in the Cloud – From Compilation to Timing Optimization

Presented By

演讲者:张伟雄

Plunify 联合创始人兼COO

日期: 2018年10月16日

演讲大纲

PLUNIFY

- > Plunify 简介
 - >> 赛灵思和 Plunify 在云服务方面结为战略伙伴
- > 初次使用云服务用户须知
- > 云端 FPGA 设计工具
 - >> Al Lab
 - >> FPGA Expansion Pack
- > 云端优化
 - >> InTime 简介
 - >> 优化原理
 - >> 结果/案例分析
- > 问答环节

Plunify 简介

PLUNIFY

> 成立时间: 2009年

> 创始人:黄瀚华,张伟雄

> 公司使命:优化 FPGA 设计性能

2009 在亚马逊网络服 务(AWS)上开启 了第一台云服务 器

2012 发布私有云解决 方案

2014 发布 InTime 时 序优化工具 2015 成为赛灵思 Alliance 合作伙 伴

2016 获得风险投资 2017 发布 Plunify Cloud 云平台, 业务扩展到美国 2018 成为赛灵思在云 端的独家合作伙 伴

赛灵思与 Plunify 的云端合作

PLUNIFY

- > 高效使用云计算来进行 FPGA 设计和性能优化
- > 将赛灵思与 Plunify 的工具和工作流程结合
 - >> 包括 Vivado, SDAccel 和 SDSoC 在内的全套功能的许可证。
 - >> 按需供应,按一小时使用时间起售。
 - >> 没有数量限制。

100 小时 x 1 套 Vivado == 1 小时 x 100 套 Vivado

云端新用户需要考虑哪些问题?

1. 什么样的工作流程是最好的?

- >> 冰箱模式(买好了慢慢用) VS 超市模式(随用随取 用多少买多少)
- >> 互动 (Interactive) VS 批量工作量 (Batch)
- >> 建议:只需随用随取即可

2. 了解费用构成

- >> 服务器 (CPU / RAM 容量, 存量/随用随取)
- >> 存储 (IO 速度 / 容量)
- >> 网络带宽 (**小心隐含消费!** 可能达到总消费的 30%。 Bitstream文件可以很大。)
- >> 人工成本 (需要雇佣开发,运营,维护的专家。)

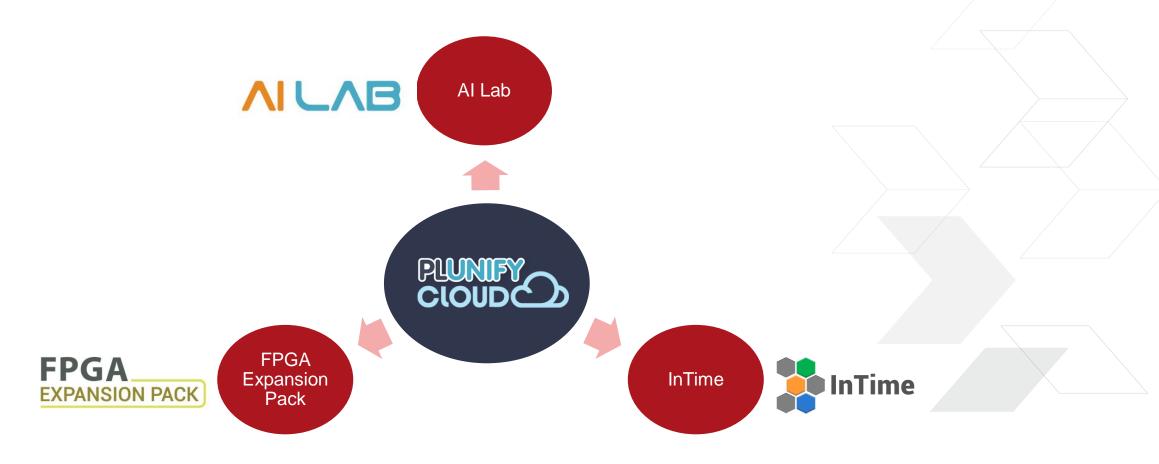
3. 全靠自己动手,还是使用一个托管服务?

- >> 管理云服务器的重担全部压在您身上
- >> 或是使用像 Plunify Cloud 这样的第三方云托管服务

4. 用户体验盲点?哪里被忽视了?

