Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications; http://www.xilinx.com/warranty.htm#critapps.

Automotive Applications Disclaimer
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

Fedora Information
Xilinx obtained the Fedora Linux software from Fedora (http://fedoraproject.org/), and you may too. Xilinx made no changes to the software obtained from Fedora. If you desire to use Fedora Linux software in your product, Xilinx encourages you to obtain Fedora Linux software directly from Fedora (http://fedoraproject.org/), even though we are providing to you a copy of the corresponding source code as provided to us by Fedora. Portions of the Fedora software may be covered by the GNU General Public license as well as many other applicable open source licenses. Please review the source code in detail for further information. To the maximum extent permitted by applicable law and if not prohibited by any such third-party licenses, (1) XILINX DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE; AND (2) IN NO EVENT SHALL XILINX BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Fedora software and technical information is subject to the U.S. Export Administration Regulations and other U.S. and foreign law, and may not be exported or re-exported to certain countries (currently Cuba, Iran, Iraq, North Korea, Sudan, and Syria) or to persons or entities prohibited from receiving U.S. exports (including those (a) on the Bureau of Industry and Security Denied Parties List or Entity List, (b) on the Office of Foreign Assets Control list of Specially Designated Nationals and Blocked Persons, and (c) involved with missile technology or nuclear, chemical or biological weapons). You may not download Fedora software or technical information if you are located in one of these countries, or otherwise affected by these restrictions. You may not provide Fedora software or technical information to individuals or entities located in one of these countries or otherwise affected by these restrictions. You are also responsible for compliance with foreign law requirements applicable to the import and use of Fedora software and technical information.

© Copyright 2013–2015 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI, PCI Express, PCIe, and PCI-X are trademarks of PCI-SIG. All other trademarks are the property of their respective owners.
Revision History

The following table shows the revision history for this document.

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/10/2013</td>
<td>1.0</td>
<td>Initial Xilinx release.</td>
</tr>
<tr>
<td>04/17/2013</td>
<td>2.0</td>
<td>Updated for Vivado® Design Suite 2013.1. Updated Introduction, Basic Hardware Bring-up with Built-In Self-Test, AMS Bring-up with the AMS101 Evaluation Card, and Advanced Bring-up with Base Targeted Reference Design sections. Updated Figure 2.</td>
</tr>
<tr>
<td>07/10/2013</td>
<td>3.0</td>
<td>Updated for Vivado® Design Suite 2013.2.</td>
</tr>
<tr>
<td>11/19/2013</td>
<td>4.0</td>
<td>Updated version references for Vivado Design Suite from 2013.2 to 2013.3. Corrected the LED Status descriptions on page 24. Changed Note to Caution and strengthened the description in the power connection note on page 24. Revised all links and references in Appendix A, Additional Resources and revised links to web pages and documents throughout document to conform to latest style convention. Updated Figure 21, page 28 and Figure 22, page 28.</td>
</tr>
<tr>
<td>03/05/2014</td>
<td>4.0.1</td>
<td>Tech pubs update. Technical content not affected.</td>
</tr>
<tr>
<td>04/29/2015</td>
<td>4.0.2</td>
<td>Tech pubs update. Updated the XPM number on cover to 0402936-04 Technical content not affected.</td>
</tr>
</tbody>
</table>
Table of Contents

Revision History ... 3

Getting Started with the Artix-7 FPGA AC701 Evaluation Kit
 Introduction ... 7
 Basic Hardware Bring-up with Built-In Self-Test 8
 AMS Bring-up with the AMS101 Evaluation Card 14
 Advanced Bring-up with Base Targeted Reference Design 19

Appendix A: Additional Resources
 Xilinx Resources ... 35
 Solution Centers ... 35
 References ... 35
 Additional References .. 36

Appendix B: Warranty
Getting Started with the Artix-7 FPGA AC701 Evaluation Kit

Introduction

The Artix®-7 FPGA AC701 Evaluation Kit (Figure 1) provides a comprehensive, high-performance development and demonstration platform based on the XC7A200T FPGA for high-bandwidth and high-performance applications in multiple market segments. The built-in self-test (BIST), the AMS 101 evaluation card usage, and the Artix-7 FPGA Base Targeted Reference Design (TRD) are featured in this getting started guide.

