
Issue 2 © Copyright 2019 Xilinx, Inc i

Cloud Onload® NGINX Proxy Cookbook

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered
as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer
to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
A list of patents associated with this product is at http://www.solarflare.com/patent
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A SAFETY
CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY DESIGN”).
CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH
SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK
OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.
Copyright
© Copyright 2019 Xilinx, Inc. Xilinx, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective owners.
SF-122227-CD
Issue 2

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
http://www.solarflare.com/patent

Cloud Onload NGINX Proxy Cookbook
 Table of Contents

1 Introduction. 1
1.1 About this document .1
1.2 Intended audience. .2
1.3 Registration and support .2
1.4 Download access .2
1.5 Further reading .2

2 Overview . 3
2.1 NGINX overview. .3
2.2 Wrk2 overview. .4
2.3 Cloud Onload overview. .4

3 Summary of benchmarking . 6
3.1 Overview of NGINX benchmarking .6
3.2 Architecture for NGINX benchmarking .7
3.3 NGINX benchmarking process .8

4 Evaluation . 10
4.1 General server setup. .10
4.2 wrk2 client (on Load server) .11
4.3 NGINX backend webservers (on Load server) .12

Static files for webservers. .13
4.4 NGINX proxy (on Proxy server). .13
4.5 Graphing the benchmarking results. .16

5 Benchmark results. 17
5.1 Results .18

Connections per second .18
Requests per second .19
Throughput .20
Latency .21

5.2 Analysis. .22
Connections per second .22
Requests per second .22
Throughput .22
Latency .22
Issue 2 © Copyright 2019 Xilinx, Inc ii

Cloud Onload NGINX Proxy Cookbook

Table of Contents
A Cloud Onload profiles . 23
A.1 The wrk-profile Cloud Onload profile .23
A.2 The nginx-server Cloud Onload profile .24
A.3 The nginx-proxy Cloud Onload profiles .25

The nginx-proxy-balanced profile. .25
The nginx-proxy-performance profile .25
The nginx-proxy-config profile fragment .26
The reverse-proxy-throughput profile fragment.28

B Installation and configuration . 30
B.1 Installing NGINX. .30

Installation .30
B.2 Installing wrk2 .32

Installation .32
B.3 Installing Cloud Onload. .32
Issue 2 © Copyright 2019 Xilinx, Inc iii

Cloud Onload NGINX Proxy Cookbook
 1 Introduction

This chapter introduces you to this document. See:

• About this document on page 1

• Intended audience on page 2

• Registration and support on page 2

• Download access on page 2

• Further reading on page 2.

1.1 About this document
This document is the NGINX Proxy Cookbook for Cloud Onload. It gives procedures
for technical staff to configure and run tests, to benchmark NGINX as a proxy server
utilizing Solarflare's Cloud Onload and Solarflare NICs.

This document contains the following chapters:

• Introduction on page 1 (this chapter) introduces you to this document.

• Overview on page 3 gives an overviews of the software distributions used for
this benchmarking.

• Summary of benchmarking on page 6 summarizes how the performance of
NGINX has been benchmarked, both with and without Cloud Onload, to
determine what benefits might be seen.

• Evaluation on page 10 describes how the performance of the test system is
evaluated.

• Benchmark results on page 17 presents the benchmark results that are
achieved.

and the following appendixes:

• Cloud Onload profiles on page 23 contains the Cloud Onload profiles used for
this benchmarking.

• Installation and configuration on page 30 describes how to install and configure
the software distributions used for this benchmarking.
Issue 2 © Copyright 2019 Xilinx, Inc 1

Cloud Onload NGINX Proxy Cookbook

Introduction
1.2 Intended audience
The intended audience for this NGINX Proxy Cookbook are:

• software installation and configuration engineers responsible for
commissioning and evaluating this system

• system administrators responsible for subsequently deploying this system for
production use.

1.3 Registration and support
Support is available from support@solarflare.com.

1.4 Download access
Cloud Onload can be downloaded from: https://support.solarflare.com/.

Solarflare drivers, utilities packages, application software packages and user
documentation can be downloaded from: https://support.solarflare.com/.

The scripts and Cloud Onload profiles used for this benchmarking are available on
request from support@solarflare.com.

Please contact your Solarflare sales channel to obtain download site access.

1.5 Further reading
For advice on tuning the performance of Solarflare network adapters, see the
following:

• Solarflare Server Adapter User Guide (SF-103837-CD).
This is available from: https://support.solarflare.com/.

For more information about Cloud Onload, see the following:

• Onload User Guide (SF-104474-CD).
This is available from: https://support.solarflare.com/.
Issue 2 © Copyright 2019 Xilinx, Inc 2

mailto:support@solarflare.com?subject=NGINX%20with%20Cloud%20Onload:%20support%20request
https://support.solarflare.com/
https://support.solarflare.com/
https://support.solarflare.com/
https://support.solarflare.com/
mailto:support@solarflare.com?subject=Scripts%20for%20Cloud%20Onload%20NGINX%20Proxy%20benchmarking
https://support.solarflare.com/

Cloud Onload NGINX Proxy Cookbook
 2 Overview

This chapter gives an overview of the software distributions used for this
benchmarking. See:

• NGINX overview on page 3

• Wrk2 overview on page 4

• Cloud Onload overview on page 4.

2.1 NGINX overview
Open source NGINX [engine x] is an HTTP and reverse proxy server, a mail proxy
server, and a generic TCP/UDP proxy server.

NGINX Plus is a software load balancer, web server, and content cache built on top
of open source NGINX. NGINX has exclusive enterprise-grade features beyond
what's available in the open source offering, including session persistence,
configuration via API, and active health checks.

Open source NGINX is used for this benchmarking.

