
XAPP953 (v1.1) September 21, 2006 www.xilinx.com 1

© 2006 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. PowerPC is
a trademark of IBM Inc. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary This application note describes the implementation of a two-dimensional Rank Order filter. The
reference design includes the RTL VHDL implementation of an efficient sorting algorithm. The
design is parameterizable for input/output precision, color standards, filter kernel size,
maximum horizontal resolution, and implementation options. The rank to be selected can be
modified dynamically, and the actual horizontal resolution is picked up automatically from the
input synchronization signals. The design has a fully synchronous interface through the ce, clk,
and rst ports.

Introduction Rank order filtering is a class of operators that use neighborhood pixels to perform
comparisons and ranking. The median filter, a sub-class of the rank order filter [Ref 1][Ref 2]
[Ref 3], sorts the pixels in a region by luminance, finds the median value and replaces the
central pixel with that value. Used to remove noise from images, this operation completely
eliminates extreme values from the image. Rank operations also include the maximum and
minimum operators, which find the brightest or darkest pixels in each neighborhood and place
that value into the central pixel. By loose analogy to the erosion and dilation operations on
binary images, these are sometimes called grey scale erosion and dilation [Ref 4].

One important variable in the use of a rank operator is the size of the neighborhood. Generally,
rectangular (for convenience of computation) or circular (to minimize directional effects) shapes
are used. As the size of the neighborhood is increased, however, the computational effort in
performing the ranking increases rapidly. Also, these ranking operations cannot be easily
programmed into specialized hardware, such as array processors, or programmable DSP
processors [Ref 5][Ref 6][Ref 7][Ref 8].

Rank order filtering or Median filtering is used extensively in smoothing and de-noising
applications for images and video [Ref 9]. It is a cost-effective solution used predominantly in
video pre- and post-processing systems. It is also deployed extensively in real-time vision
systems and automatic target recognition (ATR) systems [Ref 10].

Application Note: Virtex™-5, Virtex-4, Virtex-II Pro, Virtex-II,
Spartan™-3E, Spartan-3

XAPP953 (v1.1) September 21, 2006

Two-Dimensional Rank Order Filter
Author: Gabor Szedo

R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Pinout

XAPP953 (v1.1) September 21, 2006 www.xilinx.com 2

R

Pinout Figure 1 shows the rank_2d symbol. Table 1 provides the symbol pinout and descriptions.

Signal
Descriptions

rst - Synchronous Clear

Pulling rst High results in resetting all internal registers and keeps pix_en_out Low until valid
samples are available on the output channels (cc0_out, cc1_out, and cc2_out). Output
channels (cc0_out, cc1_out, and cc2_out) are not cleared. Previous pixels might appear on the
output; however, these pixels are invalidated by pix_en_out = 0.

Figure 1: rank_2d Symbol

rank2d

cc0_out

hs_out

cc1_out

cc2_out

vs_out
pix_en_out

rank

cc0_in

cc1_in

cc2_in

hs_in
vs_in

pix_en_in

clk
ce
rst

x953_01_082806

Table 1: Symbol Pinout

Port Name Port Width Direction Description

cc0_in DATA_WIDTH_CH0 Input Color Channel input 0 (R for RGB, Y for YUV or YCrCb)

cc1_in DATA_WIDTH_CH1 Input Color Channel input 1 (G for RGB, U for YUV, Cr for YCrCb)

cc2_in DATA_WIDTH_CH2 Input Color Channel input 2 (B for RGB, V for YUV, Cb for YCrCb)

cc0_out DATA_WIDTH_CH0 Output Color Channel output 0 (R for RGB, Y for YUV or YCrCb)

cc1_out DATA_WIDTH_CH1 Output Color Channel output 1 (G for RGB, U for YUV, Cr for YCrCb)

cc2_out DATA_WIDTH_CH2 Output Color Channel output 2 (B for RGB, V for YUV, Cb for YCrCb)

rank log2(WHvirt*WW)1 Input Designates which sample to select from the ordered list

hs_in 1 Input Horizontal Sync input

vs_in 1 Input Vertical Sync input

pix_en_in 1 Input Pixel Enable input

hs_out 1 Output Horizontal Sync output

vs_out 1 Output Vertical Sync output

pix_en_out 1 Output Pixel Enable output

clk 1 input System clock

ce 1 input Clock Enable

rst 1 input Synchronous Clear Input

Notes:
1. WW is the width, WHvirt(7) is the vertical size of the virtual filter kernel. See Figure 6.