Figure 1: AC701 Evaluation Kit
This Getting Started Guide is divided into two sections:

- Basic Hardware Bring-up: Enables hands-on operation of all the features in the BIST as well as evaluation of Analog Mixed Signal (AMS) using the AMS101 evaluation card.
- Advanced Bring-up: Enables hands-on operation with the base TRD, which features PCIe®, DDR3 memory, AXI stream interconnect, and AXI virtual FIFO controller IP cores—all supported through a custom evaluation graphical user interface (GUI).

AC701 Evaluation Kit Contents

- AC701 evaluation board featuring the XC7A200T FPGA
- Targeted reference design featuring DDR3, PCIe, and DMA
 - Including a full license for the Northwest Logic DMA
- AMS101 evaluation board
- Full seat Vivado® Design Suite: Design Edition
 - Node-locked, device-locked to the Artix-7 XC7A200T FPGA
- Additional downloadable content, including:
 - Reference designs, design examples, and demos
 - Board design files
 - Documentation
 - Hardware User Guide
 - Getting Started Guide
 - Reference Design User Guide
- 12V AC-adapter power supply
- Cables
 - RJ45 Ethernet cable
 - HDMI cable
 - Type-A to micro-B USB cable used for JTAG programming
 - Type-A to mini-B USB cable used for UART communication with board
- Software and reference designs, demos, and documents to quickly get started
- The AC701 BIST Design Files (RDF0220) are available from the AC701 Evaluation Kit Documentation webpage.

All user guides, board files, tutorials, example designs, and targeted reference designs are available from the AC701 Evaluation Kit Documentation webpage.

The tutorials and reference designs are useful for exploring the capabilities of the AC701 board and the Artix-7 FPGA. For additional information, see the Artix-7 Family FPGAs Product Table.

Basic Hardware Bring-up with Built-In Self-Test

Introduction

The BIST reference design tests many of the features of the Artix-7 FPGA AC701 Evaluation Kit and can be programmed into the FPGA via the JTAG interface.
Figure 2 and Table 1 provide an overview of the board features utilized by the BIST and the AMS101 evaluation card.

Table 1: AC701 Board Features

<table>
<thead>
<tr>
<th>Callout</th>
<th>Component Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SW1 Configuration Mode DIP Switch</td>
</tr>
<tr>
<td>2</td>
<td>Digilent JTAG connector</td>
</tr>
<tr>
<td>3</td>
<td>RJ45 Ethernet connector</td>
</tr>
<tr>
<td>4</td>
<td>XADC header</td>
</tr>
<tr>
<td>5</td>
<td>DDR3 external memory</td>
</tr>
<tr>
<td>6</td>
<td>LCD display</td>
</tr>
<tr>
<td>7</td>
<td>Rotary switch (under LCD)</td>
</tr>
<tr>
<td>8</td>
<td>Status LEDs and user LEDs</td>
</tr>
<tr>
<td>9</td>
<td>CPU reset button</td>
</tr>
<tr>
<td>10</td>
<td>Prog button</td>
</tr>
<tr>
<td>11</td>
<td>Power slide switch</td>
</tr>
<tr>
<td>12</td>
<td>12V power connector</td>
</tr>
<tr>
<td>13</td>
<td>User DIP switch</td>
</tr>
<tr>
<td>14</td>
<td>Contrast wheel</td>
</tr>
<tr>
<td>15</td>
<td>User push buttons</td>
</tr>
<tr>
<td>16</td>
<td>USB-UART connector</td>
</tr>
</tbody>
</table>
For a description of all features on the AC701 Board, see *AC701 Evaluation Board for the Artix-7 FPGA User Guide* (UG952) [Ref 1].

Test Setup Requirements

Note: This example design uses a Windows 7 PC flow and TeraTerm Pro.

The prerequisites for testing the design in hardware are:

- AC701 evaluation board with XC7A200T FPGA
- Type-A to mini-B USB cable (for UART)
- Type-A to micro-B USB cable (for JTAG)
- AC Power Adapter (12 VDC)
- TeraTerm Pro or other terminal program
- USB-UART drivers from Silicon Labs
- Vivado Design Suite installed on host PC

Hardware Test Board Setup

This section details the hardware setup and use of the terminal program for running the BIST application. It details step-by-step instructions for board bring-up. For more information on installing the tools and drivers, see the [Boards and Kits Install Guide](https://www.xilinx.com).

