SOLARFLARE®

A XILINX COMPANY

Cloud Onload® Netty.io Cookbook

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered
as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer
to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

A list of patents associated with this product is at http://www.solarflare.com/patent
AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A SAFETY
CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE 1SO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY DESIGN”).
CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH
SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK
OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.

Copyright

© Copyright 2019 Xilinx, Inc. Xilinx, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective owners.

SF-121964-CD

Issue 2

Issue 2 © Copyright 2019 Xilinx, Inc


https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
http://www.solarflare.com/patent

Cloud Onload Netty.io Cookbook

SOLARFLARE®

Table of Contents
1 Introduction. ... ... ittt i i i i ettt ettt ettt e 1
1.1 Aboutthisdocument ...... ... ... .. i 1
1.2 Intended audience. . ... e 2
1.3 Registrationand support .......... . i 2
1.4 Download @CCesS . . v vt v ittt e 2
1.5 Furtherreading .......... i e e 2
2 OVeIVIBW . ittt ittt iiieetenaetonassosnssonassonnsssnnssaanssnanss 3
2.1 Netty.io Overview . ...t i e i e e e e 3
2.2 WrK2 OVEIVIBW. . oottt e et e e e e ettt 4
2.3 Cloud Onload overview. . ...ttt e e 4
3 Summaryofbenchmarking .........cciiiiiiiiiiiiiniiennerennerenanns 6
3.1 Overview of Netty.io benchmarking .......... ... ... .. .......... 6
3.2 Architecture for Netty.io benchmarking .......................... 7
3.3 Netty.io benchmarkingprocess ........ ... i 8
4 Evaluation ...ttt ittt et e ittt 10
4.1 General server SetUP. . ..t v i e e 10
42 wrk2 client . ... . e 11
4.3 Netty-based HTTP server . ...t 11
Static files for HTTP servers . ..., 12
4.4 Graphing the benchmarkingresults. . ........................... 12
5 Benchmarkresults. ...ttt iiiiintnnetnnrannnnnas 13
5.1 RESURS .ot e e e 14
25GbE with16 bytepayload........ ... ... .. i 14
25GbE with32 bytepayload. ..........co i 15
25GbE with64 bytepayload. .......... ... .. i 16
25GbE with 128 bytepayload. . ........ ... .. 17
25GbE with 256 bytepayload. . .........c i 18
25GbE with512 bytepayload. . ........ ... i 19
5.2 ANAlYSIS. .ot 20

Issue 2 © Copyright 2019 Xilinx, Inc i



Cloud Onload Netty.io Cookbook

SOLARFLARE®

AXILINX COMPANY Table of Contents
A CloudOnload profiles .........cciiiiiiiiiiiiiiiiiiniinennennanannnns 21

A.1 The wrk-profile Cloud Onload profile . ........... ... .. ... ....... 21

A.2 The Netty Cloud Onload profiles .. ........... ... .. ... 22

The nettyio-performance profile .. ......... ... ... i i 23

The nettyio-balanced profile ......... ... ... i i 24

Issue 2 © Copyright 2019 Xilinx, Inc iii



SOLARFLARE®

A XILINX COMPANY

1

Cloud Onload Netty.io Cookbook

Introduction

This chapter introduces you to this document. See:

About this document on page 1
Intended audience on page 2
Registration and support on page 2
Download access on page 2

Further reading on page 2.

1.1 About this document

This document is the Netty.io Cookbook for Cloud Onload. It gives procedures for
technical staff to configure and run tests, to benchmark Netty.io utilizing Solarflare's
Cloud Onload and Solarflare NICs.

This document contains the following chapters:

Introduction on page 1 (this chapter) introduces you to this document.

Overview on page 3 gives an overviews of the software distributions used for
this benchmarking.

Summary of benchmarking on page 6 summarizes how the performance of
Netty.io has been benchmarked, both with and without Cloud Onload, to
determine what benefits might be seen.

Evaluation on page 10 describes how the performance of the test system is
evaluated.

Benchmark results on page 13 presents the benchmark results that are
achieved.

and the following appendixes:

Cloud Onload profiles on page 21 contains the Cloud Onload profiles used for
this benchmarking.

Issue 2

© Copyright 2019 Xilinx, Inc 1



Cloud Onload Netty.io Cookbook

SOLARFLARE®

A XILINX COMPANY Introduction

1.2 Intended audience

The intended audience for this Netty.io Cookbook are:

e software installation and configuration engineers responsible for
commissioning and evaluating this system

e system administrators responsible for subsequently deploying this system for
production use.

