
XAPP808 (v1.0) September 16, 2005 www.xilinx.com 1

© 2005 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc.
All other trademarks are the property of their respective owners.

Summary With the growing complexity of motor and motion control applications, it becomes apparent that
a Field Programmable Gate Array (FPGA) offers significant advantage over the off the shelf
Application Specific Standard Product (ASSP) solutions in the areas of performance, flexibility
and inventory control. With an FPGA, calculations that would normally consume large amounts
of CPU time when implemented in software may be hardware accelerated. Using hardware
acceleration allows for more functionality within the system software. Custom motor drive
interfaces such as PWM can be developed easily, quickly and at low cost. Additionally,
because of full configurability, the same FPGA can be used in various product ranges, reducing
the need to maintain inventory for multiple devices.

This application note describes the Spartan™-3 device based FPGA Motor Control Reference
Design. This design utilizes the MicroBlaze™ 32-bit CPU soft core, floating point unit, and
associated memory subsystems, SPI communications interface, and IP specifically designed
to control brushless DC (BLDC) and three phase AC induction motors.

Design files can be found at www.xilinx.com/bvdocs/appnotes/xapp808.zip.

Functional
Overview

A Windows based Graphical User Interface (GUI) is used to transfer commands to the
embedded development boards controlling the motors. These commands include the speed at
which the motor should rotate, how often the speed of the motor should be sampled, and the
gain values for the control loop used to maintain the speed of the motors. The GUI displays the
current speed and drive voltage as well as the average, and standard deviation of the speed
and drive voltage calculated from the last 256 samples received from the motor controllers.

The software running on the embedded motor controller boards calculates the current speed of
the motors, and using a Proportional Integral Derivative (PID) control loop and the gain values
from the GUI, attempts to maintain the speed of the motor. Each time the speed of the motor is

Application Note: Spartan and Virtex FPGA Families

XAPP808 (v1.0) September 16, 2005

FPGA Motor Control Reference Design
Author: Craig Hackney

R

Figure 1: Motor Control Design Assembly

Product Not Recommended for New Designs

http://www.xilinx.com/spartan3
http://www.xilinx.com
http://www.xilinx.com/microblaze
http://www.xilinx.com/bvdocs/appnotes/xapp808.zip

2 www.xilinx.com XAPP808 (v1.0) September 16, 2005

Hardware Overview
R

sampled, the motor speed and drive voltage information is transmitted back to the host based
GUI where it is displayed in a graphical format.

Hardware
Overview

The reference system consists of two motors, one BLDC motor (IB23810) from MCG and one
three phase AC induction motor (2IK6A-SW) from Oriental Motor U.S.A. Corp. Each motor is
fitted with an optical shaft encoder of type HEDS-564X-AXX from Agilent Technologies. The
BLDC motor also contains three Hall effect sensors used to determine the commutation for the
motor.

The BLDC motor utilizes a 12VDC power stage (ECLOVACBLDC) from Freescale
Semiconductor Inc., while the AC induction motor utilizes a 110-220VAC power stage from
International Rectifier based on the IRADK10 reference design kit. For this design the PIC was
removed from the IRADK10 board and pins 16 (RESETSC) and 22 (ENABLE) of U1 were tied
to +5V (pin 20).

Isolation circuits were used to separate the low-voltage controller circuitry from the high-voltage
motor power stages, the schematics for which are located in the Datasheets directory within the
ZIP file for this reference design.

Xilinx SP305 embedded development boards were used as the controllers for the motors.
These boards utilize a Spartan-3 (XC3S1500) FPGA, a stand-alone CAN controller with an SPI
interface, an eight channel stand-alone ADC also with an SPI interface, Ethernet and RS232
communication interfaces, an abundance of IO, static and dynamic memory systems available
for use by the FPGA, and more.

Figure 3 depicts a high-level overview of the reference design.