AC701 Evaluation Board Setup

1. Set DIP switch SW1 as shown in [Figure 3](#) (ON, OFF, ON = 101).

 ![SW1 Switch Settings for JTAG Programming Mode](https://www.xilinx.com)

 Figure 3: SW1 Switch Settings for JTAG Programming Mode
Hardware Bring-up

1. Place the AC701 board power switch SW12 to OFF.
2. Connect the AC701 board as shown in Figure 4.
3. Place the AC701 board power switch SW12 to ON.

Install the Silicon Labs UART Device Driver.

1. Run the downloaded executable UART-USB driver file, listed in Test Setup Requirements (see Figure 5). This enables UART-USB communications with a host PC.

2. Set the USB-UART connection to a known PORT in the Device Manager:
 a. Right-click the Computer desktop icon and select Properties.
 b. Click Device Manager.
 c. Right-click the Cypress device in the list, and select Properties (see Figure 6).
d. Click the Port Settings tab, then click the Advanced… button.
e. Select an open COM port between COM1 and COM4 (see Figure 7).

Note: Steps and diagrams refer to a Windows host PC.

Run the BIST Application

1. Download the AC701 BIST Design Files (RDF0220) from the AC701 Evaluation Kit Documentation webpage under the Example Designs section.
2. Unzip the design files to the C:\ directory.
3. Start the installed terminal program.
4. Select **Setup > Serial Port...** and ensure that the settings match those shown in **Figure 8**:
 - **Baud rate**: 9600
 - **Data**: 8 bit
 - **Parity**: none
 - **Stop**: 1 bit
 - **Flow control**: none

![Serial Port Setup](UG967_08_111412)

Figure 8: Serial Port Setup

5. In Vivado Design Suite, open a Tcl shell and type:
   ```tcl
   source C:/ac701_bist/ready_for_download/bist_download.tcl
   ```

6. Select the desired tests to run and observe the test results (see **Figure 9**).

![BIST Main Menu](UG967_09_111412)

Figure 9: BIST Main Menu
AMS Bring-up with the AMS101 Evaluation Card

Introduction

The Artix-7 XC7A200T FPGA features two 1 Mega-samples per second (MSPS), 12-bit, Analog-to-Digital Converters (ADCs) built into the device for a range of applications including simple analog monitoring to more signal processing-intensive tasks such as linearization, calibration, oversampling, and filtering. The AC701 Evaluation Kit includes the hardware and software to evaluate the ADC feature. The AC701 Evaluation Kit also includes voltage, current and power monitoring for nine of the analog power supplies on the board. For evaluation of Xilinx Analog Mixed Signal (AMS) capability, these items in the kit are needed:

- Access to the AC701 board XADC header (see Figure 2)
- AMS101 evaluation card (see Figure 10 and Table 1)
- FPGA design files and software files
- 7 Series FPGA AMS Targeted Reference Design User Guide (UG960) [Ref 1]
- USB-UART drivers from Silicon Labs

![Figure 10: AMS101 Evaluation Card](image)

Table 2: AMS101 Evaluation Card Features

<table>
<thead>
<tr>
<th>Callout</th>
<th>Component Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jumpers to select DAC or external signal source.</td>
</tr>
<tr>
<td>2</td>
<td>20-pin connector to the XADC header on the AC701 board.</td>
</tr>
</tbody>
</table>
Getting Started

1. Verify the USB-UART Silicon Labs drivers are installed as described in Install the Silicon Labs UART Device Driver, page 11.

2. Install the National Instruments LabVIEW run-time engine on the host PC:
 a. Go to the AC701 Evaluation Kit Documentation webpage.
 b. Under the Documentation heading, click on the appropriate Vivado software version. This will expand a list of available document types.
 c. Click on Targeted Reference Designs. This will open a list of files and documents.
 d. Click on 7 Series FPGA and Zynq-7000 AP SoC AMS Evaluator Installer for AMS Targeted Reference Design to download ams101_gui_installer.zip.
 e. Unzip the files to a temporary directory and double-click setup.exe to install the LabVIEW run-time engine and AMS Evaluator software.
 f. After installation is complete, restart the host PC.