1.3 Registration and support

Support is available from support@solarflare.com.

1.4 Download access

Cloud Onload can be downloaded from: https://support.solarflare.com/.

Solarflare drivers, utilities packages, application software packages and user
documentation can be downloaded from: https://support.solarflare.com/.

The scripts and Cloud Onload profiles used for this benchmarking are available on
request from support@solarflare.com.

Please contact your Solarflare sales channel to obtain download site access.

1.5 Further reading

For advice on tuning the performance of Solarflare network adapters, see the
following:

e Solarflare Server Adapter User Guide (SF-103837-CD).

This is available from: https://support.solarflare.com/.
For more information about Cloud Onload, see the following:
e Onload User Guide (SF-104474-CD).

This is available from: https://support.solarflare.com/.

Issue 2 © Copyright 2019 Xilinx, Inc 2


mailto:support@solarflare.com?subject=Netty%20with%20Cloud%20Onload:%20support%20request
https://support.solarflare.com/
https://support.solarflare.com/
https://support.solarflare.com/
https://support.solarflare.com/
mailto:support@solarflare.com?subject=Scripts%20for%20Cloud%20Onload%20Netty.io%20benchmarking
https://support.solarflare.com/

Cloud Onload Netty.io Cookbook

SOLARFLARE®

A XILINX COMPANY

2 Overview

This chapter gives an overview of the software distributions used for this
benchmarking. See:

e Netty.io overview on page 3
e Wrk2 overview on page 4

¢ Cloud Onload overview on page 4.

2.1 Netty.io overview

Netty.io is an asynchronous event-driven network application framework written in
Java for rapid development of maintainable high performance protocol servers and
clients. It greatly simplifies and streamlines network programming such as TCP and
UDP socket server. Netty.io has the following performance features:

e  Better throughput, lower latency
*  Lessresource consumption

¢ Minimized unnecessary memory copy.

Transport Services Protocol Support
3:::::::&:1 ng;r;’cget S5 c.StartiLs F‘(r;c?tﬂt;gt:lﬁf
ARSI ompeamsion | Traeutar Ee
In-VM Pipe Legacy Text - Binary Protocols

with Unit Testability

Extensible Event Model

Universal Communication API

Caore
2107

Zero-Copy-Capable Rich Byte Buffer

Figure 1: Netty.io architecture

Issue 2 © Copyright 2019 Xilinx, Inc 3



SOLARFLARE®

A XILINX COMPANY

Cloud Onload Netty.io Cookbook

Overview

2.2 Wrk2 overview

Wrk is a modern HTTP benchmarking tool capable of generating significant load
when run on a single multi-core CPU. It combines a multithreaded design with
scalable event notification systems such as epoll and kqueue. An optional LualIT
script can perform HTTP request generation, response processing, and custom
reporting.

Wrk2 is wrk modified to produce a constant throughput load, and accurate latency
details to the high 9s (it can produce an accurate 99.9999 percentile when run long
enough). In addition to wrk's arguments, wrk2 takes a required throughput
argument (in total requests per second) via either the --rate or -R parameters.

wrk
[ |

thread 1 thread 2

(%]

-y

client 0 client 1 client client 3 client client 5

Y
application J

Figure 2: Wrk/wrk2 architecture

2.3 Cloud Onload overview

Cloud Onload is a high performance network stack from Solarflare
(https://www.solarflare.com/) that dramatically reduces latency, improves CPU
utilization, eliminates jitter, and increases both message rates and bandwidth. Cloud
Onload runs on Linux and supports the TCP network protocol with a POSIX
compliant sockets APl and requires no application modifications to use. Cloud
Onload achieves performance improvements in part by performing network
processing at user-level, bypassing the OS kernel entirely on the data path.

Cloud Onload is a shared library implementation of TCP, which is dynamically linked
into the address space of the application. Using Solarflare network adapters, Cloud
Onload is granted direct (but safe) access to the network. The result is that the
application can transmit and receive data directly to and from the network, without
any involvement of the operating system. This technique is known as “kernel
bypass”.

Issue 2

© Copyright 2019 Xilinx, Inc 4


https://www.solarflare.com/

Cloud Onload Netty.io Cookbook

SOLARFLARE®

A XILINX COMPANY Overview

When an application is accelerated using Cloud Onload it sends or receives data
without access to the operating system, and it can directly access a partition on the
network adapter.