Figure 2: Windows Based Graphical User Interface

Product Not Recommended for New Designs

http://www.xilinx.com
http://www.mcg-net.com
http://www.orientalmotor.com
http://www.agilent.com
http://irf.com
http://www.xilinx.com/spartan3
http://www.freescale.com/
http://www.freescale.com/

EDK Reference System

XAPP808 (v1.0) September 16, 2005 www.xilinx.com 3

R

EDK Reference
System

The Embedded Development Kit (EDK) Reference System can be found in the ZIP file under
the Designs/SP305_RevB directory. The figure below depicts the IP instantiated within the
FPGA for this design.

In this reference design the motor controller application is stored in the Flash memory on the
SP305 embedded development board. Once the FPGA is configured, a small boot loader
application located within the Block RAM is executed; this application copies the main
application code from the Flash to SRAM before executing it. The EDK reference system
contains both the motor controller application and the boot loader.

Figure 3: High-Level System Overview

BLDC
Motor

RS232 To Host

SP305 Isolation

SP305 Isolation

Power
Stage

BLDC
Motor

AC
Induction

Motor

Power
Stage

QEI Feedback

QEI Feedback

Hall Sensor Feedback

CAN
Bus

xapp408_03

Figure 4: EDK Reference Design Block Diagram

MicroBlaze

BRAM

EMC

GPIO

2xSPI

INTC

UART

BLDC Motor
Controller

Hall
Decoder

CAN

FLASH

SRAM

AC Induction
 Motor Controller

FPU

xapp408_04

O
PB

FPGA

Product Not Recommended for New Designs

http://www.xilinx.com
http://www.xilinx.com/edk
http://www.xilinx.com/edk

4 www.xilinx.com XAPP808 (v1.0) September 16, 2005

Software Memory Map
R

Software
Memory Map

Table 1 lists the memory ranges utilized by the IP instantiated for the reference design. Refer to
the IP modules’ product specifications’ for detailed software register descriptions, and
XAPP448 for detailed information relating to PWM and sine wave generation methods.

Boot Loader The source code for the boot loader is located in the Designs/code/bootloader_0 directory of
the reference design zip file. This is the standard boot loader generated by the EDK; it should
be used as the initial image in the Block RAM that MicroBlaze uses to boot from. Its purpose is
to read the application image programmed into the Flash memory on the development board
and transfer it to SRAM. When the transfer is complete, execution is passed to the image in
SRAM.

This boot procedure is used for two reasons; first, the main application image is too large to fit
into the Block RAM on the FPGA device; second, Flash access is typically slower than SRAM
access; therefore, in order to speedup the overall execution speed of the application, the
application image is copied from Flash to SRAM before it is executed.

Motor
Controller
Application
Code

The motor controller application source code is located in the Designs/code/motor_controller
directory of the reference design Zip file. When the application code runs, one of the first things
it does is to read the “DIP Switches” to determine the desired configuration of the motor
controller.

If configured to control an AC induction motor, the application generates 90° of a sine wave and
stores it into the space allocated for the induction motor sine table (see the “Software Memory
Map” section) before going on to initializing the Motor Controller, SPI, CAN, UART interfaces
(see Figure 5). The application is entirely interrupt driven, meaning that once the system
initialization is complete, the main() function does nothing more than flash an LED as an
indication that the application is running.

Table 1: Software Memory Map

Address Range Utilization

0x81002000 - 0x81003fff Induction Motor Sine Table
0x81000c00 - 0x81000cff Induction Motor Controller
0x81000b00 - 0x81000bff BLDC Motor Controller
0x81000a00 - 0x81000aff Interrupt Controller
0x81000900 - 0x810009ff SPI_1
0x81000800 - 0x810008ff SPI_0
0x81000600 - 0x810007ff GPIO_2
0x81000400 - 0x810005ff GPIO_1
0x81000200 - 0x810003ff GPIO_0
0x81000000 - 0x810000ff UART
0x80800000 - 0x80ffffff Flash
0x80000000 - 0x000fffff SRAM
0x00000000 - 0x00003fff Block RAM