3. Extract the AMS design files before Evaluating AMS:
 a. Go to the AC701 Evaluation Kit Documentation webpage.
 b. Under the Documentation heading, click on the appropriate Vivado software version. This will expand a list of available document types.
 c. Click on Targeted Reference Designs. This will open a list of files and documents.
 d. Click on AMS Targeted Reference Design for Artix-7 FPGA AC701 Evaluation Kit (RDF0278) to download rdf0278-ams101-ac701-trd.zip.
 e. Unzip the files to a working directory on the host computer.

Evaluating AMS

1. Power off the AC701 board, connect the AMS101 card, and re-apply power to the hardware.
 a. Connect the AMS101 evaluation card to the AC701 board, making sure the notch on the XADC header lines up correctly with the connector on the AMS101 evaluation card.

2. Implement the design to the Artix-7 XC7A200T-2 FB676 FPGA from the AC701 AMS design file xadc_eval_design_ac701_v1_0 previously downloaded.
 a. Open Vivado Design Suite. Here is one example path:
 Start menu/Xilinx Design Tools/Vivado 2015.1
 b. Create a Vivado Project.
c. Open Hardware Session.

d. Open a new hardware target and run through the wizard.

e. Click the **open_cable** command and select **OK**.

f. Open `xadc_eval_design.bit` from the AC701 board AMS design folder:

```
xadc_eval_design_ac701_v1_0 > ready_to_test > xadc_eval_design.bit
```

3. Open the AMS Evaluator tool.

 a. Running the setup program loads the AMS101 Evaluator GUI with the Xilinx logo on your desktop. **Figure 11** shows the AMS101 Evaluator after opening. From here, click the **Connect** button. When the button is green, click the **Collect Data** button in the center to quickly evaluate the analog signals in the time and frequency domain, display linearity, verify the **XADC Registers** settings, and measure the internal temperature sensor and supply voltages.

 b. **Collect Data** button in the center to quickly evaluate the analog signals in the time and frequency domain, display linearity, verify the XADC register settings, and measure the internal temperature sensor and supply voltages.

 c. **Figure 12** shows the XADC results in the frequency domain.

 d. The AMS101 evaluation card provides a dual 16-bit DAC for use as an analog test source. External analog signals can also be applied to the card. For a more extensive explanation of the AMS101 evaluation card and the various functions in the AMS Evaluator tool, see *AMS101 Evaluation Card User Guide* (UG886) [Ref 16].

![AMS101 Evaluator Tool](image.png)

Figure 11: AMS Evaluator Tool
In addition to measuring the analog signals from the AMS101 evaluation card, the AC701 also uses the XADC as a system monitoring solution for measuring the voltage, load current and calculated power for nine of the AC701 board analog power supplies. By offering 12-bits, 1 MSPS and up to 17 externally multiplexed inputs, the XADC is a good solution for monitoring voltage and current on all Artix-7 FPGA applications. Figure 13 shows an example of the AC701 monitoring VCCINT, VCCAUX, VCCBRAM and the 1.5V supply.

In conjunction with the AMS Evaluator, the AC701 AMS reference design also measures the voltages, current and power for VCCO_ADJ, the 1.8V supply, the 3.3V supply, MGTAVCC and MGTA^TT.
Figure 13: Voltage, Current and Power Monitoring on AC701 Board Supplies
Advanced Bring-up with Base Targeted Reference Design

Introduction

Figure 14 depicts the block-level overview of the Artix-7 FPGA base Targeted Reference Design (TRD) which delivers up to 10 Gb/s of performance per direction.

The PCIe® endpoint and DMA controller together are responsible for the movement of data between a PC and an FPGA. S2C implies data movement from a PC to an FPGA and C2S implies data movement from an FPGA to a PC. A DDR3 SDRAM (64-bit, 800 Mb/s or 400 MHz) is used for packet buffering — a virtual FIFO layer facilitates the use of DDR3.
memory as multiple FIFOs. Additionally, the design provides power monitoring capability based on a PicoBlaze™ embedded processor.

For software, the design provides 32-bit Linux drivers targeting the Fedora 16 platform and a graphical user interface (GUI) which controls the tests and monitors the status.

Features

Base Features

This section lists the features of the Targeted Reference Design.

