
XAPP873 (v1.2) June 15, 2010 www.xilinx.com 1

© Copyright 2008–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. All other trademarks are the property of their respective owners.

Summary This application note describes how to interface a Fujitsu MB86064 digital-to-analog
converter (DAC) with parallel low-voltage differential signaling (LVDS) inputs to a
Virtex®-5 FPGA utilizing the dedicated I/O functions of the FPGA family. The application note
and reference design also illustrate a basic LVDS interface for connecting to any DAC converter
with high-speed parallel interfaces.

Introduction This application note provides a solution for a Virtex-5 FPGA interface and a high-speed
MB86064 or MB86065 DAC from Fujitsu. The implementation is demonstrated in hardware
using the DK86065-2 Fujitsu development kit and the Xilinx® ML550 and ML555 demonstration
boards. Fujitsu has developed a passive interface adapter module for this purpose.

Three implementations are described in this application note. All make use of the OSERDES
I/O features of the Virtex-5 FPGA. The reference applications can be extended in resolution
width and speed and can thus be used in a wide range of applications. At the same time, this
application note and reference design describe techniques that can be used to interface the
Virtex-5 FPGA to other types of DAC components.

The Fujitsu MB86065 is a 14-bit, 1+ Gigasamples per second (GSPS) digital-to-analog
converter that is backward compatible with the MB86064. Data input to the DAC is done via
high-speed LVDS ports. The port operates in double data rate (DDR) mode with data registered
on both rising and falling edges. Alternatively, the device can be configured as a multiplexed
dual-port single DAC. To simplify system integration, the DAC is clocked at half the DAC
conversion rate. These DACs have a wide application range:

• Multi-carrier, multi-standard cellular infrastructure

• Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access
(W-CDMA), Global System for Mobile Communication (GSM), Enhanced Data rates for
GSM Evolution (EDGE), and Universal Mobile Telecommunications System (UMTS)

• Wideband communications systems

• High sample rate direct-IF architectures

• Arbitrary waveform generation

• Test equipment

• Radar, video, and display systems

DAC LVDS
Interface

The DAC has two LVDS clock outputs: CLK1_OUT and CLK2_OUT. Two clocks are provided to
enable synchronization between different data devices. For the interface of the Virtex-5 FPGA,
only one clock is needed. These two clock outputs can be configured (using division factor or
delay setting) by a Fujitsu serial control interface.

The DAC has two 14-bit LVDS data input buses. Each input bus has on-chip 100Ω termination
resistors to simplify PCB design and reduce the number of external components needed. The
DAC LVDS inputs require 14-bit unsigned binary data with bit 14 as the MSB. Data presented
to the DAC is shown in Figure 1.

Application Note: Virtex-5 FPGAs

XAPP873 (v1.2) June 15, 2010

Virtex-5 FPGA Interface for Fujitsu
Digital-to-Analog Converters with LVDS Inputs
Author: Marc Defossez

R

http://www.xilinx.com

I/O Architecture of Virtex-5 FPGA

XAPP873 (v1.2) June 15, 2010 www.xilinx.com 2

R

To help achieve the timing requirements of the DAC, a set of adjustable loop clock pass-through
buffers is implemented in the DAC. These clock feedback buffers have the same characteristics
as the data input buffers and are used to aid a digital clock manager (DCM) or phase-locked
loop (PLL) in the FPGA, aligning the clock edge and the data for the DAC up to the LVDS input
buffers of the DAC. Figure 2 shows a basic data, clock, and clock feedback setup.

A Fujitsu proprietary serial control interface (SCI) can be used to change the different settings
for the clock, data, and loopback interface. This SCI is not discussed in this document. An
implementation of this protocol is similar to a system packet interface (SPI) implementation and
can be done using a PicoBlaze™ processor in the FPGA.

I/O Architecture
of Virtex-5
FPGA

I/O Block

The I/O block (IOB) in the Virtex-5 FPGA contains only input and output buffers, as shown in
section A of Figure 3. Two IOB blocks can be paired to form a differential I/O, as shown in
section B of Figure 3. When the input buffer of a clock-capable I/O is used as a clock input, a
direct route passes the clock to the I/O clock buffer (BUFIO) and the regional clock buffer
(BUFR). The input buffer is used as a source for ILOGIC/ISERDES or passed directly to the
FPGA logic grid. The output buffer can have a connection from OLOGIC/OSERDES or logic
grid. An optional inverter can be programmed in the input path of the IOB. The output buffer can
be put into a high-Z state, and two coupled output buffers can function as a differential output
pair.