NGINX is heavily network dependent by design, so its performance can be
significantly improved through enhancements to the underlying networking layer.
Issue 2 © Copyright 2019 Xilinx, Inc 3

Cloud Onload NGINX Proxy Cookbook

Overview
2.2 Wrk2 overview
Wrk2 is a modern HTTP benchmarking tool capable of generating significant load
when run on a single multi-core CPU. It combines a multithreaded design with
scalable event notification systems such as epoll and kqueue.

Figure 1: Wrk2 architecture

2.3 Cloud Onload overview
Cloud Onload is a high performance network stack from Solarflare
(https://www.solarflare.com/) that dramatically reduces latency, improves CPU
utilization, eliminates jitter, and increases both message rates and bandwidth. Cloud
Onload runs on Linux and supports the TCP network protocol with a POSIX
compliant sockets API and requires no application modifications to use. Cloud
Onload achieves performance improvements in part by performing network
processing at user-level, bypassing the OS kernel entirely on the data path.

Cloud Onload is a shared library implementation of TCP, which is dynamically linked
into the address space of the application. Using Solarflare network adapters, Cloud
Onload is granted direct (but safe) access to the network. The result is that the
application can transmit and receive data directly to and from the network, without
any involvement of the operating system. This technique is known as “kernel
bypass”.
Issue 2 © Copyright 2019 Xilinx, Inc 4

https://www.solarflare.com/

Cloud Onload NGINX Proxy Cookbook

Overview
When an application is accelerated using Cloud Onload it sends or receives data
without access to the operating system, and it can directly access a partition on the
network adapter.

Figure 2: Cloud Onload architecture
Issue 2 © Copyright 2019 Xilinx, Inc 5

Cloud Onload NGINX Proxy Cookbook
 3 Summary of benchmarking

This chapter summarizes how the performance of NGINX as a proxy server has been
benchmarked, both with and without Cloud Onload, to determine what benefits
might be seen. See:

• Overview of NGINX benchmarking on page 6

• Architecture for NGINX benchmarking on page 7

• NGINX benchmarking process on page 8.

3.1 Overview of NGINX benchmarking
The NGINX benchmarking uses two servers:

• The load server runs multiple instances of wrk2 to generate requests, and
multiple instances of NGINX webservers to service requests.

• The proxy server runs multiple instances of NGINX acting as a proxy. It receives
the requests that originate from wrk2 on the load server, and proxies those
requests to an NGINX webserver on the load server.

Various benchmark tests are run, with the NGINX proxy using the Linux kernel
network stack.

The tests are then repeated, using Cloud Onload to accelerate the NGINX proxy. Two
different Cloud Onload profiles are used, that have different priorities:

• The balanced profile gives excellent throughput, with low latency. It has
reduced CPU usage at lower traffic rates.

• The performance profile is latency focused. It constantly polls for network
events to achieve the lowest latency possible, and so has higher CPU usage.

The results using the kernel network stack are compared with the results using the
two different Cloud Onload profiles.
Issue 2 © Copyright 2019 Xilinx, Inc 6

Cloud Onload NGINX Proxy Cookbook

Summary of benchmarking
3.2 Architecture for NGINX benchmarking
Benchmarking was performed with two Dell R640 servers, with the following
specification:

Each server is configured to leave as many CPUs as possible available for the
application being benchmarked.

Each server has 2 NUMA nodes. 2 Solarflare NICs are fitted, each affinitized to a
separate NUMA node, and connected directly to the corresponding NIC in the other
server:

Figure 3: Architecture for NGINX benchmarking

Server Dell R640

Memory 192GB

NICs 2 × X2541 (single port 100G):

• Each NIC is affinitized to a separate NUMA node.

CPU 2 × Intel® Xeon® Gold 6148 CPU @ 2.40GHz:

• Each CPU is on a separate NUMA node

• There are 20 cores per CPU

• Hyperthreading is enabled to give 40 hyperthreads per
NUMA node

OS Red Hat Enterprise Linux Server release 7.6 (Maipo)

Software NGINX 1.17

wrk2 4.0.0
Issue 2 © Copyright 2019 Xilinx, Inc 7

Cloud Onload NGINX Proxy Cookbook

Summary of benchmarking
3.3 NGINX benchmarking process
These are the high-level steps we followed to complete benchmarking with NGINX:

• Install and test NGINX on both servers.

• Install wrk2 on the first server.

• Start NGINX web servers on the first server.
All iterations of the test use the same configuration for consistency:
- 40 NGINX web servers are used.
- Each web server runs a single NGINX worker process.
- Each NGINX worker process is assigned to a dedicated CPU, distributed

across the NUMA nodes.
- Each NGINX worker process uses the NIC that is affinitized to the local

NUMA node for its CPU.
- Each NGINX worker process uses a dedicated port.
- Each NGINX web server is accelerated by Cloud Onload, to maximize the

responsiveness of the proxied server.

• Start NGINX proxy servers on the other server:
- One NGINX proxy server is used per NUMA node on the server.

The setup used has 2 NUMA nodes, and so 2 proxy servers are started.
- The first iteration of the test uses a single worker process per proxy server.

• Start wrk2 on the first server to generate load.
All iterations of the test use the same configuration for consistency:
- 20 wrk2 processes are used.
- Each wrk2 process is assigned to a dedicated CPU, distributed across the

NUMA nodes.
- Each wrk2 process uses the NIC that is affinitized to the local NUMA node

for its CPU.
- Each wrk2 process is accelerated by Cloud Onload, to maximize the

throughput of each connection going to the NGINX proxy server.

• Record the response rate of the proxied web server, as the number of requests
per second.

