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This white paper is a technical explanation of what the discussed technology has been designed to 
accomplish. The actual technology or feature(s) in the resultant products may differ or may not meet these 
aspirations. Each description of the technology must be interpreted as a goal that AMD strived to achieve 
and not interpreted to mean that any such performance is guaranteed to be fully achieved.  Any computer 
system has risks of security vulnerabilities that cannot be completely prevented or mitigated. 
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INTRODUCTION 
This white paper discusses the methods to prevent DDoS attacks in network switches, routers, and enterprise firewalls 
using a classification-based machine learning algorithm. Traditional methods of DDoS mitigation which include access 
control lists (ACLs) for packet filtering based on IP address, MAC address and other packet parameters or application 
monitoring using software algorithms to prevent zero-day attacks may be too slow in detecting the DDoS attacks 
and may also consume significant compute resources. In this paper we describe the implementation of random forest 
AI algorithm used as inference for traffic classification and predicting the malicious traffic which can cause a DDoS 
attack. The random forest algorithm is trained offline using some of the publicly available datasets described in the 
subsequent sections. The algorithm is implemented in programmable logic on an AMD Versal™ "adaptive SoC-based 
reference platform. A trained random forest model is inputted with DDoS traffic features over the PCIe interface, and 
the inference results are read by the CPU from DRAM memory attached to the AMD Versal device.

DDoS AND DoS: TYPE OF ATTACKS
When compute resources on a server in a data center or enterprise network are exhausted and it cannot service the 
authenticated access of a legitimate user, the scenario is defined as denial of service (DoS) when more than one 
host is involved in an attack it is termed as distributed denial of service (DDoS). A DDoS attack on a network can be 
performed by manipulating the parameters of the data link layer (Layer-2), network layer (Layer-3), transport layer 
(Layer-4) or higher layers (Layer 5-7). A DDoS attack on a server can be made by opening many connections to the 
target server, sending a large number of packets or with specific traffic patterns. Some of the traffic parameters 
which can cause the DDoS attack are described in the table below. 

OSI LAYER TYPE OF TRAFFIC DDoS TYPE

Layer-2 (data link layer) Ethernet frames 

MAC Flood – broadcasting the Ethernet frames through 
a network switch, causing the switch traffic to go up 
exponentially and increase in MAC address learning 
requirement.   

Layer-3 (Network Layer) IP Packets
Flooding through ICMP packets – ICMP packets are ping 
packets targeted to an IP address 

Layer-4 (Transport Layer) TCP and UDP segments
Syn Flood – opens many TCP connections to target server 
causing exhaustion of all the server resources 

Layer 5-7 
Application protocols (https, ftp, http,  
SMTP etc.)

File downloads, image or video uploads and downloads, 
badly formed SSL requests with too many encryption/
decryption requirements
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TRADITIONAL METHODS TO PREVENT THE DDoS
Since DDoS attacks can go from the physical layer to the application layer, the scope of the attack profiles and 
corresponding prevention mechanisms is wide. Below are some of the classical prevention mechanisms adopted 
to prevent DDoS attacks. An unresponsive network node (switch, router, or server) because of physical layer faults 
such as hardware or link failure, can also be inferred as DDoS issue and resolution may involve fixing the faulty 
hardware or fiber. The higher layer DDoS attack-prevention mechanisms can be more complex and may involve 
sophisticated traffic analysis. 

1. MAC (data link) layer can limit the size of learning tables so it can only accept limited number of address
requests. Also, the MAC address to be learned on any ports must be authenticated using authentication
server and filtered accordingly.

2. Ping (ICMP) traffic corresponding to IP (network) layer must be rate limited using the software or
hardware-based mechanism to avoid the ping flooding.

3. TCP or UDP based DDoS attacks such as SYN flooding or smurf attacks are prevented using blackholing,
in which all the legitimate and malicious traffic is routed in a blackhole and dropped. UDP is connectionless
so peer does not need to be notified while for a TCP protocol the peer needs to be notified when blackhole
filtering is used.

4. At the session and presentation layers, the encrypted traffic for the TLS connections is decrypted and
inspected against the traffic policies as attackers use SSL to tunnel HTTP requests to the server. The
decryption may be resource consuming so offloading on hardware may be useful.

5. For application layer-based DDoS attack mitigation, application monitoring using a set of search algorithms
is applied. The most common methods deployed are flow analysis, flow telemetry using the ACLs, and
Web application firewalls.

None of the above methods use the machine learning algorithms for mitigation of DDoS attacks, Also they are 
more preventive instead of predictive. Many of the next-generation firewalls deploy some machine learning 
techniques using software-based inference models for network intrusion prediction and prevention. In the 
sections below we discuss one of the classifier algorithms (random forest) implemented in programmable 
attached network hardware for prediction of DDoS attacks.