X-Ref Target - Figure 1

Figure 1: Odd and Even Data Sampling

X-Ref Target - Figure 2

Figure 2: Basic Data, Clock, and Clock Feedback Setup

Clock Output

Data Port A

Data Port B

Dn Dn+1 Dn+2 Dn+3

ODD EVEN ODD EVEN

X873_01_021308

X873_02_021308

Clock In

+

FPGA

Feedback
Loop

Loop
Back

Clock
Ctrl

DAC

DCM/PLL
Clock Out

Data[13:0]

http://www.xilinx.com

I/O Architecture of Virtex-5 FPGA

XAPP873 (v1.2) June 15, 2010 www.xilinx.com 3

R

Figure 4 shows the setup of a differential I/O pair with IODELAY, ISERDES, and OSERDES. In
this application note, the OSERDES block is used to shift data at high speed towards the DAC
while the logic of the FPGA runs at a slower speed.

X-Ref Target - Figure 3

Figure 3: Virtex-5 FPGA IOB

X-Ref Target - Figure 4

Figure 4: Virtex-5 FPGA I/O Structure

X873_03_021308

T

I

O

IBUF

OBUF
OBUFT

A

 T

I

O

T

I

O

B

IBUFDS
IBUFDS_DIFF_OUT

OBUFDS

X873_04_021308

IODELAY

OLOGIC
OSERDES

ILOGIC
ISERDES

IOB

IOB

R
ou

tin
g

C
on

ne
ct

io
ns

M
ad

e
by

 IS
E

 S
of

tw
ar

e

http://www.xilinx.com

I/O Architecture of Virtex-5 FPGA

XAPP873 (v1.2) June 15, 2010 www.xilinx.com 4

R

OSERDES and IODELAY

OSERDES loads parallel data at the rising edge of CLKDIV and transmits this data serially to
the IOB output buffer at CLK rate. CLK and CLKDIV are related by the input width and use
mode of OSERDES. OSERDES can be set up as a:

• Master or master-slave

• 4-, 6-, 8-, or 10-bit input in DDR mode

• 8- and 10-bit inputs are only available in master-slave configuration

• 2-, 3-, 4-, 5-, 6-, 7-, or 8-bit input in single data rate (SDR) mode

• High-Z state-capable output buffer (OBUF)

For the DAC interface, the OSERDES is used in master-slave, 8-bit DDR mode. The CLKDIV
rate must be set to be one-fourth of the CLK rate. When using the OSERDES, these points
should be taken into consideration:

• The OCE input of OSERDES is not a CE pin for the data inputs of OSERDES. The OCE
pin acts at the serial shift output side of OSERDES.

• After releasing the OSERDES reset, nothing happens until the first rising CLKDIV edge. At
the moment that data on pins D1 to D6 is loaded into OSERDES, a controller is started to
shift data out of OSERDES.

• Because the controller starts when new data is loaded in the parallel registers, it takes a
few CLK cycles before data first appears at the output of the OSERDES. For example, in
an OSERDES in DDR, 8-bit mode (master-slave configuration), after releasing reset and
loading data into OSERDES on the rising CLKDIV edge, it takes four CLK cycles before
data appears at the OSERDES output. It takes four CLK cycles because eight bits are
loaded into OSERDES and the controller first shifts the eight previous bits, which are all 0,
out of OSERDES at CLK DDR rate.

• Upon the first load after reset, data is shifted in regular patterns.

• When started, the OSERDES controller always flushes out the same number of bits that
are used by or programmed into OSERDES before loading new data from the input
register.

• New data can always be loaded in OSERDES. The controller in OSERDES first completes
the shift operation of the data in the serializer and then loads new data into the serializer
from the input register. For example, a clock can easily be generated in this manner:

• The OSERDES input is tied to fixed values that match the way the clock cycle looks.

• One rising CLKDIV edge is applied to OSERDES.

• The data is loaded into OSERDES.

• The first time after reset, OSERDES flushes its serial register. From then on, the
loaded pattern is shifted out. Because no new data is loaded into OSERDES, the old
data is taken again to get shifted out, thus generating a clock pattern.

OSERDES can be used in combination with the IODELAY configured as ODELAY. The delay
between the OSERDES output and the FPGA output (die pad or package ball) can be statically
configured. Figure 5 shows an OSERDES-IODELAY combination with available FPGA routing.
In this figure, PiP stands for Programmable Interconnect Point.

http://www.xilinx.com

FPGA Interface

XAPP873 (v1.2) June 15, 2010 www.xilinx.com 5

R

The bold OSERDES settings in Figure 5 are used in this application note. For a complete
description of OSERDES, refer to the Virtex-5 FPGA User Guide [Ref 1].

FPGA Interface This section describes the reference design implementation of the DAC interface.

Clock Generation and Feedback

Nearly all DAC devices deliver a clock to the interfacing component. The data produced by the
interfacing component (an FPGA) must be presented to the DAC in relationship to this clock.
The most commonly used DAC connections in relationship to the DAC input clock are:

• The DAC supplies a clock to the interfacing FPGA and requires data at its input pins 90°
phase shifted to or in phase with this clock.