Product Not Recommended for New Designs

http://www.xilinx.com
http://www.xilinx.com/edk
http://www.xilinx.com/microblaze

Motor Controller Application Code

XAPP808 (v1.0) September 16, 2005 www.xilinx.com 5

R

The motor controller IP contains a Speed Unit that is configured to generate a processor
interrupt every 10ms. The idea behind the speed unit is to count the number of optical shaft
encoder lines within a fixed period of time, which in this case is 10ms. Given that the total
number of lines on the shaft encoder is known to be 2000, and the sample period is fixed at
10ms, the rotational speed of the motor can be calculated. The state of LED1 is toggled each
time a Speed Unit interrupt is detected when the motor is enabled, when the motor is disabled,
LED1 is turned off.

Figure 5: Initialization Sequence Flow Chart

Generate 90°
of Sine

Short
Delay

Initialize AC
Induction Motor

Controller

Read DIP
Switch Settings

Set Motor
A/B ID

Start

AC
Induction

Configuration?

Initialize
SPI/CAN/UART

Turn on
LED0

Initialize BDLC
Induction Motor

Controller

YesNo

Short
Delay

Turn off
LED0

xapp408_05

Product Not Recommended for New Designs

http://www.xilinx.com

6 www.xilinx.com XAPP808 (v1.0) September 16, 2005

Motor Controller Application Code
R

Every time a communication message is received via the CAN or RS232 communication
interfaces a message processing function is called to determine what to do with the received
message. The flow chart for this message processing function is shown below in Figure 7.

Figure 6: Speed Unit Interrupt Flow Chart

Turn LED1
Off

Get Saved
Position Info

Yes

No

Yes

Toggle
State of LED1

End

Is the
Motor

Enabled?

Transmit Motor
Speed and

Voltage to Host

Update Motor
Speed and

Voltage

Send Position
Info to other

Board

Perform PID
Calculations

Calculate
Current RPM

Speed Unit
Interrupt

Speed
Mode

Enabled?

Speed
Mode

Enabled?

Is this
the AC Motor?

Yes
Yes

No

NoNo

xapp408_06

Product Not Recommended for New Designs

http://www.xilinx.com

Motor Controller Application Code

XAPP808 (v1.0) September 16, 2005 www.xilinx.com 7

R

Figure 7: Message Processing Flow Chart (Part 1)

Send Message
to Host

No

No

Yes

Yes

Message
is for
Host?

Yes

Yes

Yes

Send Message
to Other Board

Decode the
Message

GotMessage
|=4

Message
is for this
Board?

No

Is this a
PI Message?

Is this a
DR Message?

Is this an
S Message?

Send
ACK

Decode the
Message

GotMessage
|=1

Send
ACK

Decode the
Message

GotMessage
|=2

Send
ACK

No

No

A

B

End

Message
Processing

xapp408_07_01

Product Not Recommended for New Designs

http://www.xilinx.com

8 www.xilinx.com XAPP808 (v1.0) September 16, 2005

Motor Controller Application Code
R

Figure 8: Message Processing Flow Chart (Part 2)

No

No

Is this a
Stop

Message?

Yes

Yes

Yes Decode
Message

Save Position
Info

Speed
Mode

Message?

No

Position
Mode

Message?

Position
from other

Board?

Send
ACK

Yes

Disable
Motor

GotMessage
=0

Send
ACK

gotMessage
=0

Disable
Motor

Set Position
Mode

Send
ACK No

A B

xapp408_07_02

C

gotMessage
=0

Disable
Motor

Set Speed
Mode

Product Not Recommended for New Designs

http://www.xilinx.com

Communication

XAPP808 (v1.0) September 16, 2005 www.xilinx.com 9

R

Communication The following paragraphs describe the protocol used to communicate between the motor
controllers and the host computer. Table 2 shows the configuration of the RS232 line
characteristics.

Communication Protocol

The communication protocol used is a simple ASCII based protocol which communicates over
a CAN bus. This protocol is used by the system in both board-to-board, and also board-to-
computer (PC host).