http://www.xilinx.com

Signal Descriptions

XAPP953 (v1.1) September 21, 2006 www.xilinx.com 3

R

ce - Clock Enable

Pulling ce Low suspends all operations of the design. Input signals are not sampled, except for
reset (rst takes precedence over ce).

cc0_in, cc1_in, cc2_in - Data inputs

Input pixels are presented to the reference design through the color channel inputs (cc0_in,
cc1_in, cc2_in). The reference design caters to RGB, YUV, and YCrCb color representations.
The width of channel inputs should be positive (non-zero) integers. For RGB representation,
connect channel R to cc0_in, channel G to cc1_in, and channel B to cc2_in. For YUV or YCrCb
signals connect channel Y to cc0_in, U or Cr to cc1_in, V or Cb to cc2_in.

pix_en_in - Pixel Enable Input

Input pixels are validated by pix_en_in. When pix_en_in is Low and ce is High, the sorting core
of the filter keeps working. However, no new pixels are latched into the line buffer. Pix_en_in
basically facilitates working with a core clock rate higher than of the pixel clock rate, as the filter
core might need multiple clock cycles to process input pixels. The duty cycle of pix_en_in has
to be set so the filter core has sufficient extra cycles to perform sorting.

hs_in - Horizontal Sync Input

A strobe on this input signals the beginning of a new line. As the two-dimensional filter operates
on multiple lines, it is crucial that pixels in the same column are aligned. Pixel rows are stored
in programmable length line-buffers, which are concatenated at the end of each line, deduced
from hs_in signal.

vs_in - Horizontal Sync Input

A strobe on this input signals the beginning of a new frame. This signal is necessary to avoid
carrying forward information from one frame to the next. After a pulse is detected on vs_in, the
contents of the line buffer are invalidated.

cc0_out, cc1_out, cc2_out - Data Outputs

Output pixels are presented on the color channel outputs (cc0_out, cc1_out, and cc2_out) in a
fashion similar to the data inputs. The width of channel outputs equal those of the
corresponding input channels.

pix_en_out – Pixel Enable Output

Output pixels are validated by pix_en_out.

hs_out – Horizontal Sync Output

A strobe on this output indicates the beginning of a new output line. This signal is a delayed
version of hs_in.

vs_out – Horizontal Sync Output

A strobe on this output indicates the beginning of a new output frame. This signal is a delayed
version of vs_in.

http://www.xilinx.com

Generic Parameters

XAPP953 (v1.1) September 21, 2006 www.xilinx.com 4

R

Generic
Parameters

The design parameters are listed in Table 2.

Theory of
Operation

Rank order filtering is a non-linear filtering technique which orders the contents of a filter kernel
and selects the sample indexed by rank from the magnitude ordered samples. In the two-
dimensional (2D) case, contents of a two-dimensional window (which slides across the image)
are filtered. Every time the window is shifted by one pixel, a set of obsolete pixels are discarded
and a set of new pixels are inserted. The samples within the window are sorted and the element
with the specified rank replaces the center element of the window in the output. Most typical
ranks are median, minimum, and maximum.

Compared to linear filters, such as FIR or IIR, rank filters can effectively remove impulse-like
noises while preserving the edges of the original image. This can be very useful for various
applications, such as pre-processing before edge detection or removing certain types of
transmission noises.

The hardware architecture presented here is tailored to high performance color video
processing.

Architecture

Let TAP=WW·WH denote the number of taps, where WW (WINDOW_WIDTH) and WH
(WINDOW_HEIGHT) are the vertical and the horizontal size of the filter window. Also, let DW
(DATA_WIDTH) denote the width of the complete per-pixel information (e.g., R, G, and B
values), and DWF (DATA_WIDTH_FILTER) denote the width of the data used for ordering. This
value can be any function of the complete pixel information. For instance, many applications
may find using luminance (Y) useful for ordering pixels. This is trivial when the input is in the
YCbCr or YUV color space; otherwise, it can be easily derived from RGB components.

Table 2: Design Parameters

Name Type Range Description

DATA_WIDTH_CH0 Integer 1 to 16 Bit width of color channel 0.

DATA_WIDTH_CH1 Integer 1 to 16 Bit width of color channel 1.

DATA_WIDTH_CH2 Integer 1 to 16 Bit width of color channel 2.

DATA_WIDTH_FILTER Integer 4 to 24 Width of the magnitude value, generated from the 3 color.
channel values, on which sorting is performed.