• The DAC supplies a clock and requires a clock and data from the interfacing FPGA. Clock
and data must be presented at the device input pins in phase or shifted by 90°.

• The DAC supplies a clock and only requires data. The DAC contains a delay-locked loop
(DLL) or PLL and a FIFO to capture and align data.

The MB6806x DAC device delivers a high-speed clock to the FPGA. This requires the data
from the FPGA to be delivered to the DAC pins 90° phase shifted to the supplied clock. The

X-Ref Target - Figure 5

Figure 5: Virtex-5 FPGA OSERDES-IODELAY Combination

X873_05_042508

IntC lk

IntC lk D iv

TQ

SHIFTIN1 SHIFTIN2

SHIFTOUT1 SHIFTOUT2

OCE

CLK

CLKDIV

REV
SR

D1

D6
D5
D4
D3
D2

OQ

IDATAIN

C

DATAOUT
DATAIN

ODATAIN

CE
INC
RST T

To Routing
Multiplexer

in the
FPGA

PiP

PiP PiP

To IOB.T

To IOB.I

OSERDES

IODELAY

DELAY SRC

HIGH_PERFORMANCE_MODE

IDELAY_TYPE

IDELAY_VALUE

ODELAY_VALUE

REFCLK_FREQUENCY

SIGNAL_PATTERN

DATA_RATE_OQ

DATA_RATE_TQ

DATA_WIDTH

TRISTATE_WIDTH

INIT_OQ

INIT_TQ

SRVAL_OQ

SRVAL_TQ

SERDES_MODE

=> “I”

=> TRUE

=> “FIXED”, “VARIABLE”

=> 0 TO 63

=> 0 TO 63

=> 200.0,0

=> “CLOCK”, “DATA”

=> “SDR”/“DDR”

=> “BUF”/“SDR”/“DDR”

=> 2, 3, 4, 5, 6, 7, 8, and 10

=> 1 or 4

=> ‘0’/‘1’

=> ‘0’/‘1’

=> ‘0’/‘1’

=> ‘0’/‘1’

=> “MASTER”/“SLAVE”

http://www.xilinx.com

FPGA Interface

XAPP873 (v1.2) June 15, 2010 www.xilinx.com 6

R

clock is used in the DAC to capture the supplied data. The FPGA device has some features that
enable it to achieve the clock-data relation requirement. The PLL or DCM in the FPGA is tuned
using a feedback delay loop reaching into the DAC, allowing easier clock-data alignment.

The clock delivered by the DAC is a high-speed clock at half the sample frequency of the DAC.
For the reference design and DAC discussed in this application note, the clock has a frequency
rate up to 700 MHz. The interface design in the FPGA does not function at this speed but at a
divided version of the clock. The high-speed clock is only used to shift the data out to the DAC.
Shifting the data out to the DAC means that the OSERDES components in the FPGA are used.
The divided clock is a function of the number of bits used for OSERDES.

This setup requires the clock to be fed into the FPGA through a global clock input and handled
by a DCM or PLL. A DCM or PLL provide a fully digital, dedicated, on-chip clock deskew. The
deskew feature provides zero propagation delay between the source and output clocks, low
clock skew among output clock signals distributed throughout the device, and advanced clock
domain control. For the DAC application, this deskew is not sufficient because the data must be
delivered to the DAC with a known phase relationship to the incoming clock supplied by the
DAC. To do this, the feedback path of the DCM or PLL must be taken off-chip, put onto the PCB,
and returned to the DCM or PLL feedback pin. The FPGA design now complies with the
requirements for the DAC.

Varying only the PCB routing requires the feedback trace to be well matched to the distance
between the FPGA and the DAC. Referring to Figure 6, the feedback path on the PCB
(“Length B”) must be twice as long as the datapaths between the FPGA and the DAC
(“Length A”). It becomes increasingly difficult to maintain valid clock-to-data timing at higher
clock rates. Even small mismatches in PCB routing, tolerances over device-to-device
variations, and compensation for temperature and stress can require a respin of the PCB or an
FPGA-implemented solution.

The MB8606x DAC minimizes these potential problems by an on-chip programmable clock
loopback circuit. This circuit comprises a differential input buffer, configurable delay element,
and differential output buffer. This DAC feature provides the DCM/PLL and interface circuit a
means for adjustment of the clock-data relationship. Matching the feedback PCB traces is still
a requirement but the pass-through loopback circuit of the DAC can compensate for device
process variations and temperature. The loopback delay in the DAC can be adjusted in real
time by use of the serial control interface. Figure 2 shows the basic FPGA setup using the
loopback delay in the DAC.