• Increase the number of NGINX worker processes on each proxy server, and
repeat the test.
- Each NGINX worker process is assigned to a dedicated CPU, distributed

across the NUMA nodes.
- Each NGINX worker process uses the NIC that is affinitized to the local

NUMA node for its CPU.
Continue doing this until the number of NGINX worker processes is the same
on both servers. For the setup used, this is 40 processes.
Issue 2 © Copyright 2019 Xilinx, Inc 8

Cloud Onload NGINX Proxy Cookbook

Summary of benchmarking
Figure 4: NGINX software usage

• Repeat all tests, accelerating the NGINX proxy with Cloud Onload.

These steps are detailed in the remaining chapters of this Cookbook.

The scripts and Cloud Onload profiles used for this benchmarking, that perform the
above steps, are available on request from support@solarflare.com.
Issue 2 © Copyright 2019 Xilinx, Inc 9

mailto:support@solarflare.com?subject=Scripts%20for%20Cloud%20Onload%20NGINX%20Proxy%20benchmarking

Cloud Onload NGINX Proxy Cookbook
 4 Evaluation

This chapter describes how the performance of the test system is evaluated. See:

• General server setup on page 10

• wrk2 client (on Load server) on page 11

• NGINX backend webservers (on Load server) on page 12

• NGINX proxy (on Proxy server) on page 13

• Graphing the benchmarking results on page 16.

4.1 General server setup
Each server is setup using a script that does the following:

1 Create a file that makes new module settings:
cat > /etc/modprobe.d/proxy.conf <<EOL
options sfc \\
 performance_profile=throughput \\
 rss_cpus=20 \\
 rx_irq_mod_usec=90 \\
 irq_adapt_enable=N \\
 rx_ring=512 \\
 piobuf_size=0
options nf_conntrack_ipv4 \\
 hashsize=524288
EOL

NOTE: This script is required only when running the NGINX proxy server with
the kernel network stack (i.e. without Cloud Onload).

2 Reload the drivers to pick up the new module settings:
onload_tool reload

3 Use the network-throughput tuned profile:
tuned-adm profile network-throughput

4 Stop various services:
systemctl stop irqbalance
systemctl stop iptables
systemctl stop firewalld

5 Increase the sizes of the OS receive and send buffers:
sysctl net.core.rmem_max=16777216 net.core.wmem_max=16777216

6 Configure huge pages:
sysctl vm.nr_hugepages=4096 > /dev/null
Issue 2 © Copyright 2019 Xilinx, Inc 10

Cloud Onload NGINX Proxy Cookbook

Evaluation
7 Ensure the connection tracking table is large enough:
sysctl net.netfilter.nf_conntrack_max=$(($(sysctl --values
net.netfilter.nf_conntrack_buckets) * 4)) > /dev/null

8 Increase the system-wide and per-process limits on the number of open files:
sysctl fs.file-max=8388608 > /dev/null
sysctl fs.nr_open=8388608 > /dev/null

9 Increase the range of local ports, so that the server can open lots of outgoing
network connections:
sysctl -w net.ipv4.ip_local_port_range="2048 65535" > /dev/null

10 Increase the number of file descriptors that are available:
ulimit -n 8388608

11 Exclude from IRQ balancing the CPUs that are used for running the NGINX proxy
servers. For example, to exclude CPUs 0 to 39:
IRQBALANCE_BANNED_CPUS=ff,ffffffff irqbalance --oneshot

4.2 wrk2 client (on Load server)
Set up 20 instances of wrk2, running on cores 40 to 59, and start them all. An
example command line for the first instance (core 40) is below.
EF_CLUSTER_SIZE=10 \
 taskset -c 40 \
 onload -p wrk-profile.opf \
 /opt/wrk2/wrk \
 -R 500000 \
 -c 100 \
 -d 60 \
 -t 1 \
 http://192.168.0.101:1080/1024.bin

This example runs a Requests per second test using a payload size of 1024 bytes
(HTTP GET with keepalive).

• The taskset -c parameter is changed for each instance, to use cores 40 to 59.

• Instances on the even cores (NUMA node 0) use the IP address for the NIC that
is affinitized to NUMA node 0 on the proxy server.

• Instances on the odd cores (NUMA node 1) use the IP address for the NIC that
is affinitized to NUMA node 1 on the proxy server.

• The port number is fixed at 1080. This is the port listened to by the proxy server.

• EF_CLUSTER_SIZE is set to the number of wrk2 instances which share the same
IP address (i.e. 10 per NUMA node in this case).
Issue 2 © Copyright 2019 Xilinx, Inc 11

Cloud Onload NGINX Proxy Cookbook

Evaluation
4.3 NGINX backend webservers (on Load server)
Create a set of 40 backend webservers, with similar configuration for each
webserver, and start them all. An example command line to start the first webserver
(port 1050 of the NIC that is affinitized to NUMA node 0) is below:
onload -p nginx-server.opf sbin/nginx -c nginx-server-node0_1050.conf

The corresponding nginx-server-node0_1050.conf configuration file is shown
below.
cat >nginx-server-node0_1050.conf <<EOL
worker_processes 1;
worker_rlimit_nofile 8388608;
worker_cpu_affinity auto 00000000000000000000000000000001;

pid /var/run/nginx-node0_1050.pid;

events {
 multi_accept off;
 accept_mutex off;
 use epoll;
 worker_connections 200000;
}

error_log logs/error-node0_1050.log debug;

http {
 default_type application/octet-stream;

 access_log off;
 error_log /dev/null crit;

 keepalive_timeout 300s;
 keepalive_requests 1000000;

 server {
 listen 192.168.0.100:1050 reuseport;
 server_name localhost;

 open_file_cache max=100000 inactive=20s;
 open_file_cache_valid 30s;
 open_file_cache_errors off;

 location = /0 {
 return 204;
 }
 location / {
 root html-node0_1050;
 index index.html;
 }
 location = /upload {
 return 200 'Thank you';
 }
 }
}
EOL
Issue 2 © Copyright 2019 Xilinx, Inc 12

Cloud Onload NGINX Proxy Cookbook

Evaluation
• The worker_cpu_affinity is changed for each instance, to use cores 0 to 39.