- PCI Express v2.1 compliant x4 endpoint operating at 5Gb/s/lane/direction
- PCIe transaction interface utilization monitor
- MSI & Legacy interrupt support
- Bus Mastering Scatter-gather DMA
- Multichannel DMA
- AXI4-Stream interface for data
- AXI4 interface for register space access
- DMA performance monitor
- Full duplex operation
 - Independent transmit and receive channels
- Virtual FIFO layer over DDR3 memory
- Provides 4 channel design (4 FIFOs in DDR3 SODIMM)

Application Features

- PicoBlaze processor-based PVT Monitoring
- Built-in hardware to monitor power by reading the TI UCD90120A power controller chip included on the AC701 evaluation board
- Built-in hardware to monitor die temperature by way of a Xilinx Analog-to-Digital Converter

Test Setup Requirements

The prerequisites for testing the design in hardware are

- AC701 evaluation board with XC7A200T FPGA
- Design consisting of:
 - Design source files
 - Device driver files
 - FPGA programming files
 - Documentation
- Vivado Design Edition
- Type-A to micro-B USB cable
- Fedora 16 LiveDVD
• A PC with PCIe v2.1 compliant slot. For a complete list of recommended machines, and all known issues, see Artix-7 FPGA Base Targeted Reference Design Master Answer Record (AR 53372).

Note: The PC could also have Fedora 16 Linux OS installed.

Hardware Demonstration Setup

This section details the hardware setup and use of the provided control and monitoring application and GUI to assist in getting started quickly with the hardware. Step-by-step explanations are provided on hardware bring-up, software bring-up, and the use of the application GUI.

Board Setup

This section details how to set up the AC701 evaluation board as required for demonstrating the TRD.

Setting the AC701 Jumpers And Switches

1. Turn off the power to the AC701 board and verify the switch and jumper settings are as shown in Table 3, Table 4, and Figure 15.

Table 3: AC701 Board Required Jumper Settings

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Function</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>J12</td>
<td>PCIe endpoint configuration width; 4-lane design</td>
<td>3-4</td>
</tr>
</tbody>
</table>

Table 4: AC701 Board Required Switch Settings

<table>
<thead>
<tr>
<th>Switch</th>
<th>Function/Type</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW15</td>
<td>Board power slide-switch</td>
<td>off</td>
</tr>
<tr>
<td>SW2</td>
<td>User GPIO DIP switch</td>
<td>off</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>off</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>off</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>off</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>off</td>
</tr>
<tr>
<td>SW1</td>
<td>Positions 1, 2, and 3 set configuration mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>001 – Master SPI</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>101 – JTAG</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Figure 15: AC701 Board Switch and Jumper Locations
Hardware Bring Up

All procedures listed in the subsequent sections require super-user access on a Linux PC. When using the Fedora 16 LiveDVD provided with the kit, super-user access is granted by default due to the manner in which the kernel image is built. If not using the LiveDVD, it is important to ensure that super-user access is granted.

1. With the host PC powered off, insert the AC701 board into the selected PCIe x4 (or wider) edge connector (see Figure 16). The PCI Express specification allows for a smaller lane width endpoint to be installed into a larger lane width PCIe connector.

Figure 16: AC701 Board Installed in a PCIe x16 Connector
2. Connect the 12V ATX power supply 4-pin connector to the board as shown in Figure 17.

Caution! Do NOT plug a PC ATX power supply 6-pin connector into J49 on the AC701 board. The ATX 6-pin connector has a different pinout than J49. Connecting an ATX 6-pin connector into J49 will damage the AC701 board and void the board warranty.

3. To avoid loose contact issues, make sure the connections are secure. Turn ON the SW15 switch, apply power to the system, insert the Fedora LiveDVD, and change the boot order to boot from the DVD.

4. Check the status of the design using the AC701 board LEDs. The design provides status with the GPIO LEDs located on the upper right portion of the AC701 board. When the PC is powered on and the TRD has successfully configured, the LED status from left to right indicates:
 - **LED position 1**: ON if DDR3 is calibrated
 - **LED position 2**: ON if the lane width is x4, else flashing
 - **LED position 3**: Heart beat LED, flashes if PCIe user clock is present
 - **LED position 4**: ON if the PCIe link is up
Figure 18 shows the location of the status LEDs.

![Status LEDs](image)

Figure 18: GPIO LEDs Indicating TRD Status

Linux Driver Installation

The following sections describe installing the device drivers for the Artix-7 FPGA base TRD after completion of the prior steps.