X-Ref Target - Figure 6

Figure 6: PCB Clock Feedback Path

X873_06_042610

Clock In

+

FPGA

Feedback
Loop

Clock
Ctrl

DAC

DCM/PLL
Clock Out

Data[13:0]

B

A

2 x Length A = Length B

http://www.xilinx.com

FPGA Interface

XAPP873 (v1.2) June 15, 2010 www.xilinx.com 7

R

A DCM can be used when the input clock frequency from the DAC is less than or equal to
500 MHz. A PLL can be used when the input clock frequency is greater than 550 MHz and less
than 700 MHz. When OSERDES are used in master-slave, 8-bit, DDR mode, the clock for the
interface logic must run at one-fourth of the input clock rate. For example:

• DAC performance = 1.2 GSPS.

• Input clock = 600 MHz. In this case, a PLL is needed.

• PLL output (CLK) = 600 MHz (OSERDES serial output shift clock).

• PLL second output (CLKDIV) = 600 MHz/4 = 150 MHz.

CLK, the clock for the OSERDES serial shift clock input, is routed through a BUFG and the
BUFIO in the I/O bank. This clock is only used for the OSERDES CLK inputs. The divided clock
is routed through a BUFG and then used as the clock for all of the interface logic, including the
parallel load clock of OSERDES.

The feedback clock is generated by an OSERDES, and after routing on the PCB and pass-
through DAC circuit, it is taken back into the FPGA via a global clock input buffer, as shown in
Figure 7. The software is notified of the external feedback loop by the FEEDBACK constraint.
The FEEDBACK constraint syntax is:

NET <feedback_signal> FEEDBACK = <value> ns NET <output_signal>;

Where:

<feedback_signal> is the net that drives the feedback input pin of the DCM/PLL

<output_signal> is the net that drives the output pad

<value> provides the path delay from the output pad to the input pad
X-Ref Target - Figure 7

Figure 7: Clock Generation Using an OSERDES

X873_07_110509

0
1
0
1
0
1
0
1

A Fixed Input Pattern Like 01010101
Or A ROM Can Be Connected Here,
Providing the Ability To Generate
Different Waveforms

To Logic in
This Region

To Other
OSERDES
in This I/O

Bank

To Other
OSERDES
in This I/O

Bank

FDBCK_OUT

BUFG

BUFGIBUFG

IBUFG

CLK_IN

FDBCK_IN

D
C

M
/P

LL

To Logic in
This Region

http://www.xilinx.com

FPGA Interface

XAPP873 (v1.2) June 15, 2010 www.xilinx.com 8

R

Clock Generation Using OSERDES

Using OSERDES to generate a clock signal has these advantages:

• The clock cycle can be fixed or programmable.

• When the clock cycle needs to be fixed, the OSERDES data inputs should be tied to
High or Low values to match the clock cycle. One rising CLKDIV edge is enough to
start the generation of the clock. Refer to “OSERDES and IODELAY,” page 4.

• When the clock cycle needs to be programmable, the OSERDES inputs should be tied
to a ROM and the ROM should be cycled through when new clock formats are
needed.

• The clock output is normally in phase with the data.

• The timing for all OSERDES in an FPGA is equal. When OSERDES are used to
generate data and clock, the outputs of the FPGA swap in phase.

• It is easy to apply a known phase shift to the clock opposed to the data.

• For a fixed clock output, when the 1 and 0 inputs are swapped, the generated clock
phase shifts over 180°.

• When OSERDES is clocked using a phase shifted high-speed clock, it is possible to
phase shift the clock over 90°. The PLL should generate a 90° phase shifted
high-speed clock or the CLK90 output of the DCM should be used. That output should
be used to clock the OSERDES CLK pin.

http://www.xilinx.com

FPGA Interface

XAPP873 (v1.2) June 15, 2010 www.xilinx.com 9

R

Data Outputs

Data for the DAC can be generated in different ways. Three such methods are described here.

Generate Data Using Initialized Block RAM

An initialized block RAM connected to the OSERDES inputs holds the data to be transmitted by
OSERDES. The block RAM used as ROM only needs an address counter for reading of the
data, as shown in Figure 8, and is clocked by the CLKDIV version of the clock.

A disadvantage of this method is that the data stored in the ROM or RAM must be organized in
the same manner as it is to be loaded into OSERDES. If OSERDES is used in 8-bit mode, each
OSERDES on the data bus to the DAC must be loaded eight times the same bit number. This
is shown in Figure 9.