WINDOW_WIDTH Integer 3 to 9 Horizontal size of filter kernel.

WINDOW_HEIGHT Integer 3 to 9 Vertical size of filter kernel.

NEW_INPUTS Integer 1 to
WINDOW_HEIGHT

Number of pixels entered into the filter kernel from the line
buffers per clk cycle.

MAX_HORIZONTAL_RES
Integer 2048

Maximum length of a scan line. This value controls line
buffer memory allocation. The actual horizontal resolution
is controlled by the horizontal sync signals.

Y_GENERATOR_TYPE(1)

Integer 0 to 2
0: magnitude value = cc0+cc1+cc2.
1: magnitude value = 0.51*cc0+cc1+0.19*cc2
2: magnitude value = cc0

FAMILY String - Spartan™-3, Spartan-3E, Virtex™-II, Virtex-II Pro,
Virtex-4, Virtex-5

Notes:
1. See “Basic Filter Architecture” for more information.

http://www.xilinx.com

Theory of Operation

XAPP953 (v1.1) September 21, 2006 www.xilinx.com 5

R

The most important difference between 2D and 1D rank filtering beyond larger tap numbers is
WH input image samples are inserted into the 2D filter core for each new output sample. This
reference design targets applications with rectangular filter kernels, scanning the image left to
right, top to bottom. Figure 2 presents the sliding window moving across the input image from
left to right. Smaller, grey squares represent pixels. The light grey block outlined with white
correspond to the current filter window; the black dotted line outlines the next window. Darker
squares illustrate new pixels entering the kernel.

1D filters can be trivially extended to 2D by operating the filter at WH multiple of the pixel clock,
reading new input pixels every clock cycle, but generating valid output pixels only once in every
WH clock cycle. Depending on the filter size and the targeted FPGA family, this solution is
viable for a wide range of applications.

If pixel clock frequencies are prohibitively high to run the filter core at a multiple of the pixel
clock frequency, parallel instances of some key filter components can be used so the filter may
accept WH number of new input samples every clock cycle. However, for most applications a
fully parallel implementation is suboptimal due to inefficient resource utilization.

Hybrid solutions spanning between fully parallel (WH input samples per clock cycle) and word
serial (one input sample per clock cycle) allow tuning the filter core to the maximum clock
frequency allowed by the target chip while minimizing resource counts. From the vertical size of
the filter window (WH), the sampling (pixel) frequency of the input (FS), and the number of new
input samples (NI) the required operating frequency of the filter core (FOmax) can be
determined:

Equation 1

Basic Filter Architecture

The architecture consists of five main components, illustrated on Figure 3. The Line Buffer
stores WH-1 lines of the input frame. If required, the Y Generator computes magnitude values,
such as luminance, from RGB for magnitude ordering. The Delay Line block stores full pixel
information (all 3 color components) for the pixels currently being processed by the Filter Core,
which does the actual rank filtering. The Control block generates optional data switching,
masking and output valid signals.

Figure 2: 2D Filtering Window

FOmax FSWH
NI

----------=

http://www.xilinx.com

Theory of Operation

XAPP953 (v1.1) September 21, 2006 www.xilinx.com 6

R

The Line Buffer is implemented using block RAMs. For example, HDTV resolution and 7x7 filter
window size requires:

1920*(7 - 1)*3 = 34560 Equation 2

bytes to be stored (assuming 3 bytes/pixel), which can fit into 17 block RAMs.

Color frames are usually not filtered using the full RGB information, but a function of the RGB
values, typically luminance, which allocates fewer bits than the RGB values. Therefore, color
information for the pixels being processed by the Filter Core is stored in a FIFO, so data paths
within the Filter Core can be streamlined. The Filter Core produces an appropriate address for
this FIFO to access full pixel (RGB) information. The number of pixels the FIFO stores is the
sum of the filter size (TAP) and the latency of the Filter Core. SRL16/SRL32 primitives in Xilinx
FPGAs offer an efficient way to implement this addressable FIFO with minimal hardware
resources.

The Y Generator is an optional hardware module required only when the input format is not
suitable for direct magnitude filtering. For YCbCr or YUV input representations, this module can
be omitted as the Y component lends itself well for magnitude ordering. For RGB input,
luminance, a typical magnitude value can be calculated as

Y’ = 0.299 R + 0.587 G + 0.114 B Equation 3

As the Y information is used only to order the pixels, to simplify calculations (i.e., to save a
multiplier) the actual Y value used is

Y = 0.50989 R + G + 0.19421 B Equation 4

The complexity and latency of this module does not change the filter architecture at all, so
arbitrary algorithms can be used from simple summation of the RGB component values to true
color space conversion. The number of Y Generator modules used is the same as the number
of new input samples (NI).