AI MODELS FOR NETWORKING AND MODEL SELECTION
Networking has not escaped the AI trend and AI is being used both for optimization and decision making. AI 
learning models can be classified as supervised, unsupervised, semi-supervised and reinforcement. Choice of a 
particular model type is based on the problem statement, resources in terms of data input, and end goal in terms 
of performance metrics. The datasets mentioned in subsequent sections are all labeled data and make a perfect 
choice to use a supervised learning classifier for network security use cases. A supervised learning classifier maps 
input variables x to the output class label y based on the labeled training data. The mapping function is then used to 
predict the classes that a new observation belongs to. Support Vector Machine (SVM), Decision Tree (DT), Artificial 
Neural Network (ANN), Naïve Bayes classifier (NB), Logistic regression, K Nearest Neighbors, and random forest 
are examples of a few supervised machine learning classifiers. An ensemble-based random forest classifier was 
chosen for DDoS implementation and has produced impressive performance metrics and ease-of-scalability HW 
implementation.
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PRECISION RECALL F1 SCORE ACCURACY FPR FNR

Attack Benign Attack Benign Attack Benign

0.9844 0.9989 0.9938 0.9973 0.9891 0.9981 0.9968 0.002653 0.006133

RANDOM TREES – MODEL OVERVIEW AND USAGES
Random forests or random decision forests are an ensemble learning method for classification and regression 
that operate by constructing a multitude of decision trees at training time. The ‘forest’ generated by the random 
forest algorithm is trained through bagging or bootstrap aggregating. The prediction from all trees is majority 
voted to get the final output during classification. Random Forests are also good at handling large datasets with 
high dimensionality and heterogeneous feature types. A few hyperparameters were tuned to get the optimum 
performance based on a CIC-IDS2017 dataset or KDD99 dataset. 

Below are the performance metric achieved with random forest model.

CIC-IDS2017

*THE DETAILS OF THE KDD CUP 99 DATASET AND PERFORMANCE IS MENTIONED IN APPENDIX-A

DATASETS FOR DDoS ATTACK 
There are a multitude of open-source academia network intrusion datasets available online. Two of the most 
well-known datasets, namely the KDD Cup 1999 dataset and CIC-IDS2017 dataset, are used in the DDoS intrusion 
detection experiment detailed in this paper. The KDD Cup 1999 dataset is from the University of California and is 
the dataset used for The Third International Knowledge Discovery and Data Mining Tools Competition, which was 
held in conjunction with KDD-99, The Fifth International Conference on Knowledge Discovery and Data Mining. 
The competition task was to build a network intrusion machine learning model to differentiate between attacks 
and normal connections.1  

The CIC-IDS2017 dataset is from the Canadian Institute for Cybersecurity, University of New Brunswick, and it 
contains benign and more up-to-date common network intrusion attacks, as detailed in Footnote 2. A more 
descriptive outline of the details of the dataset and its underlying principles can be found in Footnote 3. This is an 
academic intrusion detection dataset aimed specifically at detecting Denial of Service attacks, in particular those 
which abuse mechanisms at OSI Layer 7. The most well-known example is slowloris which used to eat up all 
available connections on Apache web servers and then keep them open while pretending to be the slowest client 
possible.2 

TRAINING THE RF MODEL
Random forest is an ensemble-based supervised machine learning algorithm that can be used in classification 
and regression problems. Architecturally, random forest is formed based on aggregation of multiple individually 
constructed decision trees. In the case of classifying a DDoS attack, the collective predictions generated from all 
decision trees will be majority voted to obtain the final model classification output categorizing as either benign  
or attack class for the test data sample in questioned.
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For random forest classifier, there are several important model parameters that should be carefully evaluated  for 
optimal model performance. A list of all parameters that are used for model training can be found in Footnote4.  
And some of the more important training parameters that should be carefully chosen are listed below:

• n_estimators: This parameter dictates the number of decision trees that will be constructed in the
random forest.

• max_depth: This parameter is used to control the maximum depth of the trees within the random forest.