Because this protocol is used over a CAN bus the amount of data that a single message can
contain is limited to eight bytes. See Figure 10 for the exact format of the communication
packets.

Figure 9: Message Processing Flow Chart (Part 3)

No

No No

Position
Mode

Enabled?

Is This
the AC
Motor?

Yes

YesYes

C

xapp408_07_03

gotMessage
=0

gotMessage
=7

Enable
Motor

End

Table 2: UART Line Characteristics

Parameter Value

Baud 115200bps

Parity None

Data Bits 8

Stop Bits 1

Flow Control None

Product Not Recommended for New Designs

http://www.xilinx.com

10 www.xilinx.com XAPP808 (v1.0) September 16, 2005

Communication
R

Each message begins with an ASCII ‘t’ followed by 3 ASCII hex digits that represent the
message ID. Next, a single ASCII digit in the range of ‘0’ – ‘8’ that represents the number of
data bytes to follow, note that this is the number of BYTES, not the number of ASCII characters
in the data; each BYTE requires two ASCII digits. Up to 16 ASCII hex digits follow representing
the message data followed by the end of message delimiter ‘\r’ (0x0a). A typical message is
represented below.

t100812efe57300000080\r

PI Message

This message is sent from the controlling computer to the motor controllers and contains
Proportional and Integral values used in the PID control loop. This message is formatted as
follows.

tiii8PPPPPPPPIIIIIIII\r

iii – Message ID

100 – PI Message for Motor-A

200 – PI Message for Motor-B

PPPPPPPP – Proportional Gain Value

32 bits representing a single precision floating point value

IIIIIIII – Integral Gain Value

32 bits representing a single precision floating point value

When successfully received the motor controllers will respond with a PI-ACK message,
formatted as follows.

t3020\r – Motor-A PI-ACK

t3040\r – Motor-B PI-ACK

DR Message

This message is sent from the controlling computer to the motor controllers and contains the
Derivative value used for the PID control loop, and the speed (in RPM) of the motors. This
message is formatted as follows.

tiii8DDDDDDDDRRRRRRRR\r

iii – Message ID

101 – DR Message for Motor-A

201 – DR Message for Motor-B

DDDDDDDD – Derivative Gain Value

32 bits representing a single precision floating point value

RRRRRRRR – Motor Speed in RPM

Figure 10: Communication Protocol Format

t iii n xxxxxxxxxxxxxxxx \r

Start of Packet
Message ID

No. of Data Bytes

End of Packet
Data Bytes

xapp408_10

Product Not Recommended for New Designs

http://www.xilinx.com

Communication

XAPP808 (v1.0) September 16, 2005 www.xilinx.com 11

R

32-bit unsigned value representing the speed of the motors in RPM

When successfully received, the motor controllers will respond with a DR-ACK message,
formatted as follows.

t3030\r – Motor-A DR-ACK

t3050\r – Motor-B DR-ACK

S Message

This message is sent from the controlling computer to the motor controllers and contains the
time in ms used to sample the motor speed. This message is formatted as follows.

tiii4SSSSSSSS\r

iii – Message ID

102 – S Message for Motor-A

202 – S Message for Motor-B

SSSSSSSS – Motor Speed Sample Time (ms)

32-bit unsigned value representing the motor speed sample time in ms

When successfully received, the motor controllers will respond with a S-ACK message,
formatted as follows.

t3060\r – Motor-A S-ACK

t3070\r – Motor-B S-ACK

Start Message

There is no specific start message; the motors are started by sending a “PI Message” followed
by a “DR Message”, followed by an “S Message”.