- >> 用户体验
 - 所需操作:用户验证、开启服务器、加载工具、传输项目文件、运行编译、追踪结果等很多步骤
- >> 自动化
 - 转换编译脚本,备份,测试
- >> 协议与许可证管理
 - 存放许可证的位置,保证数据传输的安全的方案,数据保持

云计算基础知识: 如何"轻松"在云端编译设计



Plunify Cloud 平台与工具

PLUNIFY

- > FPGA 设计体验与云计算无缝衔接,轻松直接
- > 自动化操作,简单易用,支持云端维护

FPGA Expansion Pack

完全整合在 Vivado 工具栏上

https://www.plunify.com/cn/fpga-expansion-pack/

FPGA Expansion Pack

GUI 模式

http://v.youku.com/v_show/id_XMzc1NzA5MDE0MA==.html

Tcl 模式 (项目模式)

```
set design_list [list "A/A.xpr" "B/B.xpr" "C/C.xpr" "D/D.xpr" "E/E.xpr"]
foreach each_design $design_list {
   open_project "$each_design"
   reset_run synth_1
   launch_runs synth_1 impl_1
   wait_on_run impl_1
   close_project
}
```



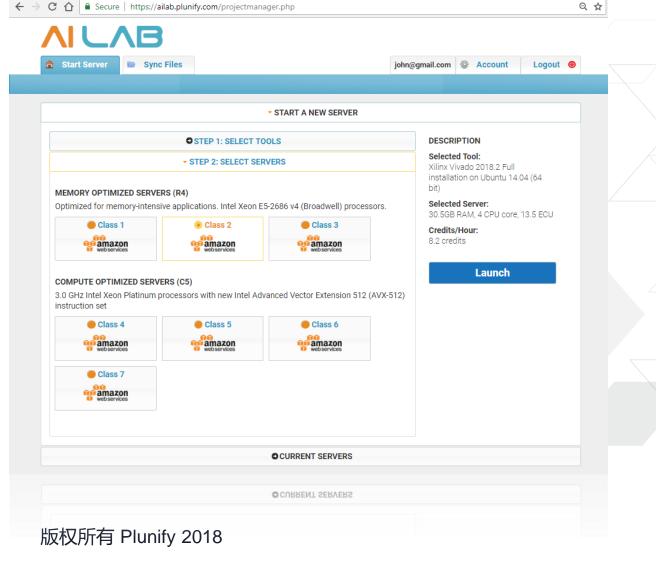
```
foreach each_design $design_list {
   fep::runCloudCompile -project "$each_design" -serverclass 3
}
```


使用 FPGA Expansion Pack 的理由

产品特色	用户收益	
如需额外计算能力,可马上启动云服务器。	使用高性能服务器,缩短编译时间。 按需所取,可多可少。	
完全整合在 Vivado 上	无需学习。界面熟悉简单 , 方便易用。	
安全数据传输和储存。 云端设施管理工具版本、许可证、付费和使用。	不需云计算知识或者云计算管理,就可以轻松使用。	
支持(通过 InTime)在云端优化设计。 *1-7天内取得结果。	时序优化,更高质量的结果。	