The ROM-based interface provides a simple solution for this high-speed interface. The
reference design provides Excel spreadsheets as aids to block RAM initialization. The
spreadsheets help with:

• Generation of ROM content for use in HDL code initialization

• Generation of .mem files for use with the auto-Data2MEM tool function or user-called
Data2MEM tool

X-Ref Target - Figure 8

Figure 8: ROM or RAM and OSERDES

X873_08_021308

D IB

A D D R B
D IP B

D IB

A D D R B
D IP B

D IB

A D D R B
D IP B

RAMB36

+

ENB

WEB

DOB

CLKB

OPB

Ena

To
 F

ig
ur

e
9

Address
Counter ClkDiv

ClkDiv

AppsClk

BramData[111:96]

BramData[95:64]

BramData[63:32]

BramData[31:0]

DIA

DIPA

ADDRA

ENA

WEA

DOA

CLKA

DOPA

DIB

DIPB

ADDRB

ENB

WEB

DOB

CLKB

DOPB

ENB

WEB

DOB

CLKB

OPB

ENB

WEB

DOB

CLKB

OPB

http://www.xilinx.com

FPGA Interface

XAPP873 (v1.2) June 15, 2010 www.xilinx.com 10

R

ISE® software contains a tool known as Data2MEM that changes block RAM initialization in the
bitstream. Thus, it is not necessary to run the ISE software flow again when block RAM data
has to be changed. In ISE software version 10.1, this Data2MEM functionality can
automatically be used by specifying an initialization file for each block RAM component that is
used.

Another solution for the high-speed interface is that the initialized data of the block RAM (or
ROM) is altered via the second port of the dual-port block RAM by the application.

Design Tip: Not all data bits of the block RAM are used. These bits can be used as address
counters. The method of doing this is demonstrated in the WaveGenerator file contained in the
reference design ZIP file.

When using block RAM as ROM and connecting to 14 OSERDES in 8-bit mode for a 14-bit
resolution DAC, 112 data bits are needed. RAMB36 components of Virtex-5 FPGAs in 32-bit
wide data mode provide 32 data bits (DO) and 4 parity bits (DOP) for a memory address depth
of 1024. 112 data bits means that four block RAM components are needed. The construction
can be set up as:

• Data and parity bits used: For three block RAMs, all data and parity bits are used
(3 x 36 = 108 bits). One block RAM only uses the parity bits (4 bits).

• Only data bits used: For three block RAMs, all data bits are used (3 x 32 = 96 bits). One
block RAM only uses 16 data bits.

In both setups, the remaining data bits can be used as address counter bits in a self-addressing
FIFO scheme as explained in the Self-Addressing FIFO application note [Ref 2]. Using

X-Ref Target - Figure 9

Figure 9: Data Bit Arrangement for OSERDES

X873_09_021308

D8
D7
D6
D5
D4
D3
D2
D1

CLK

OQ

CLKDIV

D8
D7
D6
D5
D4
D3
D2
D1

CLK

OQ

CLKDIV

OSERDES

OSERDES

BramData[111:96]

BramData[95:64]

BramData[63:32]

BramData[31:0]

Fr
om

 F
ig

ur
e

8

BramData(7)
BramData(6)
BramData(5)
BramData(4)
BramData(3)
BramData(2)
BramData(1)
BramData(0)

BramData(111) Bit(13)

Bit(13)
Bit(13)
Bit(13)
Bit(13)
Bit(13)
Bit(13)
Bit(13)

BramData(110)
BramData(109)
BramData(108)
BramData(107)
BramData(106)
BramData(105)
BramData(104)

ClkDiv
Clk

Bit(0)

Bit(0)
Bit(0)
Bit(0)
Bit(0)
Bit(0)
Bit(0)
Bit(0)

ClkDiv
Clk

DacData(0)

DacData(13)

D
ac

D
at

a[
1:

12
]

http://www.xilinx.com

FPGA Interface

XAPP873 (v1.2) June 15, 2010 www.xilinx.com 11

R

OSERDES in 4-bit mode only requires two block RAMs but the application/interface clock
frequency doubles.

A 1.2 GSPS DAC provides a reference clock. This is the OSERDES CLK clock of 600 MHz.
Using OSERDES in 8-bit mode sets CLKDIV to 150 MHz. Using OSERDES in 4-bit mode
requires a CLKDIV of 300 MHz.

Generate Data to Achieve Maximum Performance

To achieve the maximum DAC performance of 1.2 GSPS, the data transmitted to it must be
presented at a 600 MHz DDR clock rate. The high-speed clock for OSERDES is thus 600 MHz.
Using OSERDES in master-slave, 8-bit DDR mode as in the previous ROM-based application,
the parallel clock (CLKDIV) of OSERDES is four times slower than the serial clock or 150 MHz.

For the 14-bit resolution DAC, 14 OSERDES components are needed. With each OSERDES
having eight data inputs, the application must supply 112 bits, as shown in Figure 9. Most
applications run at the resolution of the DAC. This means that the application needs to run eight
processes in parallel. It is possible for the application to run faster than the required 150 MHz
parallel clock. For that purpose, the interface has a small data clock domain crossing buffer, as
shown in Figure 10.

Generate Data from Bus-Oriented Applications

An example of a bus-oriented application is a 32-bit processor design. One 32-bit bus word can
contain two 14-bit DAC words. The data must be presented to the OSERDES as described in
“Generate Data Using Initialized Block RAM,” page 9 and “Generate Data to Achieve Maximum
Performance,” page 11. This is only possible when eight DAC resolution-wide words (eight
words of 14 bits in this example) are registered and then arranged as in Figure 9.