• Instances on the even cores (NUMA node 0) have the IP address in http →
server → listen set to use the NIC that is affinitized to NUMA node 0, and the
port address incrementing from 1050 upwards.

• Instances on the odd cores (NUMA node 1) have the IP address in http →
server → listen set to use the NIC that is affinitized to NUMA node 1, and the
port address also incrementing from 1050 upwards.

• The pid is changed for each instance.

• The error_log is changed for each instance

• The server → location → root is changed for each instance.

Static files for webservers
Each webserver serves static files from within the install directory, in a subdirectory
that is configured by the root directive. Each webserver instance uses its own
subdirectory, to avoid filesystem contention, and to model more closely a farm of
separate servers.

The static files used range from 400B to 1MB. They were generated using dd. The
example below creates the necessary files for the server that uses the above
configuration file:
mkdir -p /opt/nginx/html-node0_1050
for payload in 400 1024 10240 32768 65536 102400 131072 262144 1024000
> do
> dd if=/dev/urandom of=/opt/nginx/html-node0_1050/$payload \
> bs=$payload count=1 > /dev/null 2>&1
> done

4.4 NGINX proxy (on Proxy server)
Start various numbers of NGINX proxy worker processes (2, 8, 16, 24, 32 or 40),
using either the kernel network stack, or one of two different Onload-accelerated
network stacks. A total of 18 iterations are required.

Example command lines to start 16 worker processes are below:

• To start the proxy server with the kernel network stack, use the following:
sbin/nginx -c nginx_proxy-node0_16.conf
sbin/nginx -c nginx_proxy-node1_16.conf

• To start the proxy server with an Onload-accelerated network stack, use one of
the following, for the two different Onload profiles under test:
onload -p nginx-proxy-balanced.opf sbin/nginx -c nginx_proxy-node0_16.conf
onload -p nginx-proxy-balanced.opf sbin/nginx -c nginx_proxy-node1_16.conf

onload -p nginx-proxy-performance.opf sbin/nginx -c nginx_proxy-node0_16.conf
onload -p nginx-proxy-performance.opf sbin/nginx -c nginx_proxy-node1_16.conf
Issue 2 © Copyright 2019 Xilinx, Inc 13

Cloud Onload NGINX Proxy Cookbook

Evaluation
The corresponding nginx_proxy-node0_16.conf configuration file is shown
below.
cat >nginx_proxy-node0_16.conf <<EOL
worker_processes 8;
worker_rlimit_nofile 8388608;
worker_cpu_affinity auto 00000000000000000101010101010101 ;

pid /var/run/nginx-node0_16.pid;

events {
 multi_accept off;
 accept_mutex off;
 use epoll;
 worker_connections 200000;
}

error_log logs/error-node0_16.log debug;

http {
 default_type application/octet-stream;

 access_log off;
 error_log /dev/null crit;

 # “sendfile on” is used only for the kernel network stack.
 sendfile on;

 # Proxy buffering is disabled to avoid large file tests overflowing
 # buffers which leads to temporary file use. This particularly harms
 # Onload performance due to workers taking too long between epoll_wait
 # calls which are needed for frequent Onload stack polling.
 # Issue can also be avoided by ensuring sufficient buffering, e.g.
 # proxy_buffering on;
 # proxy_buffers 192 8k;
 proxy_buffering off;

 keepalive_timeout 300s;
 keepalive_requests 1000000;

 server {
 listen 192.168.0.101:1080 reuseport;
 server_name localhost;

 error_page 500 502 503 504 /50x.html;

 location = /50x.html {
 root html;
 }
 location / {
 proxy_pass http://backend;
 proxy_http_version 1.1;
 proxy_set_header Connection "";
 }
 }

 upstream backend {
Issue 2 © Copyright 2019 Xilinx, Inc 14

Cloud Onload NGINX Proxy Cookbook

Evaluation

 server 192.168.0.100:1050 ;
 server 192.168.0.100:1051 ;
 server 192.168.0.100:1052 ;
 server 192.168.0.100:1053 ;
 server 192.168.0.100:1054 ;
 server 192.168.0.100:1055 ;
 server 192.168.0.100:1056 ;
 server 192.168.0.100:1057 ;
 server 192.168.0.100:1058 ;
 server 192.168.0.100:1059 ;
 server 192.168.0.100:1060 ;
 server 192.168.0.100:1061 ;
 server 192.168.0.100:1062 ;
 server 192.168.0.100:1063 ;
 server 192.168.0.100:1064 ;
 server 192.168.0.100:1065 ;
 server 192.168.0.100:1066 ;
 server 192.168.0.100:1067 ;
 server 192.168.0.100:1068 ;
 server 192.168.0.100:1069 ;
 keepalive 500;
 }
}
EOL

• The worker_processes is set to the number of worker processes which share
the same NUMA node (i.e. half the number of worker processes in the test).

• The worker_cpu_affinity is set to use one core per worker process, all on the
same NUMA node (alternate bits set in this case).
For the corresponding nginx_proxy-node1_16.conf configuration file, the
lower 16 bits are reversed:
worker_cpu_affinity auto 00000000000000001010101010101010 ;

• Instances on the even cores (NUMA node 0) have the IP addresses set as
follows:
- http → server → listen is set to use the NIC that is affinitized to NUMA

node 0, with the port number set to 1080.
- http → upstream backend → server is set to use the NIC that is

affinitized to NUMA node 0 on the load server, with all port numbers in the
range 1050-1069.