STANDARD
APPLICATION SOLARFLARE
NETWORKING CLOUD ONLOAD®

,2 |. User Space "‘ - -
Application Application

Sockets Sockets

i Cloud Onload®

g b Kernel Space
TCP/IP Cloud Onload®
Kernel Bypass
Network Driver Networfk Driver
vNIC vNIC

10/25/40/50/100GbE MAC

Figure 3: Cloud Onload architecture

Issue 2 © Copyright 2019 Xilinx, Inc 5



SOLARFLARE®

A XILINX COMPANY

3

Cloud Onload Netty.io Cookbook

Summary of benchmarking

This chapter summarizes how the performance of Netty.io has been benchmarked,
both with and without Cloud Onload, to determine what benefits might be seen.
See:

e Overview of Netty.io benchmarking on page 6
e Architecture for Netty.io benchmarking on page 7

e Netty.io benchmarking process on page 8.

3.1 Overview of Netty.io benchmarking

The Netty.io benchmarking uses two servers:
e The load server runs multiple instances of wrk2 to generate requests.

e The proxy server runs multiple instances of Netty-based HTTP servers to service
the requests.

Various benchmark tests are run, with the HTTP servers using the Linux kernel
network stack.

The tests are then repeated, using Cloud Onload to accelerate the HTTP servers. Two
different Cloud Onload profiles are used, that have different priorities:

e The balanced profile gives excellent throughput, with low latency. It has
reduced CPU usage at lower traffic rates.

e The performance profile is latency focused. It constantly polls for network
events to achieve the lowest latency possible, and so has higher CPU usage.

The results using the kernel network stack are compared with the results using the
two different Cloud Onload profiles.

Issue 2

© Copyright 2019 Xilinx, Inc 6



Cloud Onload Netty.io Cookbook

SOLARFLARE®

AXILINX COMPANY Summary of benchmarking

3.2 Architecture for Netty.io benchmarking

Benchmarking was performed with two Dell R640 servers, with the following
specification:

Server Dell R640
Memory 96GB
NICs 1 x X2541 (single port 100G)

1 x X2522-25G (dual port 25G):
e  Each NICis affinitized to a separate NUMA node.

CPU 2 x Intel® Xeon® Gold 6148 CPU @ 2.40GHz:
e  Each CPU is on a separate NUMA node
e There are 20 cores per CPU

e  Hyperthreading is enabled to give 40 hyperthreads per

NUMA node
(0} Red Hat Enterprise Linux Server release 7.5 (Maipo)
Software Netty.io
wrk?2

Each server is configured to leave as many CPUs as possible available for the
application being benchmarked.

Each server has 2 NUMA nodes. 2 Solarflare NICs are fitted, each affinitized to a
separate NUMA node, and connected directly to the corresponding NIC in the other
server:

wrk2 client Netty server

1 x QSFP28 to QSFP28

1 x Solarflare X2541 DAC cable

1 x Solarflare X2541

-
—
L
1 x SFP28 to SFP28

1 x Solarflare X2522-25G DAC cable 1 x Solarflare X2522-25G

Figure 4: Architecture for Netty.io benchmarking

Issue 2 © Copyright 2019 Xilinx, Inc 7



SOLARFLARE®

A XILINX COMPANY

Cloud Onload Netty.io Cookbook

Summary of benchmarking

3.3 Netty.io benchmarking process

These are the high-level steps we followed to complete benchmarking with Netty.io:

Install Cloud Onload on both machines.
Refer to the Onload User Guide.

Install OpenJDK 1.8 on the Netty server machine.

Refer to https://openjdk.java.net/install/.

Run a shell script on the wrk2 client machine.

The script uses ssh to install the following on the Netty server machine:
- the Netty.io framework library

a Netty-based HTTP server

the Cloud Onload tuning profiles for Netty.io

a shell script to invoke the Netty-based HTTP server in different test
modes.

The script installs the following on the wrk2 client machine:
- wrk2

- a Python program to perform the benchmarking
- anini file containing settings for the Python program.

The script then invokes the Python program, passing the ini file as a
parameter.

The Python program then performs the benchmarking as follows:

Start Netty-based HTTP servers on the Netty server machine.

- Each HTTP server process is assigned to a dedicated CPU, distributed
across the NUMA nodes.

- Each HTTP server process uses a dedicated port.
- The first iteration of the test uses a single HTTP server process.
Start wrk2 on the first server to generate load.

- Each wrk2 process is assigned to a dedicated CPU, distributed across the
NUMA nodes.

- Each wrk2 process uses a dedicated port.

- Thefirst iteration of the test uses a single wrk2 process.

Measure the response rate of the Netty-based HTTP server, as the number of
requests per second.

Repeat the test 5 times, and record the median response rate.

Repeat the test for varying payloads.