Block RAM or distributed RAM (LUT RAM) can be used to store the bus-oriented data words.
Using block RAM instead of distributed RAM enables the transfer of large amounts of data to
memory. The processor can be used in a “write and forget” manner by writing data in memory

X-Ref Target - Figure 10

Figure 10: Maximum Performance Data Buffer and OSERDES Outputs

X873_10_032508

+AppsBus_7
AppsData[14:0]

AppsAddr[5:0]
AppsClk

AppsBus_0
AppsData[14:0]

AppsAddr[5:0]
AppsClk

RAM64x1D

RAM64x1D

OSERDES

OSERDES

Bit(13)

Bit(0)

D
ac

D
at

a[
1:

12
]

DacData(0)

DacData(13)Bus_7

Bus_0

14

14

ClkDiv
Enable

Address From Address Counter

ClkDiv
Clk

ClkDiv
Clk

OQ

OQ

D[1:8]

CLKDIV

CLK

D[1:8]

CLKDIV

CLK

D

WE

A

WCLK

DPO

DPRA

Data Registering
and Organization

14 Bits of 8 Data Buses
are Registered and Routed

to 13 Buses of 8 Bits

Example:
Bit(5) of Bus_7 –> Bit_7 of OSERDES Bit(5)
Bit(5) of Bus_6 –> Bit_6 of OSERDES Bit(5)
Bit(5) of Bus_5 –> Bit_5 of OSERDES Bit(5)
Bit(5) of Bus_4 –> Bit_4 of OSERDES Bit(5)
Bit(5) of Bus_3 –> Bit_3 of OSERDES Bit(5)
Bit(5) of Bus_2 –> Bit_2 of OSERDES Bit(5)
Bit(5) of Bus_1 –> Bit_1 of OSERDES Bit(5)
Bit(5) of Bus_0 –> Bit_0 of OSERDES Bit(5)

http://www.xilinx.com

FPGA Interface

XAPP873 (v1.2) June 15, 2010 www.xilinx.com 12

R

and continuing with something else until new data is available or until the interface asks for new
data. Data from the application is written in a ping-pong type addressed set of block RAMs.
This setup doubles the depth of the block RAM, as shown in Figure 11. One of the DAC words
(bits [29:16]) enters channel 1 while the other DAC word (bits [13:0]) enters channel 0. The
blocks used for both channels are identical.

Ping-pong addressing means that data on even addresses is written (port_A) in one memory
while data on odd addresses is stored in a second memory. Address bit 0 is the selection bit to
enable the block RAM and the other address bits to form the write address. At the read side
(port_B), data from both memories is handled as independent data and can be read at half the
write clock rate. The write side of the block RAM is clocked at the speed of the processor
application, assuming 200 MHz as an example.

Two write operations result in a double 32-bit (4 x 14 bits) word ready for a read operation. The
read side of the block RAM is clocked at half the rate of the write side (100 MHz) because two
32-bit words are read at once. Two read operations are required to assemble the eight 14-bit
words (112 bits) that need to be loaded into OSERDES. The load of the OSERDES
components thus happens at half the rate of the block RAM read or 50 MHz, as shown in
Figure 10. OSERDES is used in DDR mode, thus the serial shift clock for the OSERDES
components must be four times that of the parallel clock. The serial shift clock is then 200 MHz,
and the data rate at the OSERDES output is 400 Mb/s.

X-Ref Target - Figure 11

Figure 11: Ping-Pong Block RAM Setup

X873_11_040208

[11:1]

[13:0]

[29:16]

ClkDiv

AppsDataIn[31:0]

AppsAddr[11:0]

AppsClk

DIA

ADDRA

ENA

CLKA

DIA

ADDRA

ENA

CLKA

DOB

ADDRB

CLKB

DOB

ADDRB

CLKB

Even Address

Odd Address

Address
CounterBlock RAM

Select

BramDataOut_Even[13:0]

Channel_1

Channel_0

A(0)

BramDataOut_OddL[13:0]

[10:0]

http://www.xilinx.com

PCB Guidelines

XAPP873 (v1.2) June 15, 2010 www.xilinx.com 13

R

PCB Guidelines Component Placement

Different circuit components should be placed as close as possible to each other on the PCB,
aligned according to the pinout of the components. Components should be positioned to
minimize the number of turns, corners, and vias. The flexibility of the FPGA pinout can assist in
optimizing the PCB routing. A straight, short connection improves all possible parameters of a
PCB layout, namely:

• Signal integrity

• Transmission line effects

• Capacitance and inductance

• Operating frequency

Transmission line effects matter when distances between components are lengthy. All
transmission lines should be terminated properly to control reflections. Virtex-5 FPGAs have
I/Os arranged in banks. An I/O bank from the Virtex-5 FPGA accommodates 20 differential I/Os
or 40 single-ended I/Os, as shown in Figure 12. Four differential (eight single-ended) I/Os can
also be used as clock-capable I/O inputs.