Stop Message

This message is send from the controlling computer to the motor controllers to stop the motors.
This message is formatted as follows.

tiii0\r

iii – Message ID

104 – Stop Message for Motor-A

204 – Stop Message for Motor-B

When successfully received, the motor controllers will respond with a Stop-ACK message,
formatted as follows.

t3090\r – Motor-A Stop-ACK

t30b0\r – Motor-B Stop-ACK

Speed Mode Message

This message is sent from the controlling computer to the motor controllers to switch their
operational mode to maintaining a constant speed. The message is formatted as follows.

tiii0\r

iii – Message ID

105 – Speed Mode Message for Motor-A

205 – Speed Mode Message for Motor-B

Product Not Recommended for New Designs

http://www.xilinx.com

12 www.xilinx.com XAPP808 (v1.0) September 16, 2005

Physical Connections
R

When successfully received, the motor controllers will respond with a Speed-ACK message,
formatted as follows.

t30c0\r – Motor-A Stop-ACK

t30d0\r – Motor-B Stop-ACK

Position Mode Message

This message is sent from the controlling computer to the motor controllers to switch their
operational mode to maintaining a specific position. The message is formatted as follows.

tiii0\r

iii – Message ID

106 – Speed Mode Message for Motor-A

206 – Speed Mode Message for Motor-B

When successfully received, the motor controllers will respond with a Position-ACK message,
formatted as follows.

t30e0\r – Motor-A Stop-ACK

t30f0\r – Motor-B Stop-ACK

Physical
Connections

The following sections describe the physical connections required by this reference design.

RS232 Communications

A NULL modem cable should be connected between the UART Host port (P3) on the
development board configured to be the AC induction motor controller and the host computer.
The AC induction motor controller board acts as a CAN/RS232 converter, receiving messages
from the UART and transmitting them on the CAN bus and receiving messages from the CAN
bus and transmitting them via the UART. The development board configured to be the BLDC
motor controller does not perform this operation.

CAN Bus

Create a CAN bus between the two SP305 embedded development boards by connecting J15
from one board to J15 on the other board using twisted pair cabling. Ensure the jumpers listed
in Table 3 are installed to enable the CAN bus termination, external CAN MAC and CAN PHY.

Table 3: CAN Bus Jumper Settings

Jumper Description Connection

J23 120Ω CAN bus termination 1-2 (enabled)

J16 CAN Phy enable 1-2 (enabled)

J27 CAN MAC Clock select
2-3 (external 16MHz
oscillator)

J35 CAN_TXCAN_MAC
1-2 (connect to
CAN_TXCAN)

J36 CAN_RXCAN_MAC
1-2 (connect to
CAN_RXCAN)

Product Not Recommended for New Designs

http://www.xilinx.com

Physical Connections

XAPP808 (v1.0) September 16, 2005 www.xilinx.com 13

R

Isolation Cards

Connect the two female 96-pin connectors on the isolation cards to the two male 96-pin
connectors on the SP305 embedded development boards so that the isolation card lays across
the SP305 (see Figure 11).

The isolation cards are powered from the SP305 and the motor power stages; no additional
power source is required and no jumpers need to be fitted to the isolation cards.

Power Stages

For the BLDC motor controller, connect J1 on the BLDC power stage to H3 on the isolation card
using a 40-pin ribbon cable. For the AC induction motor controller, connect J3 on the AC
induction power stage to H4 on the isolation card using a 24-pin ribbon cable. It is vital when
connecting the AC induction power stage that pin 1 on the isolation card is connected to pin 1
on the power stage, the power stage connector is a single row of 12 pins whilst the connector
on the isolation card is two rows of 12 pins.

Shaft Encoders

Table 4 should be referenced when connecting both the BLDC and AC induction motor shaft
encoders to their respective isolation cards.

BLDC Hall Effect Sensors

Table 5 should be referenced when connecting the Hall effect sensors of the BLDC motor to the
isolation card.