Issue 2

© Copyright 2019 Xilinx, Inc 8


https://openjdk.java.net/install/

SOLARFLARE®

A XILINX COMPANY

Cloud Onload Netty.io Cookbook

Summary of benchmarking

Increase the number of wrk2 and HTTP server processes on each server, and
repeat the test.

Continue doing this until the number of wrk2 or HTTP server processes is the
same as the number of CPUs on the server. For the setup used, this is 40

processes.
Client Machine
User Space User Space User Space
Python Program e S ,|-...........-.H1... == .| ||‘
= =
Ne*(TTP Servill(s) N HTTP Serjer(s)
| Sockets | Recflests Resinses
[ |
Reiests Resifinses | Socknie |
Linux Kernel Space
Cloud Onload
TCP/IP Stack
[ metwork Driver
TCP/IP Stack
Network Driver |
. I
‘ CPU Cores * v CPU Cores v

Solarflare Network Adapter Solarflare Network Adapter

3 3

Network Infrastructure

Figure 5: Netty.io software usage

*  Repeat all tests, accelerating the Netty-based HTTP server with Cloud Onload.
These steps are detailed in the remaining chapters of this Cookbook.

The scripts and Cloud Onload profiles used for this benchmarking, that perform the
above steps, are available on request from support@solarflare.com.

Issue 2

© Copyright 2019 Xilinx, Inc


mailto:support@solarflare.com?subject=Scripts%20for%20Cloud%20Onload%20Netty%20benchmarking

Cloud Onload Netty.io Cookbook

SOLARFLARE®

A XILINX COMPANY

4 Evaluation

This chapter describes how the performance of the test system is evaluated. See:
e General server setup on page 10

e wrk2 client on page 11

¢ Netty-based HTTP server on page 11

e Graphing the benchmarking results on page 12.

4.1 General server setup

Each server is setup as follows:

1 Ensure the following BIOS settings are made.
- enable Turbo mode
- enable C-States
- disable Hyper-threading

- disable Intel Virtualization Technology.

2  Stop various services:

systemctl stop cpupower
systemctl stop cpuspeed
systemctl stop cpufreqd
systemctl stop powerd
systemctl stop irgbalance
systemctl stop firewalld
systemctl stop iptables

3  Disable interrupt moderation

ethtool --coalesce <interface-name> adaptive-rx off rx-usecs @
4  Allocate huge pages.

For example, to configure 1024 huge pages:

sysctl -w vm.nr_hugepages=1024

Update the /etc/sysctl. conf file to make this change persistent. For
example:

echo "vm.nr_hugepages = 1024" >> /etc/sysctl.conf

Issue 2 © Copyright 2019 Xilinx, Inc 10



Cloud Onload Netty.io Cookbook

SOLARFLARE®

A XILINX COMPANY Evaluation

4.2 wrk2 client

The wrk2 command line is generated by the Python program. An example for the
first instance (core 1) is below:

taskset -c 1 \
onload -p wrk-profile.opf \
/opt/wrk2/wrk \
-R 50M \
-c 1000 \
-d 30s \
-t 1\
-s wrk.lua
http://192.168.0.101:8081/256

This example runs a Requests per second test using a payload size of 1024 bytes
(HTTP GET with keepalive).

e The taskset -c parameter is changed for each instance, to use cores 1 to 40.

e Thewrk.lua LUA script file creates threads, assigns a server, and generates
concurrent requests.

¢ The port number in the URL (8081 above) is incremented for each instance.

e The filename in the URL (256 above) is set to the desired payload size.

4.3 Netty-based HTTP server

The Netty-based HTTP server command line is generated by the netty.sh shell
script. Example command lines for the first instance (core 1) are below:

e  Tostart the HTTP server with the kernel network stack, use the following
netty.sh command:
netty.sh 1 kernel
which generates the following command line:
taskset -c 1 java HttpSnoopServer
e Tostart the HTTP server with an Onload-accelerated network stack, use one of

the following netty.sh commands, for the two different Onload profiles under
test:

netty.sh 1 onload-performance
netty.sh 1 onload-balanced

which generate the corresponding command lines:

taskset -c 1 onload -p nettyio-performance java HttpSnoopServer
taskset -c 1 onload -p nettyio-balanced java HttpSnoopServer

Issue 2 © Copyright 2019 Xilinx, Inc 11



Cloud Onload Netty.io Cookbook

SOLARFLARE®

A XILINX COMPANY Evaluation

Note the following:
e The taskset -c parameter is changed for each instance, to use cores 1 to 40.
e The HTTP responses obey the following guidelines:.