• min_samples_split: This parameter is used to indicate the minimum number of samples required to split
an internal node of the decision trees within the random forest.

n_estimators max_depth min_samples_split

CIC-IDS2017 Dataset 180 8 1000

KDD Cup 1999 Dataset 160 8 1000

In the case of our experimental results for DDoS intrusion detection, the n_estimators, max_depth and min_ 
samples_split parameters were chosen to have the following values as tabulated in Table 1 below for CIC-IDS2017 
and KDD Cup 1999 dataset respectively. The selection of the model parameters was determined through grid 
search approach, in that we observed that training of the random forest classifier with the model parameter 
values tabulated in Table 1 resulted in the optimal test dataset results for the CIC-IDS2017 and KDD Cup 1999 
dataset. It should also be noted that in the process of selecting the optimal model parameter settings as 
tabulated in Table 1, hardware implementation complexity aspect of the random forest classifier was also  taken 
into consideration, where, in general, it is preferable to have a random forest classifier achieving good  model 
performance with the lowest number of trees (i.e. lowest n_estimators setting) and shallowest tree depth (i.e. 
lowest max_depth setting).

Table 1: Model parameter settings for CIC-IDS2017 and KDD cup 99 Dataset

*THE DETAILS OF THE KDD CUP 99 DATASET AND PERFORMANCE IS LISTED IN APPENDIX-A

FEATURE SET (PARAMETERS) TO IDENTIFY THE ATTACKS
In addition, feature selection experiments were also performed to determine a viable subset of reduced feature 
set that can generate good model performance. The motivation behind the reduced feature list lies in the fact 
that the lower the number of features required for training and testing of the model, the less complex 
hardware architecture will be required in the real time feature extraction hardware FPGA implementation of the 
random forest. To achieve this aim of feature reduction, feature importance and permutation importance 
analyses were performed on the KDD Cup 1999 Dataset and CIC-IDS2017 Dataset respectively. The reduced 
feature set for CIC-IDS2017 Dataset is as tabulated in Table 2 below. For completeness, the reduced feature set 
for KDD Cup 1999 Dataset is also tabulated in Table 3 in the Appendix section.
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FEATURE NAMES DESCRIPTIONS

FwdHeaderLength.1 Total bytes used for headers in the forward direction

Init_Win_bytes_forward The total number of bytes sent in initial window in the forward direction

Init_Win_bytes_backward The total number of bytes sent in initial window in the backward direction

IdleMin Minimum time a flow was idle before becoming active

AvgBwdSegmentSize Average size observed in the backward direction

FwdPackets/s Number of forward packets per second

BwdIATStd Standard deviation time between two packets sent in the backward direction

BwdIATMax Maximum time between two packets sent in the backward direction

BwdPacketLengthMin Minimum size of packet in backward direction

FwdPacketLengthStd Standard deviation size of packet in forward direction

BwdHeaderLength Total bytes used for headers in the backward direction

SubflowBwdBytes The average number of bytes in a sub flow in the backward direction

BwdPackets/s Number of backward packets per second

SubflowFwdBytes The average number of bytes in a sub flow in the forward direction

PacketLengthVariance Variance length of a packet

FwdPacketLengthMin Minimum size of packet in forward direction

FwdIATTotal Total time between two packets sent in the forward direction

MinPacketLength Minimum length of a packet

FwdIATMean Mean time between two packets sent in the forward direction

Table 2: Top features in the order from most- to least-important for CIC-IDS2017 Dataset

*THE FEATURE SET FOR KDD99 DATASETS ARE MENTIONED IN APPENDIX-A

IMPLEMENTATION OF RANDOM FORREST IN PROGRAMMABLE ACCELERATOR – VERSAL 
ADAPTIVE SoC
Random forest IP which can be implemented in programmable logic of AMD Versal devices is a parameterizable  
for the number of trees and depth.
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FIGURE 1: FPGA IMPLEMENTATION OF RANDOM FOREST - TRAINED WITH CIC-IDS2017 DATASET

Decision-tree is implemented as a decision logic and a decision-tree table. Addresses to the next node is stored in 
the decision-tree table. When a decision is made at a node, it branches to the next node pointed to in the decision-
tree table.

DECISION-TREE TABLE

Feature-1 Threshold Br_Left Br_Right

Feature-2 Threshold Br_Left Br_Right

Feature-3 Threshold Br_Left Br_Right

Feature-4 Threshold Br_Left Br_Right

Feature-(n-2) Threshold Br_Left Br_Right

Feature-(n-1) Threshold Br_Left Br_Right

Feature-n Threshold Br_Left Br_Right

FIGURE 2: RANDOM FOREST BRANCHING AND MAJORITY VOTING METHODOLOGY

Results

DATASET (CIC-IDS2017 OR KDD CUP 19)

DECISION TREE-1 DECISION TREE-2 DECISION TREE-3

MAJORITY VOTING

RESULT-1 RESULT-2 RESULT-N

FINAL RESULT
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FIGURE 3: VERIFICATION ARCHITECTURE FOR FPGA-BASED RANDOM FOREST IMPLEMENTATION.