1. If the Fedora 16 Linux OS is currently installed on the PC, boot as a root-privileged user and skip to step 4.

2. To boot from the Fedora 16 LiveDVD provided in the kit, place the DVD in the PC DVD-ROM drive. The Fedora 16 Live Media is for Intel-compatible PCs. The DVD contains a complete, bootable 32-bit Fedora 16 environment with the proper packages installed for the TRD demonstration environment. The PC boots from the DVD-ROM drive and logs into a liveuser account. This account has kernel development root privileges required to install and remove device driver modules.

 Note: It might be necessary to adjust the PC BIOS boot order settings to ensure that the DVD-ROM drive is the first drive in the boot order. Refer to the PC user manual for the proper procedure to set the BIOS boot order.
The PC should boot from the DVD-ROM drive. The images in Figure 19 are seen on the monitor during startup.

![First Screen](image1.png) ![Last Boot Screen](image2.png) ![Boot Complete](image3.png)

Figure 19: Fedora 16 LiveDVD Boot Sequence

3. After Fedora boots, open a terminal window (click Activities > Application, scroll down, and click the Terminal icon).

To determine if the PCIe integrated block is detected, at the terminal command prompt, type:

```
$ lspci
```

The `lspci` command displays the PCI and PCI Express buses of the PC. On the bus corresponding to the PCIe connector holding the AC701 board, look for the message:

```
Memory controller: Xilinx Corporation Device 7042
```

This message confirms that the design programmed into the AC701 board is detected by the BIOS and the Fedora 16 OS. The bus number varies depending on the PC motherboard and slot used.
Figure 20 shows an example of the output from the `lspci` command. The highlighted region shows that Xilinx device 7042 has been located by the BIOS on bus number 3 (03:00.0 = bus:dev.function).

4. Go to the AC701 Evaluation Kit Documentation webpage.
 a. Under Documentation, click 2015.1 to expand the list of 2015.1 documentation.
 b. Under By Document Type, click Targeted Reference Designs to open a window listing design files and documents.
 c. Click on the RDF0276 link and save the file `a7_base_trd` folder to the desktop (or a folder of choice).

 Note: This operation requires root privileges.
 Double-click the copied `a7_base_trd` folder.
The screen capture in Figure 21 shows the content of the a7_base_trd folder.

![Figure 21: Structure of a7_base_trd Directory](image1)

5. Right-click on the script (quickstart.sh), select **Properties**. In the Permission tab, check the **Allow executing file as program** box. The script is now executable. To run the script, double-click quickstart.sh and select **Run in Terminal**.

![Figure 22: Running the quickstart.sh Script](image2)

6. The GUI showing driver installation options appears as shown in Figure 23. Subsequent steps demonstrate the GUI operation by installing and removing drivers. Click **Install**.
Figure 23: Artix-7 FPGA Base TRD Driver Installation GUI
After installing the driver, the control and monitoring user interface appears as shown in Figure 24. The control view shows control parameters such as test mode (loopback, generator, or checker) and packet length. The system monitor tab shows system power and temperature. The GUI also provides an LED indicator for DDR3 memory calibration.

Figure 24: Artix-7 FPGA Base TRD Control and Monitoring Interface

Using the Application GUI

The transmission and reception of data is configured through the application GUI. The GUI displays collected statistics and other status information.

At startup, the GUI displays a launching page that detects the PCIe device for this design (Vendor ID = 0x10EE and Device ID = 0x7042). When the appropriate device is detected, driver installation is allowed to proceed. An additional option is available which allows the enabling of a data integrity check. Upon successful installation of the drivers, the control and monitoring interface appears.

GUI Control Function

These parameters are controlled with the GUI:

- Packet size for traffic generation.
- Test selection:
 - Loopback
 - HW checker
 - HW Generator

GUI Monitor Function

The driver always maintains information about the hardware status. The GUI periodically issues an I/O Control, `ioctl()`, to read the status information which is comprised of:

- PCIe link and device status
- DMA controller status
- Power status

The driver maintains a set of circular arrays to hold second-by-second sampling points of various statistics which are periodically collected by the performance monitor handler.

The various GUI indicators and controls are detailed in Figure 25 and Table 5.