• Instances on the odd cores (NUMA node 1) have the IP addresses set as
follows:
- http → server → listen is set to use the NIC that is affinitized to NUMA

node 1, with the port number set to 1080.
- http → upstream backend → server is set to use the NIC that is

affinitized to NUMA node 1 on the load server, with all port numbers in the
range 1050-1069.

• The pid is changed for each instance.

• The error_log is changed for each instance.
Issue 2 © Copyright 2019 Xilinx, Inc 15

Cloud Onload NGINX Proxy Cookbook

Evaluation
4.5 Graphing the benchmarking results
The results from each pass of wrk2 are now gathered and summed, so that they can
be further analyzed. They are then transferred into an Excel spreadsheet, to create
graphs from the data.
Issue 2 © Copyright 2019 Xilinx, Inc 16

Cloud Onload NGINX Proxy Cookbook
 5 Benchmark results

This chapter presents the benchmark results that are achieved. See:

• Results on page 18

• Analysis on page 22.
Issue 2 © Copyright 2019 Xilinx, Inc 17

Cloud Onload NGINX Proxy Cookbook

Benchmark results
5.1 Results

Connections per second

Figure 5: NGINX connections per second

Table 1 below shows the results that were used to plot the graph in Figure 5 above.

Table 1: Connections per second

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

2 70957.35 187431.36 189503.89 164% 167%

8 257003.65 772494.71 772756.36 200% 200%

16 410795.52 1507558.1 1504750.5 266% 266%

24 509656.37 2098591.5 2157234.8 311% 323%

32 509396.24 2348479.4 2373220.1 361% 365%

40 511137.83 2287115.4 2383646.32 347% 366%
Issue 2 © Copyright 2019 Xilinx, Inc 18

Cloud Onload NGINX Proxy Cookbook

Benchmark results
Requests per second

Figure 6: NGINX requests per second

Table 2 below shows the results that were used to plot the graph in Figure 6 above.

Table 2: Requests per second for 1KB

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

2 107704.26 256210.07 256858.82 137% 138%

8 401871.84 1009312.55 1011250.65 151% 151%

16 761825.71 2163700.25 2181539.11 184% 186%

24 1092638.24 3273655.22 3326961.9 199% 204%

32 1382586.62 4194785.8 4175574.83 203% 202%

40 1616827.43 4599771.22 4586751.76 184% 183%
Issue 2 © Copyright 2019 Xilinx, Inc 19

Cloud Onload NGINX Proxy Cookbook

Benchmark results
Throughput

Figure 7: NGINX throughput

Table 3 below shows the results that were used to plot the graph in Figure 7 above.

Table 3: Throughput for 10K in Gbps

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

2 4.71113728 8.96106496 9.4035968 90% 99%

8 19.1726387 36.51264512 37.5843226 90% 96%

16 32.3158016 66.90340864 67.2515686 107% 108%

24 48.0385434 99.10771712 100.310794 106% 108%

32 53.2519322 127.4857062 124.255437 139% 133%

40 55.9471002 114.7304346 113.028792 105% 102%
Issue 2 © Copyright 2019 Xilinx, Inc 20

Cloud Onload NGINX Proxy Cookbook

Benchmark results
Latency

Figure 8: NGINX latency

Table 4 below shows the results that were used to plot the graph in Figure 8 above.

Table 4: Latency for 1KB

Requests per
second

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

100000 3100 2070 1980 49% 56%

250000 2000 2110 1750 -6% 14%

500000 2240 2080 1810 7% 23%

750000 2540 2150 1990 18% 27%

1000000 2680 2280 2040 17% 31%

1100000 2650 2210 2040 19% 29%

1200000 70010 2380 2150

Kernel cannot maintain
requested packet rate.
Gain is meaningless.

1300000 2310000 2440 2220

1400000 11190000 2690 2300

1500000 16440000 2760 2410

2000000 23450000 3220 2910

2500000 29920000 2420 2580

3000000 34870000 2360 2490

4000000 40530000 1620 2370
Issue 2 © Copyright 2019 Xilinx, Inc 21

Cloud Onload NGINX Proxy Cookbook

Benchmark results
5.2 Analysis
When compared with the kernel stack, Cloud Onload delivers significant
improvements to all metrics.

Connections per second
The connections per second shows great improvement with Cloud Onload, peaking
at an improvement of 366% over the kernel stack. With large numbers of proxy
workers (32 to 40) the Cloud Onload performance levels out. This is most likely
because the load server is unable to generate and measure any more traffic, but
might be because the proxy server itself is saturated.

Requests per second
The requests per second also shows great improvement with Cloud Onload, peaking
at an improvement of 204% over the kernel stack. With 40 worker processes, results
continue to improve, indicating that further performance is available from Cloud
Onload.

Throughput
The throughput shows significant improvement with Cloud Onload, peaking at an
improvement of 139% over the kernel stack. With large numbers of proxy workers
(32 to 40) the Cloud Onload performance again levels out, either because the load
server cannot generate any more traffic, or because the proxy server itself is
saturated.

Latency
The latency figures are as output by wrk2, and show the time from when the should
have been sent (according to the configured packet rate), until when the packet was
actually received. The 99 percentile figure is reported.

When the kernel stack packet rate is raised above 1.1 million requests per second,
it can no longer maintain this rate. Jitter increases, the number of outliers exceeds
1%, and so the reported latency suddenly and dramatically increases. Any further
small increase in load would make the server appear completely unresponsive to an
end user.

In contrast, Cloud Onload continues to deliver low latency with 4 million requests
per second, and is actually trending towards even lower latency. The stable and low
value for the 99th percentile of latency indicates low jitter and predictable
performance.
Issue 2 © Copyright 2019 Xilinx, Inc 22

Cloud Onload NGINX Proxy Cookbook
 A Cloud Onload profiles

This appendix contains the Cloud Onload profiles used for this benchmarking. See:

• The wrk-profile Cloud Onload profile on page 23

• The nginx-server Cloud Onload profile on page 24

• The nginx-proxy Cloud Onload profiles on page 25.