- the response content type is set to text/plain

- both the header and the response body are composed dynamically

- the response header includes Content-Length, Server and Date

- HTTP keep-alive is used

- TCP persistent connections. are used

- GET requests are used.

Static files for HTTP servers

Each HTTP server serves static files from the server root directory.

The static files used range from 16 bytes to 512 bytes. They were generated using
dd. The example below creates the necessary files for a server:

# for payload in 16 32 64 128 256 512

> do

> dd if=/dev/urandom of=$server_root/$payload \
> bs=$payload count=1 > /dev/null 2>&1

> done

4.4 Graphing the benchmarking results

The results from each pass of wrk2 are now gathered and summed, so that they can
be further analyzed. They are then transferred into an Excel spreadsheet, to create
graphs from the data.

Issue 2 © Copyright 2019 Xilinx, Inc 12



SOLARFLARE®

A XILINX COMPANY

5

Cloud Onload Netty.io Cookbook

Benchmark results

This chapter presents the benchmark results that are achieved. See:
e  Results on page 14

e Analysis on page 20.

Issue 2

© Copyright 2019 Xilinx, Inc 13



SOLARFLARE®

A XILINX COMPANY

5.1 Results

Cloud Onload Netty.io Cookbook

25GbE with 16 byte payload

Benchmark results

3,000,000

2,500,000

2,000,000

1,500,000

Requests / sec

1,000,000

500,000

25GbE, 1000 Connections, 16 Bytes

4 8 12 16 20 24
Instances of Netty (multiple ports)

—=—25Gb/s Kernel ——25Gb/s CloudOnload Balanced
Requests/sec Requests/sec

28 32 36

Figure 6: Netty.io requests per second

Table 1 below shows the results that were used to plot the graph in Figure 6 above.

Table 1: Requests per second

HTTP server Kernel Onload balanced  Onload balanced
instances gain
1 74,090 115,172 55%
4 247,057 416,578 69%
8 452,195 733,459 62%
12 632,339 1,015,292 61%
16 821,361 1,322,151 61%
20 1,023,532 1,586,738 55%
24 1,224,885 1,819,246 49%
28 1,390,398 2,036,244 46%
32 1,539,189 2,207,269 43%
36 1,587,437 2,398,869 51%

Issue 2

© Copyright 2019 Xilinx, Inc

14



SOLARFLARE®

A XILINX COMPANY

Cloud Onload Netty.io Cookbook

25GbE with 32 byte payload

Benchmark results

3,000,000

2,500,000

2,000,000

1,500,000

Requests / sec

1,000,000

500,000

25GbE, 1000 Connections, 32 Bytes

"
/
/
—

4 8 12 16 20 24
Instances of Netty (multiple ports)

—e—25Gby/s Kernel 25Gb/s CloudOnload Balanced
Requests/sec Requests/sec

28

32 36

Figure 7: Netty.io requests per second

Table 2 below shows the results that were used to plot the graph in Figure 7 above.

Table 2: Requests per second

HTTP server Kernel Onload balanced  Onload balanced
instances gain
1 74,502 115,465 55%
4 247,456 423,847 71%
8 452,467 754,238 67%
12 635,024 1,042,664 64%
16 824,638 1,332,487 62%
20 1,024,068 1,610,808 57%
24 1,262,214 1,845,161 46%
28 1,392,240 2,079,610 49%
32 1,524,994 2,231,506 46%
36 1,612,211 2,414,067 50%

Issue 2

© Copyright 2019 Xilinx, Inc

15



SOLARFLARE®

A XILINX COMPANY

25GbE with 64 byte payload

Cloud Onload Netty.io Cookbook

Benchmark results

3,000,000

2,500,000

2,000,000

1,500,000

Requests /[ sec

1,000,000

500,000

25GbE, 1000 Connections, 64 Bytes

—e=25Gb/s Kernel
Requests/sec

16 20
Instances of Netty (multiple ports)

=+=25Gb/s CoudOnload Balanced
Requests/sec

28

Figure 8: Netty.io requests per second

Table 3 below shows the results that were used to plot the graph in Figure 8 above.