Figure 3: Filter Architecture

Line
Buffer

Y
Generator

Filter
Core

Input

Filter
 Output

Color Value (RGB or YUV)

Cntrl

Cntrl
Output

Cntrl
Input

Delay
Line

Addr

Y

x953_03_081406

http://www.xilinx.com

Theory of Operation

XAPP953 (v1.1) September 21, 2006 www.xilinx.com 7

R

Filter Core

The operation of the Filter Core is based on observations introduced in [Ref 11]. To illustrate
the theory of operation assume the filter contains TAP number of different samples. Each
sample in the filter core is coupled with an index value representing the number of samples not
smaller than the corresponding sample. When a new sample is inserted into the window, the
samples already in the filter are compared to the new sample. Based on the comparisons, the
index values are updated, resulting in TAP distinct values ranging from 1 (smallest sample) to
TAP (largest sample) at all times. As new samples enter the filter, samples already in the filter
shift along with their corresponding index values.

The architecture illustrated in Figure 4 presents the above algorithm for TAP=5. There are
TAP - 1 = 4 registers storing previous samples (D[3…0]) and a register for the new input sample
(ND).

Every older sample is compared with the new sample. C[3…0] register the results of these
comparisons, which in turn supply the LSB bits of TAP bit wide registers CR[4…1]. The
remaining bits of CR[4...1] are propagated from CR[3...0] registers, such that

CR[k] = {CR[k-1] (TAP - 2:0), C[k])} Equation 5

where (:) denotes bit selection, and {} denotes concatenation.

Consequently, at any given time data register D[k] with its associated CR[k] register stores an
input sample and all the comparison results of this input sample with other samples residing in
the filter. Therefore, calculating the sum of bits in the CR registers generates the index
information.

The CR register update mechanism of the new sample is different, updated with the inverted
comparison results. Bit b of CN is updated with the inverted result of comparator b. Bit 0 of CN
is initialized with 1.

Figure 5 illustrates the algorithm by presenting one cycle of the five tap example above as a
new sample enters from the right. Table cells show the contents of the data register (ND, D) and
the corresponding comparator result registers (CR and CN).

http://www.xilinx.com

Theory of Operation

XAPP953 (v1.1) September 21, 2006 www.xilinx.com 8

R

Figure 4: Filter Core Architecture

Figure 5: Filter Core Operation Example

NDD[0]D[1]D[2]D[3]

<<<<

FILTER VALUE

INV

CNCR[0]CR [2]CR[2]CR[3]

Bit -sum
[4]

Bit -sum
[3]

Bit -sum
[2]

Bit -sum
[1]

Bit -sum
[0]

= = = = =

5-to -1 encoder

Pixel Address

RANK

C[3] C[2] C[1] C[0]

x953_04_081406

 0 0 0 5 7

1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1

0 0 1 1

 0 0 5 7 2

1 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1

INV

CLK(T)

CLK(T+1)

DATA

CR[]/ CN

C

DATA

CR[]/ CN

New input sample : 2

x953_05_081406

http://www.xilinx.com

Theory of Operation

XAPP953 (v1.1) September 21, 2006 www.xilinx.com 9

R

Bit-Sum Operation

The design contains two files cntr1_new.vhd and cntr1_old.vhd describing two different
architectures.

Cntr1_new uses an adder tree with TAP-1 number of 2-bit adders. For the new sample, this is
the only solution because contents of CN can change arbitrarily between subsequent clock
cycles. For summing the bits of CR[TAP-2 ... 0], an incrementer/decrementer structure is
utilized taking advantage of correlation between subsequent CR values. For every sample, the
appropriate counter described in cntr1_old.vhd should be

• incremented when the comparison result with the oldest sample (CR[k][TAP-2]) is 0 and
the comparison result with the new sample is 1

• decremented when the comparison result with the oldest sample is 1, and the comparison
result with the new sample is 0

• otherwise, kept unmodified.

The performance of the 1D filter plays a key role in classifying 2D implementation options.
Table 3 summarizes maximum operating frequencies achieved for certain TAP numbers and
FPGA families.