使用场景:运行回归项目、使用 F1实例、对计算资源要求高的项目

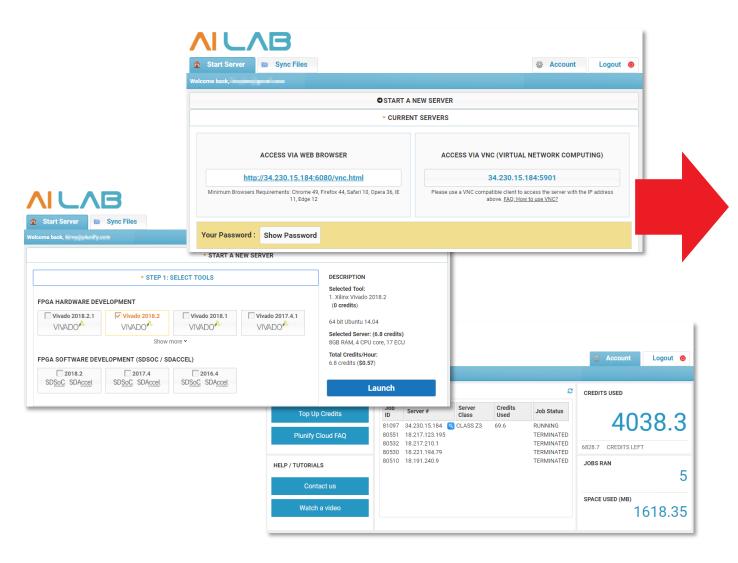
Al Lab

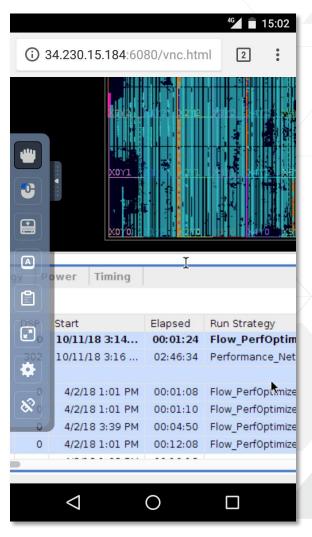

- > 在浏览器上的界面
- > 直接开启预置云端 FPGA 工 具的虚拟桌面

PL Plunify Al Lab

- > 只需浏览器和网络连接就可 以登录远程桌面
- > 无需安装工具。虚拟桌面马 上配置可用。

https://www.plunify.com/cn/ailab/





Al Lab

http://v.youku.com/v_show/id_XMzg0NTU0OTQxNg==.html

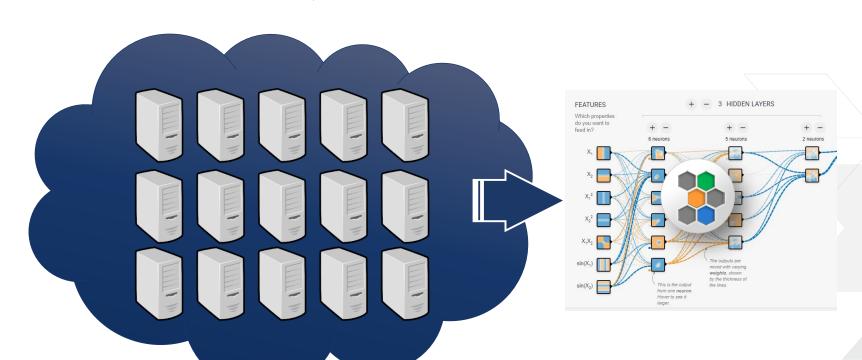
使用AI Lab的理由

产品特色	用户收益
无需安装和设置。	简单易用,无需下载。
仅需一台有浏览器的电脑。	赛灵思工具触手可得。
	任何操作系统都可以使用。
将IT成本从资本支出变成运行支出。	更加精准的使用预估。 计算资源和许可证根据实际情况按需供应。 降低整体维护和更换成本。

使用场景:运行评估,测试新老版本的工具,训练/教学

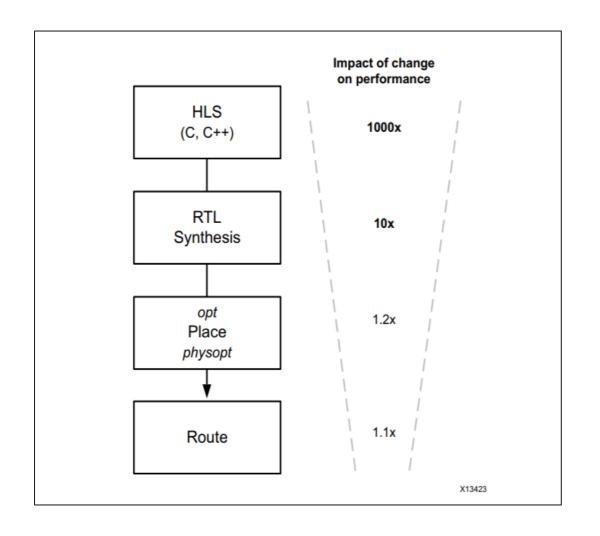
PLUNIFY

InTime - 时序收敛和优化


- > 以机器学习优化 FPGA 设计
 - >> 时序与性能。
- > 找出最佳的综合和布局布线参数
 - >> 积极地从过去的编译中学习并提升
- > 集成 UltraFAST 时序优化技巧
 - >> "赛灵思 FAE in a box"
 - >> FPGA工具的结果能提升50%

- > 并行运行编译 显著减少周转时间

InTime什么时候好用,什么时候不好用?

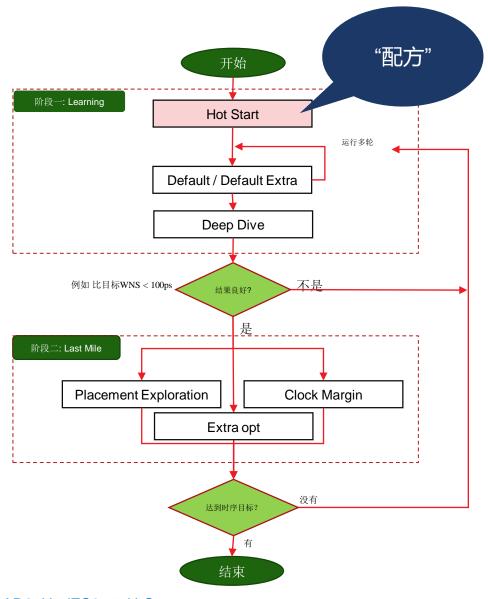


> 对于拥塞 (congested)设计十分好用

- >> 手动解决这类问题十分耗时。
- >> 找到正确的综合/布局参数可以对结果产生 巨大的影响。
- >> multi-die 器件上也十分好用

> 不适用于过多约束层级的设计

>> 没有自由空间来优化



PLUNIFY

- > 阶段一: Learning 配方
 - >> 并行运行编译以节省时间。
 - >> 取得 WNS 的<u>最小值</u>,然后进入阶段二
- > 阶段二: Last-Mile 配方
 - >> 当阶段一取得良好结果的时候,效果更佳
 - >> 布局 (InTime 重新带来类似 "种子" 的效果)
 - >> Place , phys-opt , route 迭代优化
- > 什么时候应该终止?
 - >> 首要原则:最少50%的最佳WNS来自 "Hotstart"
 - >> 使用布局后timing estimates来预估最终的结果,可以节省一半的运行时间!
- > 窍门
 - >> 使用<u>布局后时序</u>来预估最终结果,可以节省一半的运行时间!