These profiles, along with the scripts used for this benchmarking, are available on
request from support@solarflare.com.

A.1 The wrk-profile Cloud Onload profile
The wrk-profile.opf Cloud Onload profile is as follows:
onload_set EF_SOCKET_CACHE_MAX 40000
onload_set EF_TCP_TCONST_MSL 1
onload_set EF_TCP_FIN_TIMEOUT 15
onload_set EF_HIGH_THROUGHPUT_MODE 1
onload_set EF_LOG_VIA_IOCTL 1
onload_set EF_NO_FAIL 1
onload_set EF_UDP 0

#ensure sufficient resources
onload_set EF_MAX_PACKETS 205000
onload_set EF_MAX_ENDPOINTS 400000
onload_set EF_FDTABLE_SIZE 8388608
onload_set EF_USE_HUGE_PAGES 2
onload_set EF_MIN_FREE_PACKETS 50000

#environment variable can overwrite
onload_set EF_LOAD_ENV 1

#spinning configuration
onload_set EF_POLL_USEC 100000
onload_set EF_SLEEP_SPIN_USEC 50
onload_set EF_EPOLL_SPIN 1

#scalable filters with clustering for outgoing connections
onload_set EF_SCALABLE_FILTERS 'any=rss:active'
onload_set EF_SCALABLE_FILTERS_ENABLE 1
onload_set EF_CLUSTER_NAME 'load'
onload_set EF_CLUSTER_SIZE 12 #needs to overwritten by environment

#shared local ports to improve rate of socket recycling
onload_set EF_TCP_SHARED_LOCAL_PORTS_MAX 28000
onload_set EF_TCP_SHARED_LOCAL_PORTS 28000
onload_set EF_TCP_SHARED_LOCAL_PORTS_PER_IP 1
Issue 2 © Copyright 2019 Xilinx, Inc 23

mailto:support@solarflare.com?subject=Scripts%20for%20Cloud%20Onload%20NGINX%20Proxy%20benchmarking

Cloud Onload NGINX Proxy Cookbook

Cloud Onload profiles
onload_set EF_TCP_SHARED_LOCAL_PORTS_REUSE_FAST 1
onload_set EF_TCP_SHARED_LOCAL_PORTS_NO_FALLBACK 1

#epoll configuration
onload_set EF_UL_EPOLL 3
onload_set EF_EPOLL_MT_SAFE 1

#reduce transmit CPU load
onload_set EF_TX_PUSH 0
onload_set EF_PIO 0
onload_set EF_CTPIO 0

Adjustments for potentially-lossy network environment
onload_set EF_TCP_INITIAL_CWND 14600
onload_set EF_DYNAMIC_ACK_THRESH 4
onload_set EF_TAIL_DROP_PROBE 1
onload_set EF_TCP_RCVBUF_MODE 1

A.2 The nginx-server Cloud Onload profile
The nginx-server.opf Cloud Onload profile is as follows:
onload_set EF_ACCEPTQ_MIN_BACKLOG 400
onload_set EF_SOCKET_CACHE_MAX 40000
onload_set EF_TCP_TCONST_MSL 1
onload_set EF_TCP_FIN_TIMEOUT 15
onload_set EF_TCP_SYNRECV_MAX 90000
onload_set EF_TCP_BACKLOG_MAX 400
onload_set EF_HIGH_THROUGHPUT_MODE 1
onload_set EF_LOG_VIA_IOCTL 1
onload_set EF_NO_FAIL 1
onload_set EF_UDP 0

#ensure sufficient resources
onload_set EF_MAX_PACKETS 205000
onload_set EF_MAX_ENDPOINTS 400000
onload_set EF_USE_HUGE_PAGES 2
onload_set EF_MIN_FREE_PACKETS 50000

#epoll configuration
onload_set EF_UL_EPOLL 3
onload_set EF_EPOLL_MT_SAFE 1

#don't use clustering when SO_REUSEPORT is set
onload_set EF_CLUSTER_IGNORE 1

#environment variable can overwrite
onload_set EF_LOAD_ENV 1

#spinning configuration
onload_set EF_POLL_USEC 100000
onload_set EF_SLEEP_SPIN_USEC 50
onload_set EF_EPOLL_SPIN 1

#reduce transmit CPU load
onload_set EF_TX_PUSH 0
Issue 2 © Copyright 2019 Xilinx, Inc 24

Cloud Onload NGINX Proxy Cookbook

Cloud Onload profiles
onload_set EF_PIO 0
onload_set EF_CTPIO 0

Adjustments for potentially-lossy network environment
onload_set EF_TCP_INITIAL_CWND 14600
onload_set EF_DYNAMIC_ACK_THRESH 4
onload_set EF_TAIL_DROP_PROBE 1
onload_set EF_TCP_RCVBUF_MODE 1

A.3 The nginx-proxy Cloud Onload profiles
There are two nginx-proxy Cloud Onload profiles.

• The balanced profile gives excellent throughput, with low latency. It has
reduced CPU usage at lower traffic rates.

• The performance profile is latency focused. It constantly polls for network
events to achieve the lowest latency possible, and so has higher CPU usage.

The differences between these profiles are minor, and are in the profile files. See:

• The nginx-proxy-balanced profile on page 25

• The nginx-proxy-performance profile on page 25.

The majority of the settings are common to both profiles, and are in separate shared
files that each profile sources or includes. See:

• The nginx-proxy-config profile fragment on page 26.

• The reverse-proxy-throughput profile fragment on page 28.