2D Extension

To process images (two-dimensional data), the filter core has to process WH new samples and
generate one new output sample in every clock cycle. The 75 MHz pixel frequency of HDTV
1080i commercial video format allows 3x3 tap filters processing one input sample per CLK
cycle to be used for image/video processing. On Virtex-5 devices, even 5x5 tap filters can be
implemented using over-clocked 1D architectures. However, for larger filters, multiple samples
have to be processed in each clk cycle to increase throughput.

In such cases, the filter core in the reference design is extended to process multiple samples
per clock cycle. The number of samples processed per clock cycle is controlled by generic
parameter NEW INPUTS (NI). The data and comparator result registers shift by NI data
positions. The number of comparators is multiplied proportionally as old samples should be
compared with all new samples and new samples should be compared with each other. If WH
is not an integer multiple of NI, the throughput of the filter core input supersedes that of the
input stream, so in some clock cycles the number of valid new data samples is going to be less
than NI. Therefore, the actual number of available new input samples might change at each
CLK cycle. Processing dynamically changing number of new samples would require inserting
numerous multiplexers into the data paths.

Instead, padding samples are inserted as necessary such that NI new samples enter the filter
core every clock cycle.

Equation 6

padding samples are added to every filter column, so the actual filter uses a virtual filter window
with WHvirt*WW size, where

Table 3: 1D Filtering Performance(1)

Family TAP = 9 TAP = 25 TAP = 49

XC4V -10 400 MHz 400 MHz 350 MHz

XC2V -5 235 MHz 225 MHz 215 MHz

XC3S -4 200 MHz 185 MHz 185 MHz

Notes:
1. Post synthesis results, using Synplify Pro 8.5.

WH
NI

---------- NI WV–×

http://www.xilinx.com

Theory of Operation

XAPP953 (v1.1) September 21, 2006 www.xilinx.com 10

R

Equation 7

Figure 6 illustrates such a virtual window for the WH = 3, NI = 2 case. Valid samples in the
window are marked with light grey, padding samples are marked with dark grey. Figure 7
presents the contents of the data registers clock by clock using the example from Figure 6. New
inputs are inserted from the right as the filter window is moved horizontally.

All data registers may contain both valid and padding samples during operation. Comparisons
are done using all data registers irrespective of whether the actual sample is valid or not.
Therefore, the design size scales with the size of the virtual filter window. Padding samples are
masked out at the shift registers before summing up the bits of comparator results. For older
samples, masking is done for 2NI bits (NI bits for masking the comparison results with the NI
new samples, and another NI bits to mask the comparison results of the oldest (discarded)
samples CR(TAP-1:TAP-NI)). Masking values change according to the validity of new samples.
In Figure 6, the masking value is 11 for CLK(T) and 10 for CLK(T+1). Generally, the masking
value is all ones 11...11, except for the last cycle of a filter column, where it can be generated
by:

mask_old = {C1(NI - NZ, C0(NZ)} Equation 8

mask = {mask_new << NI, mask_old} Equation 9

where C1(k) denotes a k bit wide set of ones and C0(j) denotes a j bit wide set of zeros. All bits
of the TAP wide registers of new samples can be masked, as register contents can change from
clock to clock. The mask value is periodic with WH_virt and can be generated by a shift register.

Apart from bit masking, bit-summing for the new samples is the same as in the 1D case (adder
tree). However, counter-based bit summing for the least recent samples become more complex

Figure 6: Virtual Filter Window

Figure 7: Data Registers Contents

WHvin
WH
NI

---------- NI×=

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

NI

NI

WW
W

H

W
H

_virt

0 1 2 3 5 6 7 8 10 11 12 13 15 16

2 3 5 6 7 8 10 11 12 13 15 16 17 18

5 6 7 8 10 11 12 13 15 16 17 18

CLK(T)

CLK(T+1)

CLK(T+2)

WH_virt WH_virt WH_virt

19 20

http://www.xilinx.com

Performance and Resource Characterization

XAPP953 (v1.1) September 21, 2006 www.xilinx.com 11

R

as NI increases, because the modification value is extended from the (-1, 0, +1) to the (-
NI….+NI) range. The modification value for data index can be computed by:

Equation 10

Depending on the number of padding samples inserted certain filter configurations can become
prohibitively large. The complexity of the filter core is proportional to NI and the virtual filter size
(TAPv=WW*WH_virt). Figure 8 presents the number of comparators, comparing old and new
samples, as a function of TAPv. The number of comparators, as well as the resource
requirements of the Y Generator modules, scale with NI.