Figure 11: Isolation Card Connection

Table 4: Shaft Encoder Connections

Isolation Card Connector

AC Induction (H5)
Pin Number

BLDC (H9) Pin
Number

Shaft Encoder Pin
Number

Signal Name

1 1 4 +5V

2 2 1 GND

3 3 3 Ch A

4 4 5 Ch B

5 5 2 Ch I

Isolation Card

SP305
LCD

2 x 96 - Pin
Connectors

xapp408_06

Product Not Recommended for New Designs

http://www.xilinx.com

14 www.xilinx.com XAPP808 (v1.0) September 16, 2005

Host Based GUI
R

Motor Power

Connect phase A, B, and C of the BLDC motor to the appropriate phase connections (J2) on
BLDC power stage, and likewise with J4 on the AC induction motor power stage for the AC
induction motor, to reduce the risk of electric shock, the case of the AC induction motor should
be connected to an earth ground. For more information with regard to the motor power stage
connections refer to the power stage documentation located in the Datasheets directory of the
ZIP file for this reference design.

DIP Switches

Two switches on SW1 are used configure the motor control software running on the MicroBlaze
processor. The DIP switch settings are described in Table 6.

Host Based GUI Source code for the Windows based GUI used to control and monitor the motion of the motors
is located under the Visual Studio Projects/Motor Controller directory of the ZIP file for this
reference design. A pre-build version is located in the Bin directory of the reference design ZIP
file.

To change the serial communications port used by the application select Communication ->
Serial Setup…, the Serial Setup dialog will be displayed, enter the name of the communications
port that the application should use in the format comX, where X is the number of the
communication port to be used. After changing the application’s communication port the
application should be re-started.

The reference system has three main modes of operation selectable from the Mode pull-down
menu on the GUI; these modes are described below.

Table 5: Hall Sensor Connections

Isolation Card (H6) Pin # Motor Signal

1 +5V

2 GND

3 Hall A

4 Hall B

5 Hall C

Table 6: DIP Switch Settings

DIP Switch State Description

SW1-1 OFF Represents Motor A on the
Motor Controller GUI

ON Represents Motor B on the
Motor Controller GUI

SW1-2 OFF Controller controlling AC
induction motor

ON Controller controlling BLDC
motor

Product Not Recommended for New Designs

http://www.xilinx.com

Conclusion

XAPP808 (v1.0) September 16, 2005 www.xilinx.com 15

R

Speed

When the Speed option is selected from the Mode pull-down menu within the GUI the motor
control parameters are used to maintain the speed of the motors. This is the default operation
mode when the Motor Controller application is started.

After setting appropriate PID control loop, speed, and sample time values, click the Start button
to start the motors; to stop the motors, click the Stop button. The Reset button should be used
to reset the motor’s parameters to the application starting values, these values are saved when
the application is terminated and re-loaded when the application is started. The Set button
should be used to change the motor control parameters without having to stop and re-start the
motor.

Position

When the Position option is selected from the Mode pull-down menu the AC induction motor
does not turn. The optical shaft encoder attached to the AC induction motor is used to send
position information to the BLDC motor controller which in turn uses the PID control loop
parameters to try to keep the position of the BLDC in sync with the position of the AC induction
motor.

The BLDC motor will not begin to track the movements of the AC induction motor until the Start
button for the BLDC motor is clicked.

Auto

Auto mode is used to demonstrate the design without user intervention. After random periods
of time, random speed information is sent to each motor.

Conclusion This document has detailed the design of the FPGA Motor Control Reference Design. Though
this design has been extensively verified in simulations, Xilinx assumes no responsibility for the
accuracy or the functionality of this design.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

9/16/05 1.0 Initial Xilinx release.

Product Not Recommended for New Designs

http://www.xilinx.com

	FPGA Motor Control Reference Design
	Summary
	Functional Overview
	Hardware Overview
	EDK Reference System
	Software Memory Map
	Boot Loader
	Motor Controller Application Code
	Communication
	Communication Protocol
	PI Message
	DR Message
	S Message
	Start Message
	Stop Message
	Speed Mode Message
	Position Mode Message

	Physical Connections
	RS232 Communications
	CAN Bus
	Isolation Cards
	Power Stages
	Shaft Encoders
	BLDC Hall Effect Sensors
	Motor Power
	DIP Switches

	Host Based GUI
	Speed
	Position
	Auto

	Conclusion
	Revision History