Figure 25: Control and Monitoring Interface
Table 5: Control and Monitoring Interface Components

<table>
<thead>
<tr>
<th>Callout</th>
<th>Component</th>
<th>Component Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Led Indicator</td>
<td>Indicates DDR3 calibration information; Green on calibration, red otherwise</td>
</tr>
<tr>
<td>2</td>
<td>Test Option</td>
<td>Options to select Loopback, HW Generator, or HW checker</td>
</tr>
<tr>
<td>3</td>
<td>Packet size</td>
<td>Packet size for the test run with allowed packet size shown as a tool tip</td>
</tr>
<tr>
<td>4</td>
<td>Test start/stop control</td>
<td>Button to control the start and end of the test</td>
</tr>
</tbody>
</table>
| 5 | DMA statistics | - **Throughput (Gb/s):** DMA payload throughput in gigabits per second for transmit and receive controllers
- **DMA Active Time (ns):** The time in nanoseconds that the DMA controller has been active in the last second
- **DMA Wait Time (ns):** The time in nanoseconds that the DMA controller waited for the software to provide more descriptors
- **BD Errors:** Indicates a count of buffer descriptors (BD) that caused a DMA error as indicated by the error status field in the descriptor update
- **BD Short Errors:** Indicates a short error in the buffer descriptors in the transmit direction when the entire buffer specified by length in the descriptor could not be fetched (Not applicable to the receive direction)
- **SW BDs:** Indicates the total count of buffer descriptors set up in the descriptor ring |
| 6 | PCIe Transmit (writes in Gb/s) | Reports transmitted (endpoint card to host) throughput as obtained from the PCIe endpoint hardware performance monitor |
| 7 | PCIe Receive (reads in Gb/s) | Reports received (host to endpoint card) throughput as obtained from the PCIe endpoint hardware performance monitor |
| 8 | Message log | Text box showing informational messages, warnings, or errors |
| 9 | Performance plots | Click this tab to plot the PCIe transactions on the AXI4-Stream interface and show the payload statistics graph based on the DMA controller performance monitor |
| 10 | Close button | Click this button to close the GUI |
| 11 | PCIe Endpoint Status | Reports the contents of various PCIe endpoint configuration fields as reported in the endpoint configuration space |
| 12 | Host System’s Initial Credits | Initial flow control credits advertised by the host system after link training with the endpoint (A value of zero implies infinite flow control credits) |
| 13 | Block diagram button | Click this button to show a case block diagram of each mode currently running |
| 14 | Power statistics | Power in Watt plotted for the VCCINT, GTVCC, VCCAUX, and VCCBRAM rails |
| 15 | Temperature | Monitors the current die temperature |

Notes:
1. Items 2 through 5 are duplicated for each of the two datapaths.
The GUI was developed using the JAVA environment. The Java Native Interface (JNI) was used to build the bridge between the driver and the GUI. This code can also be used with the Windows operating system with only minor changes.

Evaluating the TRD

1. To start the data traffic on the two datapaths:
 a. Click **Start** on Datapath-0 as shown in Figure 26. This enables the driver to start generating the data for Datapath-0.
 b. Click **Start** on Datapath-1 as shown in Figure 26. This enables the driver to start generating the data for Datapath-1.

2. Verify TRD operations through the status information provided by the GUI as shown in Figure 27:
 a. Verify PCIe endpoint throughput.
 b. Verify the DMA Channel throughput for Datapath-0.
 c. Verify the DMA Channel throughput for Datapath-1.
 d. Verify that there are no buffer descriptor errors for error-free operation.

![Figure 26: Start Data Traffic from GUI](UG967_26_111312)
3. Click the **Performance Plots** tab. The system-to-card and card-to-system performance numbers for a specific packet size are shown. The packet size can be adjusted and the resulting performance variation observed.

4. Close the GUI. This uninstalls the driver and opens the driver installation options screen of the Artix-7 FPGA base TRD. Driver un-installation requires the control and monitoring GUI to first be closed.

This completes system performance evaluation of the Artix-7 FPGA base TRD using the pre-built demonstration bit file. The reference design can now be modified. The Vivado Design Suite must be installed before proceeding with custom modifications. The design tools do not need to be installed on the same host PC in which the AC701 evaluation board is installed.