Guidelines and Recommendations

The key guidelines for PCB designers are:

• Spend sufficient time when placing components for the layout.

• Keep trace lengths as short as possible.

• Spend time determining the number of PCB layers and how the layer stackup is realized.

• If possible, during PCB layout, keep the length of a track shorter than the travel and
reflection times of the signal on the trace. If this is not possible, take transmission line
theory into account.

• Match the lengths of all differential traces (data and clock).

• When making turns with differential traces, balance the number of left and right turns.
When making a turn with a differential trace, the inner trace becomes shorter than the
outer trace of the pair. When using more turns in one direction, one trace of the differential
pair is longer than the other (without direct correction possibilities).

• Spread traces after routing over the available space of the PCB to minimize crosstalk.

• Do not route traces into 90° or 180° turns. Such turns increase the effective width of the
trace, contributing to parasitic capacitance. At very fast edge rates, these discontinuities
can cause significant signal integrity problems. Instead, use round, circular turns. If this is
not possible, use 45° corners.

• Follow the signal return path guidelines.

• Use guard traces where needed.

X-Ref Target - Figure 12

Figure 12: I/O Bank of Virtex-5 FPGA

 X873_12_021408

IO
_L

0P
_B

an
k#

IO
_L

0N
_B

an
k#

IO
_L

1P
_B

an
k#

IO
_L

1N
_B

an
k#

IO
_L

2P
_B

an
k#

IO
_L

2N
_B

an
k#

IO
_L

3P
_B

an
k#

IO
_L

3N
_B

an
k#

IO
_L

4P
_B

an
k#

IO
_L

4N
_B

an
k#

IO
_L

5P
_B

an
k#

IO
_L

5N
_B

an
k#

IO
_L

6P
_B

an
k#

IO
_L

6N
_B

an
k#

IO
_L

7P
_B

an
k#

IO
_L

7N
_B

an
k#

IO
_L

8P
_B

an
k#

IO
_L

8N
_B

an
k#

IO
_L

9P
_B

an
k#

IO
_L

9N
_B

an
k#

IO
_L

10
P

_B
an

k#

IO
_L

10
N

_B
an

k#

IO
_L

14
N

_B
an

k#

IO
_L

11
P

_B
an

k#

IO
_L

11
N

_B
an

k#

IO
_L

12
P

_B
an

k#

IO
_L

12
N

_B
an

k#

IO
_L

13
P

_B
an

k#

IO
_L

13
N

_B
an

k#

IO
_L

14
P

_B
a n

k#

IO
_L

15
P

_B
an

k#

IO
_L

15
N

_B
an

k#

IO
_L

16
P

_B
an

k#

IO
_L

16
N

_B
an

k#

IO
_L

17
P

_B
an

k#

IO
_L

17
N

_B
an

k#

IO
_L

18
P

_B
an

k#

IO
_L

18
N

_B
an

k#

IO
_L

19
P

_B
an

k#

IO
_L

19
N

_B
an

k#

Clock-Capable I/O
B

U
F

R

B
U

F
IO

B
U

F
IO

B
U

F
IO

B
U

F
IO

B
U

F
R

IDELAYCTRL

IO
_L

8P
_B

an
k#

IO
_L

8N
_B

an
k#

IO
_L

9P
_B

an
k#

IO
_L

9N
_B

an
k#

IO
_L

10
P

_B
an

k#

IO
_L

10
N

_B
an

k#

IO
_L

11
P

_B
an

k#

IO
_L

11
N

_B
an

k#

http://www.xilinx.com

Reference Design

XAPP873 (v1.2) June 15, 2010 www.xilinx.com 14

R

• Remember the importance of ground planes.

• When available, use the thermal pad connection at the bottom side of DAC device
packages to improve the operating stability of the device.

Reference
Design

Reference Design Matrix

Running the Reference Design

Instructions on how to operate the reference design on an ML5xx demonstration board are
given in the readme file provided with the reference design. The Click here and type
Application Note Tile design files can be downloaded from:
https://secure.xilinx.com/webreg/clickthrough.do?cid=109750

Table 1: Reference Design Matrix

Parameter Description

General

Developer Name Xilinx

Target Devices (Stepping Level, ES, Production, Speed Grades) Virtex-5 FPGAs

Source Code Provided? Yes

Source Code Format VHDL

Design Uses Code or IP from Existing Reference Design,
Application Note, 3rd party, or CORE Generator™ Software?