Performance
and Resource
Characterization

The design was implemented using Synplicity Synplify Pro 8.5 and ISE 8.1.03 tools with the
following tool options:

• Synplify: resource sharing turned on, other options turned off

• map –cm speed –k 8

• par –ol high –t 9 (for Virtex-4 and some Spartan-3 results)

• par –ol high –t 8 (for Spartan-3 results)

Filter configuration for Table 4 through Table 10 is defined by WH × WW / NI. Other than
WINDOW_HEIGHT, WINDOW_WIDTH, and NEW_INPUTS, default values were used for
generic parameters.

Characterization was performed on a Virtex- 5 XC5LX30-1 device, Virtex-4 XC4VSX35-10
device, and on a Spartan-3 XC3S1000-5 device. For characterization, a top-level wrapper
module was used which registers all input and output signals of the rank2d module. Tests were
performed with two CE options. In one scenario, CE was tied to logic 1, resulting in some logic
optimizations and simplified CE routing. In the second scenario, CE was driven by a logic-fabric
FF simulating the environment when the design is driven by other modules within the FPGA.

The last rows of the characterization tables contain expected performance for 75 MHz 1080i
(HDTV) filtering. The actual clock frequency required to perform 2D filtering is a function of the
virtual vertical size of the filter kernel (WHvirt) [Ref 12] and the number of new input
samples/CLK (NI), as defined by [Ref 1].

C l() b()

b 0=

NI 1–

∑ SH l() TAP 1– t–()

i 0=

NI 1–

∑–

Figure 8: Virtual Filter Size (TAPv) for Different Filter Configurations

0
10

20
30
40

50
60
70

80
90

T AP v 9 12 9 25 30 30 40 25 49 56 63 56 70 84 49

3x3/ 1 3x3/ 2 3x3/ 3 5x5/ 1 5x5/ 2 5x5/ 3 5x5/ 4 5x5/ 5 7x7/ 1 7x7/ 2 7x7/ 3 7x7/ 4 7x7/ 5 7x7/ 6 7x7/ 7

http://www.xilinx.com

Performance and Resource Characterization

XAPP953 (v1.1) September 21, 2006 www.xilinx.com 12

R

Based on Table 4, configurations highlighted in green are suitable for HDTV 75 MHz 1080i
(HDTV) filtering.

Table 4: Performance Requirements for HDTV 1080i Filtering (FCLK HDTV [MHz])

NI =1 NI =2 NI =3 NI=4

WH = 3 225 150 75 ---

WH = 5 375 225 150 150

WH = 7 525 300 225 150

Table 5: Performance and Resource Numbers for Virtex-5, CE Tied High

Configuration 3×3/1 5×5/ 7×7/1 7×7/2

FFs 579 1039 1736 2521

LUTs 289 750 1446 2657

Block RAMs 3 6 9 9

FCLK max [MHz] 460 420 400 340

Table 6: Performance and Resource Numbers for Virtex-5, CE from Fabric Register

Configuration 3×3/1 5×5/1 5×5/2 7×7/1 7×7/2

FFs 548 998 1413 1643 2443

LUTs 274 680 1222 1306 2331

Block RAMs 3 6 6 9 9

FCLK max [MHz] 410 355 320 320 320

Table 7: Performance and Resource Numbers for Virtex-4, CE Tied High

Configuration 3×3/1 5×5/1 7×7/1 7×7/2

FFs 544 1169 2211 3416

LUTs 363 812 1556 2749

Block RAMs 6 12 18 18

FCLK max [MHz] 400 375 355 300

Table 8: Performance and Resource Numbers for Virtex-4, CE from Fabric Register

Configuration 3×3/1 5×5/1 5×5/2 7×7/1 7×7/2 7×7/3

FFs 595 1188 1702 2223 3342 4142

LUTs 344 780 1454 1534 2771 4153

Block RAMs 6 12 12 18 18 18

FCLK max [MHz] 330 300 270 260 245 235

Table 9: Performance and Resource Numbers for Spartan-3, CE Tied High

Configuration 3×3/1 5×5/1 5×5/2 5×5/3 7×7/1 7×7/2 7×7/3 7×7/4

FFs 683 1088 1832 2044 2666 3872 4683 5132

LUTs 323 851 1420 1913 1545 2747 4195 4664

Block RAMs 6 12 12 12 18 18 18 18

FCLK max [MHz] 245 195 180 165 175 160 150 150

http://www.xilinx.com

System Generator Token

XAPP953 (v1.1) September 21, 2006 www.xilinx.com 13

R

If the input is in RGB format and Y_GENERATOR_TYPE is set to 0 or 1, additional resources
are required for the Y Generator blocks, for channel (R, G, B) summation
(Y_GENERATOR_TYPE=0), and true luminosity computation (Y_GENERATOR_TYPE=1)
(Equation 4). In these cases, the number of Y Generator modules instantiated is equal to NI.