Table 3: Requests per second

HTTP server Kernel Onload balanced  Onload balanced
instances gain
1 74,446 115,369 55%
4 248,993 425,108 71%
8 450,523 734,154 63%
12 640,035 1,047,015 64%
16 825,640 1,347,779 63%
20 1,022,246 1,612,354 58%
24 1,215,619 1,847,942 52%
28 1,398,708 2,086,071 49%
32 1,542,012 2,222,037 44%
36 1,587,569 2,407,833 52%

Issue 2

© Copyright 2019 Xilinx, Inc

16



SOLARFLARE®

A XILINX COMPANY

25GbE with 128 byte payload

Cloud Onload Netty.io Cookbook

Benchmark results

3,000,000

2,500,000

2,000,000

1,500,000

Requests / sec

1,000,000

500,000

25GbE, 1000 Connections, 128 Bytes

——25Gb/s Kernel
Requests/sec

16 20
Instances of Netty (multiple ports)

24

—+—25Gb/s QoudOnload Balanced
Requests/sec

28

32 36

Figure 9: Netty.io requests per second

Table 4 below shows the results that were used to plot the graph in Figure 9 above.

Table 4: Requests per second

HTTP server Kernel Onload balanced  Onload balanced
instances gain
1 67,253 102,538 52%
4 236,525 417,489 77%
8 435,868 772,632 77%
12 621,379 1,073,886 73%
16 783,841 1,341,994 71%
20 946,056 1,641,211 73%
24 1,092,430 1,882,538 72%
28 1,226,745 2,067,025 68%
32 1,324,163 2,229,917 68%
36 1,443,811 2,400,253 66%

Issue 2

© Copyright 2019 Xilinx, Inc

17



SOLARFLARE®

A XILINX COMPANY

25GbE with 256 byte payload

Cloud Onload Netty.io Cookbook

Benchmark results

2,500,000

2,000,000

[
wu
Q

k=]
[=)
Q
=]

Requests /[ sec

1,000,000

500,000

25GbE, 1000 Connections, 256 Bytes

S
=

—=—25Gb/s Kernel

Requests/sec

/
_—

16 20

Instances of Netty (multiple ports)

—+—25Gb/s CloudOnload Balanced

Requests/sec

/
//

/

/

28

/

Figure 10: Netty.io requests per second

Table 5 below shows the results that were used to plot the graph in Figure 10 above.

Table 5: Requests per second

HTTP server Kernel Onload balanced  Onload balanced
instances gain
1 56,712 78,751 39%
4 209,992 336,575 60%
8 402,554 674,969 68%
12 575,605 982,092 71%
16 743,037 1,250,758 68%
20 899,196 1,484,873 65%
24 1,044,456 1,696,823 62%
28 1,173,183 1,871,371 60%
32 1,265,939 1,968,855 56%
36 1,365,344 2,128,143 56%

Issue 2

© Copyright 2019 Xilinx, Inc

18



Cloud Onload Netty.io Cookbook

SOLARFLARE®

A XILINX COMPANY Benchmark results

25GbE with 512 byte payload

25GbE, 1000 Connections, 512 Bytes
1,600,000

1,400,000 /
/

1,200,000 / /
1,000,000 / /

800,000 / /

e / e

Requests [ sec

200,000

0

A\

8 12 16 20 24 28 32 36
Instances of Netty (multiple ports)

—+—25Gb/s Kernel —+—25Gb/s CloudOnload Balanced
Requests/sec Requests/sec

Figure 11: Netty.io requests per second

Table 6 below shows the results that were used to plot the graph in Figure 11 above.

Table 6: Requests per second

HTTP server Kernel Onload balanced  Onload balanced
instances gain
1 42,530 54,234 28%
4 158,023 223,166 41%
8 306,457 422,328 38%
12 443,054 610,049 38%
16 581,166 777,353 34%
20 712,089 932,897 31%
24 844,865 1,084,682 28%
28 955,258 1,219,666 28%
32 1,057,640 1,319,236 25%
36 1,138,074 1,447,669 27%

Issue 2 © Copyright 2019 Xilinx, Inc 19



SOLARFLARE®

A XILINX COMPANY

5.2 Analysis

Cloud Onload Netty.io Cookbook

Benchmark results

From the data tables and graphs, one can see that Cloud Onload delivers an
outstanding performance gain of up to 77% over the Linux kernel communications
stack. It can also be seen that the Netty-based HTTP server with Cloud Onload
serviced a maximum of 2.4 million GET requests/sec, whereas the same HTTP server
with the kernel stack serviced a maximum of only 1.6 million GET requests/sec.

Since Netty.io is network intensive, every request includes network processing
overhead. Whenever an application touches hardware other than the CPU or
memory, such as the network, it must make one or more calls to the Linux kernel.
Each call creates additional overhead, that requires both CPU cycles and processing
time. Cloud Onload moves the network processing for Netty.io from the kernel into
Netty.io’s own application space in memory. This single modification is responsible
for improving the performance of Netty.io.