Figure 27: Verifying Error-free Operation and Performance Plots
Appendix A

Additional Resources

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see the Xilinx Support website.

For continual updates, add the Answer Record to your myAlerts.

For definitions and terms, see the Xilinx Glossary.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual property at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting tips.

References

The most up to date information related to the AC701 Evaluation Kit and its documentation is available on these websites:

AC701 Evaluation Kit
AC701 Evaluation Kit Documentation
AC701 Evaluation Kit Master Answer Record (AR 51900)
Artix-7 FPGA Base Targeted Reference Design Master Answer Record (AR 53372)

These Xilinx documents and sites provide supplemental material useful with this guide:

1. AC701 Evaluation Board for the Artix-7 FPGA User Guide (UG952)
2. 7 Series FPGA AMS Targeted Reference Design User Guide (UG960)
4. 7 Series FPGAs Integrated Block for PCI Express User Guide (PG054)
5. Synthesis and Simulation Design Guide (UG626)
7. Understanding Performance of PCI Express Systems (WP350)
8. LogiCORE IP Aurora 8B/10B v7.1 User Guide (UG766)
10. LogiCORE IP AXI4-Stream Interconnect v1.1 Product Guide (PG035)
11. LogiCORE IP AXI Virtual FIFO Controller v1.1 Product Guide (PG038)
Appendix A: Additional Resources

12. 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476)
13. 7 Series FPGAs Memory Interface Solutions User Guide (UG586)
14. Artix-7 FPGA Integrated Block for PCI Express (UG477)
15. AC701 Evaluation Board for the Artix-7 FPGA User Guide (UG952)

Additional References

These external websites provide supplemental material useful with this guide:

17. Northwest Logic
 (PCI Express® Solution, DMA Back End Core)
18. Fedora Project
 (Fedora operating system information and downloads)
19. PicoBlaze 8-bit Microcontroller
 (PicoBlaze™ 8-bit Microcontroller information and download)
20. Vivado Design Suite product page
 (Vivado® Design Suite information and downloads)
21. Artix-7 FPGA Product Table
 (List of Artix®-7 FPGAs)
22. Silicon Labs
 Si570, Si5324C, CP2103GM, VCP Drivers
Appendix B

Warranty

THIS LIMITED WARRANTY applies solely to standard hardware development boards and standard hardware programming cables manufactured by or on behalf of Xilinx (“Development Systems”). Subject to the limitations herein, Xilinx warrants that Development Systems, when delivered by Xilinx or its authorized distributor, for ninety (90) days following the delivery date, will be free from defects in material and workmanship and will substantially conform to Xilinx publicly available specifications for such products in effect at the time of delivery. This limited warranty excludes:

(i) engineering samples or beta versions of Development Systems (which are provided “AS IS” without warranty); (ii) design defects or errors known as “errata”; (iii) Development Systems procured through unauthorized third parties; and (iv) Development Systems that have been subject to misuse, mishandling, accident, alteration, neglect, unauthorized repair or installation. Furthermore, this limited warranty shall not apply to the use of covered products in an application or environment that is not within Xilinx specifications or in the event of any act, error, neglect or default of Customer.

For any breach by Xilinx of this limited warranty, the exclusive remedy of Customer and the sole liability of Xilinx shall be, at the option of Xilinx, to replace or repair the affected products, or to refund to Customer the price of the affected products. The availability of replacement products is subject to product discontinuation policies at Xilinx. Customer may not return product without first obtaining a customer return material authorization (RMA) number from Xilinx.

THE WARRANTIES SET FORTH HEREIN ARE EXCLUSIVE. XILINX DISCLAIMS ALL OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, AND ANY WARRANTY THAT MAY ARISE FROM COURSE OF DEALING, COURSE OF PERFORMANCE, OR USAGE OF TRADE. (2008.10)

Do not throw Xilinx products marked with the “crossed out wheeled bin” in the trash. Directive 2002/96/EC on waste electrical and electronic equipment (WEEE) requires the separate collection of WEEE. Your cooperation is essential in ensuring the proper management of WEEE and the protection of the environment and human health from potential effects arising from the presence of hazardous substances in WEEE. Return the marked products to Xilinx for proper disposal. Further information and instructions for free-of-charge return available at: http://www.xilinx.com/ehs/weee.htm.
Appendix B: Warranty