Since the collateral from the design and IP team would be easy to be consumed in Python, the testbench is built 
using the CoCoTB Python package. After the training of the RF model is done, the parameters of the trained RF 
model are stored in a pickle file. The testbench converts this pickle file into its corresponding RTL configuration 
registers. The testbench programs the IP by writing the configuration registers using its AXI4 Lite interface. Based 
on the test setting, the testbench then picks either a portion of the dataset or the complete dataset for testing 
the IP. It packs the feature columns of the chosen vectors as required by the test-harness design and loads them 
into the AXI memory. It then configures the memory locations of the test harness where the features are stored 
and the location where the classification results need to be stored. The testbench then triggers the test-harness 
to start its operation and polls for the TEST-DONE status bit to be set. Once the test is done, the testbench reads 
back the results and compares it against the expected results from the dataset. The testbench also derives the 
run’s performance measurement using the test-harness' status registers.

NIAD PYTHON TEST APP COCO TB VCS

VERIFICATION OVERVIEW
The random forest IP is pre-verified. However, the test harness design that will be used in validation of  
the trained RF IP is not pre-verified with the used datasets. To mitigate this gap and to minimize any 
on  board debug encountered during the validation on reference platform, we have developed a 
simulation- based verification testbench.

NIAD CoCo TB Python Simulation Setup

TEST 
PASS or FAIL

Test Dataset 
(.csv file)

Label/Tag 
Comparator

Test Harness 
Programming 

Sequence

Python Model 
(.pkl file)

IP Convertor 
Python Script

RF IP 
Programming 

Sequence
AX14 Lite BFM

Test 
Harness

Random 
Forest IP 

[DUT]

AX14 Lite BFM

Label Memory

Feature Memory

AXI MM BFM

https://docs.cocotb.org/en/stable/
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VALIDATION ON AMD VERSAL PREMIUM
The random forest IP is implemented on the VPK120 reference platform. The VPK120 Evaluation Kit offers 
networked, power-optimized cores paired with many high-speed connectivity options. The kit features the Versal 
Premium VP1202 adaptive SoC, which integrates 100+Gb/s PAM4 transceivers, PCIe® Gen5 with DMA & CCIX, 
100G multirate Ethernet cores, 600G Ethernet cores, 400G High-Speed Crypto Engines, and more.

FIGURE 4: HIGH-LEVEL DESIGN ARCHITECTURE FOR RANDOM FOREST IP

I/F STD. DESCRIPTION

1 PCIe
Host downloads test data, uploads inference results, program nodes configuration, and access  
test-harness registers.

2 AXI4-MM Write test data, read inference result, program nodes configuration, and access test-harness registers.

3 AXI4-Lite program nodes configuration

4 LPDDR4 Write test data, read inference result

5 AXI4-Lite Test-harness registers read write

6 AXI4-MM Read test data, write inference result

7 AXI4-Stream Test data and inference result

RANDOM FOREST IO HAS 2X AXI4-STREAM INTERFACES (INPUT AND OUTPUT) AND 1X AXI4-LITE INTERFACE.

VPK 120 REFERENCE BOARD

Host 
AMD 
x86

VPK120

VP1202

CPM5 
Host interface 
PCIe Gen5x8

NOC 
(Network on Chip)

DRAM memory (DDR4)  
Scores test data

Test Harness

Random Forest Classifier 
Implemented in Soft logic 

(PL) and on Chip SRAM 7

6

5
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The validation platform uses CPM5 for interfacing the VPK120 to the host system via PCIe. The host configures 
random forest module, loads test data, reads inferred results, and controls test-harness registers via CPM5.

8GB of LPDDR4 on VPK120 is partitioned into two segments for test data and inference results.

The test-harness fetches test data from LPDDR4 and inputs them to the random forest module. It receives inferred 
results from the random forest module and writes them to LPDDR4. 

Through the test-harness’ registers the host can,

1. Indicate test data size,

2. Start test,

3. Poll for test completion

4. Check elapsed clock cycles from start to completion of test.

PERFORMANCE WITH HARDWARE IMPLEMENTATION
The random forest IP is a parameterized synthesizable RTL representation of the random forest algorithm.  
The random forest IP on Versal is used for inference only as the model is trained offline usin the CPU.  
The random forest IP is implemented in Versal Premium with the following parameters.

• Number of trees = 200

• Maximum number of nodes= 255

• Maximum feature vector size= 255

• 32-bit floating point enabled.

Logic utilization in the Versal Premium device XCVP1202-VSVA2785 is as follows. 