The nginx-proxy-balanced profile
The nginx-proxy-balanced.opf Cloud Onload profile is as follows:
. ${PROXY_CONFIG_DIR}/nginx-proxy-config.opf-fragment
onload_import ${PROXY_CONFIG_DIR}/reverse-proxy-throughput.opf-fragment

The nginx-proxy-performance profile
The nginx-proxy-performance.opf Cloud Onload profile is as follows:
. ${PROXY_CONFIG_DIR}/nginx-proxy-config.opf-fragment
onload_set EF_TX_PUSH 1
onload_set EF_SLEEP_SPIN_USEC 0
onload_import ${PROXY_CONFIG_DIR}/reverse-proxy-throughput.opf-fragment
Issue 2 © Copyright 2019 Xilinx, Inc 25

Cloud Onload NGINX Proxy Cookbook

Cloud Onload profiles
The nginx-proxy-config profile fragment
The nginx-proxy-config.opf-fragment file, sourced by both the above profiles, is as
follows:
User may supply the following environment variables:

NGINX_NUM_WORKERS - the number of workers that nginx is
configured to use. Overrides value
automatically detected from nginx
configuration

set -o pipefail

For diagnostic output
module="nginx profile"

Regular expressions to match nginx config directives
worker_processes_pattern="/(^|;)\s*worker_processes\s+(\w+)\s*;/"
include_pattern="/(^|;)\s*include\s+(\S+)\s*;/"

Identify the config file that nginx would use
identify_config_file() {
 local file

 # Look for a -c option
 local state="IDLE"
 for option in "$@"
 do
 if ["$state" = "MINUS_C"]
 then
 file=$option
 state="FOUND"
 elif ["$option" = "-c"]
 then
 state="MINUS_C"
 fi
 done

 # Extract the compile-time default if config not specified on command line
 if ["$state" != "FOUND"]
 then
 file=$($1 -h 2>&1 | perl -ne 'print $1 if '"$worker_processes_pattern")
 fi

 [-f "$file"] && echo $file
}

Recursively look in included config files for a setting of worker_processes.
NB If this quantity is set in more than one place then the wrong setting might
be found, but this would be invalid anyway and is rejected by Nginx.
read_config_file() {
 local setting
 local worker_values=$(perl -ne 'print "$2 " if '"$worker_processes_pattern" $1)
 local include_values=$(perl -ne 'print "$2 " if '"$include_pattern" $1)

 # First look in included files
Issue 2 © Copyright 2019 Xilinx, Inc 26

Cloud Onload NGINX Proxy Cookbook

Cloud Onload profiles
 for file in $include_values
 do
 local possible=$(read_config_file $file)
 if [-n "$possible"]
 then
 setting=$possible
 fi
 done

 # Then look in explicit settings at this level
 for workers in $worker_values
 do
 setting=$workers
 done
 echo $setting
}

Method to parse configuration files directly
try_config_files() {
 local config_file=$(identify_config_file "$@")
 [-n "$config_file"] && read_config_file $config_file
}

Method to parse configuration via nginx, if supported
try_nginx_minus_t() {
 "$@" -T | perl -ne 'print "$2" if '"$worker_processes_pattern"
}

Method to parse configuration via tengine, if supported
try_tengine_minus_d() {
 "$@" -d | perl -ne 'print "$2" if '"$worker_processes_pattern"
}

Determine the number of workers nginx will use
determine_worker_processes() {
 # Prefer nginx's own parser, if available, for robustness
 local workers=$(try_nginx_minus_t "$@" || try_tengine_minus_d "$@" || try_config_files
"$@")
 if ["$workers" = "auto"]
 then
 # Default to the number of process cores
 workers=$(nproc)
 fi
 echo $workers
}

Define the number of workers
num_workers=${NGINX_NUM_WORKERS:-$(determine_worker_processes "$@")}
if ! [-n "$num_workers"]; then
 fail "ERROR: Environment variable NGINX_NUM_WORKERS is not set and worker count cannot
be determined from nginx configuration"
fi
log "$module: configuring for $num_workers workers"
Issue 2 © Copyright 2019 Xilinx, Inc 27

Cloud Onload NGINX Proxy Cookbook

Cloud Onload profiles
The reverse-proxy-throughput profile fragment
The reverse-proxy-throughput.opf-fragment file, included by both the above
profiles, is as follows:
User may supply the following environment variables:

NGINX_NUM_WORKERS - the number of workers that nginx is
configured to use. Overrides value
automatically detected from nginx
configuration

set -o pipefail

For diagnostic output
module="nginx profile"

Regular expressions to match nginx config directives
worker_processes_pattern="/(^|;)\s*worker_processes\s+(\w+)\s*;/"
include_pattern="/(^|;)\s*include\s+(\S+)\s*;/"

Identify the config file that nginx would use
identify_config_file() {
 local file

 # Look for a -c option
 local state="IDLE"
 for option in "$@"
 do
 if ["$state" = "MINUS_C"]
 then
 file=$option
 state="FOUND"
 elif ["$option" = "-c"]
 then
 state="MINUS_C"
 fi
 done

 # Extract the compile-time default if config not specified on command line
 if ["$state" != "FOUND"]
 then
 file=$($1 -h 2>&1 | perl -ne 'print $1 if '"$worker_processes_pattern")
 fi

 [-f "$file"] && echo $file
}

Recursively look in included config files for a setting of worker_processes.
NB If this quantity is set in more than one place then the wrong setting might
be found, but this would be invalid anyway and is rejected by Nginx.
read_config_file() {
 local setting
 local worker_values=$(perl -ne 'print "$2 " if '"$worker_processes_pattern" $1)
 local include_values=$(perl -ne 'print "$2 " if '"$include_pattern" $1)