Gains are seen with various numbers of Netty-based HTTP server instances (1 to 36)
which are pinned to the corresponding number of unique CPU cores (1 to 36), and
with various response payload sizes (16, 32, 64, 128, 256, and 512 bytes). The gains
are achieved with Netty.io using NIO (Non-Blocking 10), and the wrk2 client using
the HTTP/1.1 persistent connection model which keeps connections opened
between successive requests, and so reduces the time needed to open new
connections.

Finally, one can see from the data tables and graphs that further performance gains
might be possible by adding more instances of the accelerated HTTP server, until
throughput is system limited.

Issue 2

© Copyright 2019 Xilinx, Inc 20



SOLARFLARE®

A XILINX COMPANY

A

Cloud Onload Netty.io Cookbook

Cloud Onload profiles

This appendix contains the Cloud Onload profiles used for this benchmarking. See:

e The wrk-profile Cloud Onload profile on page 21

¢  The Netty Cloud Onload profiles on page 22.

These profiles, along with the scripts used for this benchmarking, are available on
request from support@solarflare.com.

A.1 The wrk-profile Cloud Onload profile

The wrk-profile.opf Cloud Onload profile is as follows:

onload_set
onload_set
onload_set
onload_set
onload_set
onload_set
onload_set

EF_SOCKET_CACHE_MAX 40000
EF_TCP_TCONST_MSL 1
EF_TCP_FIN_TIMEOUT 15
EF_HIGH_THROUGHPUT MODE 1
EF_LOG_VIA IOCTL 1
EF_NO_FAIL 1

EF_UDP ©

f#tensure sufficient resources

onload_set
onload_set
onload_set
onload_set
onload_set

EF_MAX_PACKETS 205000
EF_MAX_ENDPOINTS 400000
EF_FDTABLE_SIZE 8388608
EF_USE_HUGE_PAGES 2
EF_MIN_FREE_PACKETS 50000

#tenvironment variable can overwrite

onload_set

EF_LOAD_ENV 1

#spinning configuration

onload_set
onload_set
onload_set

EF_POLL_USEC 100000
EF_SLEEP_SPIN_USEC 50
EF_EPOLL_SPIN 1

#tscalable filters with clustering for outgoing connections

onload_set
onload_set
onload_set
onload_set

EF_SCALABLE_FILTERS 'any=rss:active'
EF_SCALABLE_FILTERS_ENABLE 1

EF_CLUSTER_NAME 'load’

EF_CLUSTER_SIZE 12 #needs to overwritten by environment

#tshared local ports to improve rate of socket recycling

onload_set
onload_set
onload_set
onload_set
onload_set

EF_TCP_SHARED_LOCAL_PORTS_MAX 28000
EF_TCP_SHARED_LOCAL_PORTS 28000
EF_TCP_SHARED_LOCAL_PORTS_PER_IP 1
EF_TCP_SHARED_LOCAL_PORTS_REUSE_FAST 1
EF_TCP_SHARED_LOCAL_PORTS_NO_FALLBACK 1

Issue 2

© Copyright 2019 Xilinx, Inc 21


mailto:support@solarflare.com?subject=Scripts%20for%20Cloud%20Onload%20Netty%20benchmarking

Cloud Onload Netty.io Cookbook

SOLARFLARE®

A XILINX COMPANY Cloud Onload profi/es

#tepoll configuration
onload_set EF_UL_EPOLL 3
onload_set EF_EPOLL_MT_SAFE 1

#reduce transmit CPU load
onload_set EF_TX_PUSH ©
onload_set EF_PIO ©
onload_set EF_CTPIO ©

# Adjustments for potentially-lossy network environment
onload_set EF_TCP_INITIAL_CWND 14600

onload_set EF_DYNAMIC_ACK_THRESH 4

onload_set EF_TAIL_DROP_PROBE 1

onload_set EF_TCP_RCVBUF_MODE 1

A.2 The Netty Cloud Onload profiles

There are two Netty Cloud Onload profiles.

e The performance profile is designed to get maximum performance, including
best throughput and transaction rate, as well as best average and 99 percentile
transaction response times.

However this profile relies on the application threads having exclusive use of

physical CPU cores. To get best performance, you must explicitly pin application
threads to physical cores (avoiding threads sharing hyperthreaded CPU cores),
and also ensure there are enough unused CPU cores for other applications to
use.

This profile constantly polls for network events to achieve the lowest latency
possible, and so has higher CPU usage. CPU utilization metrics no longer
provide a usable indication of system load.

e The balanced profile is designed also to get maximum performance, while
avoiding the trade-offs associated with the performance profile.