No

Simulation

Functional Simulation Performed? Yes

Timing Simulation Performed? Yes, on separate hierarchical
levels

Testbench Provided for Functional and Timing Simulations? Yes, for simulation of separate
hierarchical levels

Testbench Format VHDL

Simulator Software and Version ModelSim SE 6.2b

SPICE/IBIS Simulations? No

Implementation

Synthesis Software Tools and Version XST 9.2.04

Implementation Software Tools and Version ISE software, version 10.1

Static Timing Analysis Performed? Yes

Hardware Verification

Hardware Verified? Yes

Hardware Platform Used for Verification ML555 and ML550 in
conjunction with a DK86065-2
Fujitsu DAC demonstration
board and a passive
connection board

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=109750

Conclusion

XAPP873 (v1.2) June 15, 2010 www.xilinx.com 15

R

Design Setup

The design directories are set up as shown in Figure 13.

Conclusion Virtex-5 FPGAs provide flexible and versatile platforms for building interfaces to all the latest
available DAC families. The interfaces use specific I/O features of the Virtex-5 FPGA that allow
for the highest speed. The FPGA can make interfaces for older DAC families easily compatible
with the newest ones, providing an easy upgrade path for existing and new designs.

The application design in the FPGA must be developed with the goal of optimum DAC
performance. Parallel computing and pipelining are needed. When the DAC is connected to an
FPGA application using an embedded processor, the speed of the DAC is limited. Design
modifications are thus necessary if high speed is required from a processor-based application,
and possible DAC stall cycles must be accounted for.

X-Ref Target - Figure 13

Figure 13: Design Directory Setup

 X873_13_032508

Simulation .do Compile and Waveform Files

Synthesis Directory
(One synthesis directory per used synthesis tool)

Source Code
Project and Other User Constraint Files

One subdirectory per project.
Each heirarchical level and design has its own
subdirectory, and each subdirectory is treated as
a library in the synthesis tool.
These directories also contain design aids
such as spreadsheets for memory initialization
and extra documentation such as graphical
overviews of the designs.

Project Root Directory

ISE Implementation Directory
(One subdirectory per implemented project.
Each subdirectory has a project directory.)

Simulation Work Directory

http://www.xilinx.com

References

XAPP873 (v1.2) June 15, 2010 www.xilinx.com 16

R

References This application note uses these references:

1. UG190, Virtex-5 FPGA User Guide.

2. XAPP291, Self-Addressing FIFO.

Additional
Resources

These resources provide additional information useful to this application note:

1. Fujitsu MB68064 Data Sheet
http://www.fujitsu.com/downloads/MICRO/fma/pdf/MB86064_ds_1v2.pdf

2. Fujitsu MB68065 Product Flyer
http://www.fujitsu.com/downloads/MICRO/fma/pdf/mb86065_fl_0v1.pdf

3. DS202, Virtex-5 FPGA Data Sheet: DC and Switching Characteristics.

4. UG195, Virtex-5 FPGA Packaging and Pinout Specification.

5. UG203, Virtex-5 FPGA PCB Designer’s Guide.

Revision
History

The following table shows the revision history for this document:

Notice of
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note
is one possible implementation of this feature, application, or standard, and is subject to change without
further notice from Xilinx. You are responsible for obtaining any rights you may require in connection with
your use or implementation of this Application Note. XILINX MAKES NO REPRESENTATIONS OR
WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF
DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

Date Version Description of Revisions

05/06/08 1.0 Initial Xilinx release.

12/07/09 1.1 Confirmed in “OSERDES and IODELAY,” page 4 that the delay between the
OSERDES output and FPGA output can only be statically configured. Added
explanation of PiP before Figure 5, page 5. Removed BUFIO from Figure 7,
page 7.

06/15/10 1.2 In Figure 6 and the paragraph above Figure 6, corrected the relative length
of data to clock feedback PCB paths (Length A and Length B).

http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp291.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds202.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug195.pdf
http://www.fujitsu.com/downloads/MICRO/fma/pdf/MB86064_ds_1v2.pdf
http://www.fujitsu.com/downloads/MICRO/fma/pdf/mb86065_fl_0v1.pdf
http://www.xilinx.com/support/documentation/user_guides/ug203.pdf

	Virtex-5 FPGA Interface for Fujitsu Digital-to-Analog Converters with LVDS Inputs
	Summary
	Introduction
	DAC LVDS Interface
	I/O Architecture of Virtex-5 FPGA
	I/O Block
	OSERDES and IODELAY

	FPGA Interface
	Clock Generation and Feedback
	Clock Generation Using OSERDES
	Data Outputs
	Generate Data Using Initialized Block RAM
	Generate Data to Achieve Maximum Performance
	Generate Data from Bus-Oriented Applications

	PCB Guidelines
	Component Placement
	Guidelines and Recommendations

	Reference Design
	Reference Design Matrix
	Running the Reference Design
	Design Setup

	Conclusion
	References
	Additional Resources
	Revision History
	Notice of Disclaimer