System
Generator
Token

To facilitate easy integration of the reference design into a complex system developed using
System Generator, a black-box token (Figure 9) encapsulating the VHDL code is supplied.

The System Generator instance can be parameterized through a Graphical User Interface
(GUI) invoked by double clicking the token. The GUI variables are the same as the generic
variables for the top-level VHDL code (see Table 2).

To ensure that the black box component works correctly with the rest of the design, file
rank2d_top_config.m, which resides under the /testbench/matlab/sysgen
directory, has to be copied into the project (MATLAB working) directory. Also, the configuration
utility has to refer to the source VHDL files. Edit the bottom portion of the code, such as

this_block.addFile('../../../GenXlib_utils.vhd');

so the source file locations are correctly defined relative to the directory where
rank2d_top_config.m is located.

Table 10: Performance and Resource Numbers for Spartan-3, CE from Fabric Register

Configuration 3×3/1 5×5/1 5×5/2 5×5/3 7×7/1 7×7/2 7×7/3 7×7/4

FFs 768 1470 2061 2288 2642 3839 4639 5076

LUTs 363 804 1439 1952 1544 2756 4206 4660

Block RAMs 6 12 12 12 18 18 18 18

FCLK max [MHz] 225 190 175 180 170 160 150 150

Figure 9: System Generator Token

http://www.xilinx.com

System Generator Test Bench

XAPP953 (v1.1) September 21, 2006 www.xilinx.com 14

R

System
Generator Test
Bench

To help prototype, test, and verify the 2D rank order filter, a System Generator test bench is
included with the reference design. To open the test bench, change your MATLAB directory to
testbench/matlab/sysgen, and load rank_2d.mdl (Figure 10).

Double clicking the black-box icon invokes the GUI, which assigns generic variables and
workspace variables sharing the same name as the generic variables in the HDL code.
Variables get initial values assigned when simulation starts. To see the initial workspace
variable assignments, select Model Properties from the file menu. From the Callbacks tab, pick
InitFnc, which reveals the initial assignments. This script invokes rank2d_init_mdl_2.m,
which loads a test image and sets up the workspace variables driving the ports of the token,
such as input_image_r, input_image_g, input_image_b, the enable, reset, and sync signals.

Running the Test Bench

The test bench can be executed using ISE simulator ISIM, external simulator ModelSim®, or
using hardware co-simulation. See the System Generator documentation for more information
on hardware co-simulation. By default, the test bench uses ModelSim, taking advantage of the
option to leave the ModelSim simulation window open after the simulation has completed. To
switch between simulators, right click on the 2Drank_top token, and select Look under Mask
from the context menu. Double click on the RANK2D token, and select the Simulation Mode of
your choice in the block properties dialog box displayed. ModelSim specific options can be set
by double-clicking the ModelSim token. Loading a macro file before the simulation starts
enables displaying additional (internal) VHDL signals during simulation.

Click on the Start simulation (*) icon to run the simulation. After the simulation is finished,
function rank2d_post_proc_o.m is invoked, which reformats VHDL output for visual
verification (Figure 11).

A fixed-point MATLAB model (rank2d_matlab.m) is included in the bundle to facilitate bit-true
verification of VHDL results. By definition, the rank order filter selects a sample from the
magnitude ordered list of samples. If the kernel contains pixels with colors that have similar Y
values, the actual pixel selected may be application specific. In other words, if the kernel
contains pixels with different colors but similar Y values, the choice of Y at the output is unique,
but the choice of colors corresponding to the particular Y value is up to the application. For that

Figure 10: System Generator Test Bench

http://www.xilinx.com

System Generator Test Bench

XAPP953 (v1.1) September 21, 2006 www.xilinx.com 15

R

reason, some errors between the MATLAB model and VHDL output results are tolerable, as
long as the differing color values share the same Y value.

The test bench displays the output images of the VHDL and the MATLAB model outputs, as
well as the differences between them (if any). The difference is amplified so the difference
image utilizes the available brightness dynamic range of the display.

Figure 11 shows the input image. Figure 12 presents the corresponding VHDL simulation
results.