LUT FF BRAM36

44861 4.98% 55357 3.07% 300.5 22.40%

 THE INFERENCE/SECOND FOR KDD99 AND CIC-IDS2017 DATASET IS APPROX. 6 MILLION INFERENCES PER SECOND. 

KDD99 and CIC-IDS2017 models were run on an AMD Ryzen™ 7 PRO 6850U laptop processor and approximately 
600K-700K inferences per second were achieved using all available eight cores. Though there are many different 
options among the available CPU core classes in terms of different cache size, operating frequency and available 
DRAM memory, the FPGA implementation of the random forest algorithm provides us some rough estimates of 
the expected performance boost resulted by using an adaptive hardware accelerator.
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FIGURE 5: RANDOM FOREST PERFORMANCE FOR FPGA IMPLEMENTATION

EXTENSION TO OTHER MODELS
The deep neural network models are developed for the CIC-IDS2017 dataset. AMD FPGA offerings have devices with  
AI Engines. The AI Engines are dedicated vector engines on Versal devices that are optimized for neural network 
architecture implementation. The other type of network models such as encoder/decoder are also  
being explored as they have shown significant performance and accuracy in anomaly detection.

SUMMARY

Random forest classifiers are scalable, lightweight AI models which are suitable for implementation in 
programmable logic. In this implementation we have optimized the number of trees and number of nodes to 
minimize the FPGA resource count. The results showed that a trained model is still able to generate the high 
accuracy (> 0.99) with both openly available dataset KDD99 and CIC-IDS2017. Since the feature set for the DDoS 
traffic can be large, we may need a higher number of tree and node counts in some cases which might affect the 
FPGA resources. 

This is a lookaside implementation where traffic feature extraction is done in software and extracted traffic 
parameters are sent to the FPGA via the PCIe interface to be analyzed by a machine-learning model running on 
an FPGA-based accelerator. Since FPGAs are well-suited and used as packet/traffic and flow classifiers in 
network firewalls, we plan to extend the role of the FPGA as an in-line flow processor where the network traffic 
flows are extracted, and traffic features are made available to the random forest model without the CPU 
assistance. This in-line implementation can have significant performance advantages in terms of throughput and 
latency.

Another extension of the implementation is planned as replacement of the random forest model to a deep-learning 
model with multiple layers. The use of deep neural network models may bring significant advantages while using a 
large number of traffic features for the DDoS mitigation.

RF Classification Performance
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APPENDIX A

FEATURE NAMES DESCRIPTIONS

src_bytes Number of data bytes transferred from source to destination in single connection

dst_bytes Number of data bytes transferred from destination to source in single connection

serror_rate
The percentage of connections that have activated the flag s0, s1, s2 or s3,  

among the connections aggregated in count 

flag Status of the connection – Normal or Error

service Destination network service used

dst_host_rerror_rate
The percentage of connections that have activated the flag REJ,  

among the connections aggregated in dst_host_count 

dst_host_serror_rate
The percentage of connections that have activated the flag s0, s1, s2 or s3,  

among the connections aggregated in dst_host_count 

logged_in Login Status : 1 if successfully logged in; 0 otherwise

rerror_rate
The percentage of connections that have activated the flag REJ,  

among the connections aggregated in count 

diff_srv_rate
The percentage of connections that were to different services,  

among the connections aggregated in count 

dst_host_same_src_port_rate
The percentage of connections that were to the same source port,  

among the connections aggregated in dst_host_srv_count

dst_host_srv_count Number of connections having the same port number

dst_host_srv_rerror_rate
The percentage of connections that have activated the flag REJ,  

among the connections aggregated in dst_host_srv_count

dst_host_same_srv_rate
The percentage of connections that were to different services,  

among the connections aggregated in dst_host_count

same_srv_rate
The percentage of connections that were to the same service,  

among the connections aggregated in count

dst_host_srv_serror_rate
The percent of connections that have activated the flag s0, s1, s2 or s3,  

among the connections aggregated in dst_host_srv_count

dst_host_diff_srv_rate
The percentage of connections that were to different services,  

among the connections aggregated in dst_host_count

srv_serror_rate
The percentage of connections that have activated the flag s0, s1, s2 or s3,  

among the connections aggregated in srv_count

count
Number of connections to the same destination host  

as the current connection in the past two seconds

Table 3: Top features in the order from most- to least-important for KDD Cup 1999 Dataset



PRECISION RECALL F1 SCORE ACCURACY FPR FNR

Attack Benign Attack Benign Attack Benign

0.9927 0.9992 0.9983 0.9967 0.9955 0.9979 0.9972 0.003318 0.001749

KDD Cup 99 Performance
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