This profile does not rely on the application threads having exclusive use of
physical CPU cores. CPU cores may be shared with other applications, hyper-
threads may be used, and CPU utilization metrics indicate system load.

Under high load conditions, this profile should deliver throughput and
transaction rates that are equivalent to the performance profile. At lower
traffic rates, CPU usage is reduced, but transaction response times might
increase. However, response times will be better than when not running
Onload.

Issue 2 © Copyright 2019 Xilinx, Inc 22



SOLARFLARE®

A XILINX COMPANY

Cloud Onload Netty.io Cookbook
Cloud Onload profiles

The differences between these profiles are at the start of the profile files. See:
e The nettyio-performance profile on page 23

¢  The nettyio-balanced profile on page 24.

The nettyio-performance profile

The nettyio-performance.opf Cloud Onload profile is as follows:

# netty.io performance profile

# Enable polling / spinning. When the application makes a blocking call

# such as recv() or poll(), this causes Onload to busy wait for up to 1@@ms
# before blocking.

#

onload_set EF_POLL_USEC 100000

# Use EPOLL mode 3 as will provide the best scalability and speed

# EPOLL can be multithread safe, as netty poll architecture is single threaded
onload_set EF_UL_EPOLL 3

onload_set EF_EPOLL_MT SAFE 1

onload_set EF_RXQ SIZE 4096
onload_set EF_CLUSTER_IGNORE 1

# Enable receive packet event batching, this adds a small latency
# cost, but improves transaction rate/efficiency
onload_set EF_HIGH THROUGHPUT MODE 1

# Disable CTPIO and PIO as these reduce CPU efficiency and don't
# for this class of application, bring major benefits. If

# absolutely best latency is needed, then consider enabling them.
onload_set EF_CTPIO @

onload_set EF_PIO 0

Issue 2

© Copyright 2019 Xilinx, Inc 23



Cloud Onload Netty.io Cookbook

SOLARFLARE®

A XILINX COMPANY Cloud Onload profi/es

The nettyio-balanced profile

The nettyio-balanced.opf Cloud Onload profile is as follows:

# netty.io balanced profile

# Enable small amount of polling / spinning. When the application makes a blocking call
# such as recv() or poll(), this causes Onload to busy wait for up to 20us

# before blocking.

#

onload_set EF_INT DRIVEN @

onload_set EF_POLL_USEC 20

# Prevent spinning inside socket calls.
onload_set EF_PKT_WAIT_SPIN @
onload_set EF_TCP_RECV_SPIN @
onload_set EF_TCP_SEND_SPIN @
onload_set EF_TCP_CONNECT_SPIN ©
onload_set EF_TCP_ACCEPT_SPIN @
onload_set EF_UDP_RECV_SPIN @
onload_set EF_UDP_SEND_SPIN @

# Use EPOLL mode 3 as will provide the best scalability and speed

# EPOLL can be multithread safe, as netty poll architecture is single threaded
onload_set EF_UL_EPOLL 3

onload_set EF_EPOLL_MT SAFE 1

onload_set EF_RXQ SIZE 4096
onload_set EF_CLUSTER_IGNORE 1

# Enable receive packet event batching, this adds a small latency
# cost, but improves transaction rate/efficiency
onload_set EF_HIGH THROUGHPUT MODE 1

# Disable CTPIO and PIO as these reduce CPU efficiency and don't
# for this class of application, bring major benefits.
onload_set EF_CTPIO @

onload_set EF_PIO ©

Issue 2 © Copyright 2019 Xilinx, Inc 24



	Table of Contents
	1 Introduction
	1.1 About this document
	1.2 Intended audience
	1.3 Registration and support
	1.4 Download access
	1.5 Further reading

	2 Overview
	2.1 Netty.io overview
	2.2 Wrk2 overview
	2.3 Cloud Onload overview

	3 Summary of benchmarking
	3.1 Overview of Netty.io benchmarking
	3.2 Architecture for Netty.io benchmarking
	3.3 Netty.io benchmarking process

	4 Evaluation
	4.1 General server setup
	4.2 wrk2 client
	4.3 Netty-based HTTP server
	Static files for HTTP servers

	4.4 Graphing the benchmarking results

	5 Benchmark results
	5.1 Results
	25GbE with 16 byte payload
	25GbE with 32 byte payload
	25GbE with 64 byte payload
	25GbE with 128 byte payload
	25GbE with 256 byte payload
	25GbE with 512 byte payload

	5.2 Analysis

	A Cloud Onload profiles
	A.1 The wrk-profile Cloud Onload profile
	A.2 The Netty Cloud Onload profiles
	The nettyio-performance profile
	The nettyio-balanced profile