Figure 11: R, G, B Stimulus

Figure 12: Output Filtered with a 3x3 Median Filter

http://www.xilinx.com

Reference Design Files

XAPP953 (v1.1) September 21, 2006 www.xilinx.com 16

R

Reference
Design Files

The reference design files can be downloaded from: xapp953.zip

Source files to be inserted into an ISE project, in compilation order, are:

• genXlib_util.vhd

• genXlib_arch.vhd

• rank2d_utils.vhd

• rank2d_latency.vhd

• cntr1_new.vhd

• cntr1_old.vhd

• delay_line.vhd

• delay_line_srl16.vhd

• delay_line_srl32.vhd

• lbuff_mem.vhd

• comp_module.vhd

• sub_inst.vhd

• sub_inst_v2.vhd

• sub_inst_v4.vhd

• fvg_sum.vhd

• fvg_y.vhd

• filter_core.vhd

• rank2d_top.vhd

A System Generator token encapsulating the HDL code is also available for System Generator
users. A System Generator test bench is provided to visually inspect output results.

References 1. R. Roncella, R. Saletti, P. Terreni, 70-MHz 2-mm CMOS Bit-Level Systolic Array Median
Filter, IEEE Journal of Solid State Circuits, vol 28, 1993.

2. L. Chang and J. Lin, Bit Level Systolic Arrays for Real Time Median Filters, International
Conference on Acoustics, Speech and Signal Processing, 1990.

3. B. K. Kar and D. K. Pradhan, A New Algorithm for Order Statistic and Sorting, IEEE
Transactions on Signal Processing, vol 41, August 1993.

4. H. Heijmans (1991). Theoretic Aspects Of Grey-Scale Morphology. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI) 13(6):568-582.

5. M. Karaman, L. Onural and A. Atalar, Design and Implementation of a General-Purpose
Median Filter in CMOS VLSI, IEEE J. Solid-State Circuits, vol. 25, April 1990.

6. C. Chakrabarti, Sorting Network-Based Architectures for Median Filters. IEEE Trans. on
Signal Processing, March 1994.

7. C. Chakrabarti and L. Wang, Novel Sorting Network-Based Architectures For Rank Order
Filters, IEEE Trans. On VLSI Systems, vol. 2, December 1994.

8. F. A. Suhaib, P. Y. K. Cheung, L. Wayne, Novel FPGA-Based Implementation of Median and
Weighted Median Filters for Image Processing, Field-Programmable Logic and
Applications (FPL 2005), 2005.

9. V. Fischer, R. Lukac, and K. Martin, Cost-Effective Video Filtering Solution for Real-Time
Vision Systems, EURASIP Journal on Applied Signal Processing 2005:13, 2036-2042.

10. J. B. Wilburn, A Statistical Methodology for Automatic Target Recognition in Satellite
Imagery.

http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp953.zip

Acknowledgements

XAPP953 (v1.1) September 21, 2006 www.xilinx.com 17

R

11. C. Chakrabarti, High Sample Rate Array Architectures for Median Filters, IEEE
Transactions on Signal Processing, vol. 42, March 1994.

12. F. A. Suhaib, P. Y. K. Cheung, L. Wayne, Novel FPGA-Based Implementation of Median and
Weighted Median Filters for Image Processing, Field-Programmable Logic and
Applications (FPL 2005), 2005.

Acknowledgements
• Peter Szanto, Budapest University of Technology and Economics, Department of

Measurement and Information Systems, for contributions to the final architecture and
implementation of the modules in HDL.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

09/06/06 1.0 Initial Xilinx release.

09/21/06 1.1 Added “Acknowledgements.”

http://www.xilinx.com

	Two-Dimensional Rank Order Filter
	Summary
	Introduction
	Pinout
	Signal Descriptions
	rst - Synchronous Clear
	ce - Clock Enable
	cc0_in, cc1_in, cc2_in - Data inputs
	pix_en_in - Pixel Enable Input
	hs_in - Horizontal Sync Input
	vs_in - Horizontal Sync Input
	cc0_out, cc1_out, cc2_out - Data Outputs
	pix_en_out - Pixel Enable Output
	hs_out - Horizontal Sync Output
	vs_out - Horizontal Sync Output

	Generic Parameters
	Theory of Operation
	Architecture
	Basic Filter Architecture
	Filter Core
	Bit-Sum Operation
	2D Extension

	Performance and Resource Characterization
	System Generator Token
	System Generator Test Bench
	Running the Test Bench

	Reference Design Files
	References
	Acknowledgements
	Revision History