PLUNIFY

InTime 案例分析 (xcvu190)

Original						InTime								
Projects	TNS (ns)	WNS (ns)	WHS (ns)	CLB Utilization (%)	DSP	LUT	FF	Mem Blocks (BRAM)	Compilations	TNS (ns)	WNS (ns)	TNS Improvem ents(%)	WNS Improvem ents(%)	WHS Improvem ents (%)
A1	-33137.63	-1.38	0.016	88.72	12	635969	657152	1508	127	-1536.563	-0.198	95.36%	85.65%	0.00%
B1	-99541	-2.689	0.016	86.86	12	635849	657021	1508	37	-726.021	-0.183	99.27%	93.19%	0.00%
C1	-25112.76	-0.843	0.016	74.26	12	508562	495391	1222	37	-0.633	-0.062	100.00%	92.65%	18.75%
D1	-4789.12	-0.803	0.016	69.98	12	456637	499008	819	37	-0.002	-0.002	100.00%	99.75%	0.00%
E1	-123092.7	-9.446	-0.506	60.12	12	414,173	395,907	976	37	-302.274	-0.283	99.75%	97.00%	103.16%
F1	-117562.6	-3.299	0.016	58.92	12	405900	434045	654.5	238	-1502.151	-0.27	98.72%	91.82%	0.00%
G1	-150163	-2.125	0.03	90.84	0	701074	665461	718.5	578	-495.731	-0.269	99.67%	87.34%	0.00%
A2	-11609.56	-0.731	0.016	89.79	12	635678	657298	1508	256	-1319.127	-0.228	88.64%	68.81%	0.00%
B2	-6644.22	-0.519	0.016	91.74	12	635737	657293	1508	37	-2306.747	-0.266	65.28%	48.75%	25.00%
C2	-10229.04	-1.203	0.016	75.71	12	508882	495025	1222	131	-770.995	-0.187	92.46%	84.46%	0.00%
D2	-7362.009	-1.088	0.016	66.41	12	456693	498646	819	37	-2.137	-0.127	99.97%	88.33%	0.00%
E2	-32691.9	-9.615	0.016	59.11	12	413,997	396,108	976	37	-426.359	-0.249	98.70%	97.41%	0.00%
F2	-5906.046	-1.18	0.016	58.18	12	405711	433918	654.5	105	-38.762	-0.167	99.34%	85.85%	0.00%
G2	-132991	-2.393	0.014	90.21	0	733554	677075	734.5	158	-55318.66	-1.077	58.40%	54.99%	-28.57%
F1	-5841.436	-0.725	0.016	80.15	12	572470	630091	1154	37	-1124.917	-0.237	80.74%	67.31%	0.00%
F2	-5018.338	-0.554	0.016	81.84	12	572725	630094	1154	37	-1273.956	-0.293	74.61%	47.11%	0.00%

• 要求:-300ps以下。

• 服务器类别: 4 CPU, 31 Gb RAM

• 每个项目的平均云计算时间: 957小时

案例分析总结

在14个项目中,9个编译数目少于40次

> 并不是每个设计都需要机器学习。例如,您可使用渐进式的编译来开始。

WNS 提升超过 90%

> FMax 提升高达 79.7%

最长的项目花了6天达到优化目标

> 实际等待时间: 1.32 到 6.24 天

Plunify Cloud 是一个可控简便的云平台解决方案

> 云计算自动化、使用简单、包含工具许可、支持软件维护。

Al Lab - 预装 FPGA 工具的虚拟桌面

> 使用浏览器就可登陆。

FPGA Expansion Pack 使 Vivado 具备云端编译功能

> 直接从 Vivado 启动,或者通过 Tcl 脚本启动。无需云端设置。

InTime 支持云端时序优化

> Vivado 在合适的参数设置下,可以大规模提升性能。

联系我们

申请 InTime 免费试用 https://www.plunify.com/cn/free-evaluation/

注册 Plunify Cloud 账号 https://cloud.plunify.com/register?lang=CN

更多详情 https://www.plunify.com/cn

kirvy@plunify.com / skype: kirvyteo