 # First look in included files
Issue 2 © Copyright 2019 Xilinx, Inc 28

Cloud Onload NGINX Proxy Cookbook

Cloud Onload profiles
 for file in $include_values
 do
 local possible=$(read_config_file $file)
 if [-n "$possible"]
 then
 setting=$possible
 fi
 done

 # Then look in explicit settings at this level
 for workers in $worker_values
 do
 setting=$workers
 done
 echo $setting
}

Method to parse configuration files directly
try_config_files() {
 local config_file=$(identify_config_file "$@")
 [-n "$config_file"] && read_config_file $config_file
}

Method to parse configuration via nginx, if supported
try_nginx_minus_t() {
 "$@" -T | perl -ne 'print "$2" if '"$worker_processes_pattern"
}

Method to parse configuration via tengine, if supported
try_tengine_minus_d() {
 "$@" -d | perl -ne 'print "$2" if '"$worker_processes_pattern"
}

Determine the number of workers nginx will use
determine_worker_processes() {
 # Prefer nginx's own parser, if available, for robustness
 local workers=$(try_nginx_minus_t "$@" || try_tengine_minus_d "$@" || try_config_files
"$@")
 if ["$workers" = "auto"]
 then
 # Default to the number of process cores
 workers=$(nproc)
 fi
 echo $workers
}

Define the number of workers
num_workers=${NGINX_NUM_WORKERS:-$(determine_worker_processes "$@")}
if ! [-n "$num_workers"]; then
 fail "ERROR: Environment variable NGINX_NUM_WORKERS is not set and worker count cannot
be determined from nginx configuration"
fi
log "$module: configuring for $num_workers workers"
Issue 2 © Copyright 2019 Xilinx, Inc 29

Cloud Onload NGINX Proxy Cookbook
 B Installation and configuration

This appendix describes how to install and configure the software distributions used
for this benchmarking. See:

• Installing NGINX on page 30

• Installing wrk2 on page 32

B.1 Installing NGINX
This section describes how to install and configure NGINX.

Installation
NOTE: For a reference description of how to install NGINX, see
https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-open-
source/.

In summary:

1 If you already have an old NGINX installation on your system:
a) Back up your configs and logs:

cp -a /etc/nginx /etc/nginx-plus-backup
cp -a /var/log/nginx /var/log/nginx-plus-backup

b) Remove the old installation:
rm -rf /opt/nginx

2 Create a new NGINX directory:
mkdir -p /opt/nginx

3 Change to a temporary directory:
cd $(mktemp -d)

4 Clone NGINX from its git repository:
git clone https://github.com/nginx/nginx .

5 Configure NGINX:
./auto/configure --prefix=/opt/nginx

6 Make and install NGINX:
make install
Issue 2 © Copyright 2019 Xilinx, Inc 30

https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-open-source/
https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-open-source/

Cloud Onload NGINX Proxy Cookbook

Installation and configuration
7 Check the NGINX binary version to ensure that you have NGINX installed
correctly:
nginx -v
nginx version: nginx/1.17

8 Start NGINX:
systemctl start nginx

or just:
nginx

9 Verify access to Web Server
Issue 2 © Copyright 2019 Xilinx, Inc 31

Cloud Onload NGINX Proxy Cookbook

Installation and configuration
B.2 Installing wrk2
This section describes how to install and configure wrk2.

Installation
NOTE: For a reference description of how to install wrk2, see:
https://github.com/giltene/wrk2/wiki/Installing-wrk2-on-Linux.

In summary:

1 If the build tools are not already installed, install them:
yum groupinstall 'Development Tools'

2 If the OpenSSL dev libs are not already installed, install them:
yum install -y openssl-devel

3 If git is not already installed, install it:
yum install -y git

4 Create a directory to hold wrk2:
mkdir -p Onload_Testing/WRK2
cd Onload_Testing/WRK2

5 Use git to download wrk2:
git clone https://github.com/giltene/wrk2.git

6 Build wrk2:
cd wrk2
make

7 Copy the wrk2 executable to a location on your PATH. For example:
cp wrk2 /usr/local/bin

B.3 Installing Cloud Onload
For instructions on how to install and configure Cloud Onload, refer to the Onload
User Guide (SF-104474-CD). This is available from https://support.solarflare.com/.
Issue 2 © Copyright 2019 Xilinx, Inc 32

https://github.com/giltene/wrk2/wiki/Installing-wrk2-on-Linux
https://support.solarflare.com/

	Table of Contents
	1 Introduction
	1.1 About this document
	1.2 Intended audience
	1.3 Registration and support
	1.4 Download access
	1.5 Further reading

	2 Overview
	2.1 NGINX overview
	2.2 Wrk2 overview
	2.3 Cloud Onload overview

	3 Summary of benchmarking
	3.1 Overview of NGINX benchmarking
	3.2 Architecture for NGINX benchmarking
	3.3 NGINX benchmarking process

	4 Evaluation
	4.1 General server setup
	4.2 wrk2 client (on Load server)
	4.3 NGINX backend webservers (on Load server)
	Static files for webservers

	4.4 NGINX proxy (on Proxy server)
	4.5 Graphing the benchmarking results

	5 Benchmark results
	5.1 Results
	Connections per second
	Requests per second
	Throughput
	Latency

	5.2 Analysis
	Connections per second
	Requests per second
	Throughput
	Latency

	A Cloud Onload profiles
	A.1 The wrk-profile Cloud Onload profile
	A.2 The nginx-server Cloud Onload profile
	A.3 The nginx-proxy Cloud Onload profiles
	The nginx-proxy-balanced profile
	The nginx-proxy-performance profile
	The nginx-proxy-config profile fragment
	The reverse-proxy-throughput profile fragment

	B Installation and configuration
	B.1 Installing NGINX
	Installation

	B.2 Installing wrk2
	Installation

	B.3 Installing Cloud Onload

