

70 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 3: Functional Description

User Interface—Control and Monitor GUI
The control and monitor GUI is the main application tool for the configuration, status, and
statistics display. When installed, the driver appears as a device table entry in Linux. The
GUI uses the typical file-handling functions (open, close, read, write, ioctl) on this device to
communicate with the driver. These calls result in the invocation of the appropriate driver
entry points. The I/O control function ioctl() is used as a driver entry point by the
application GUI.

Figure 3-16 shows a screen capture of the GUI status. An explanation of the various fields
referenced by numbers follows.

1. Test start/stop control for memory application

2. Min. Packet Size: Minimum packet size selection in bytes

3. Max. Packet Size: Maximum packet size selection in bytes

4. Payload Statistics: Shows the payload statistics graphs based on DMA engine
performance monitor

5. PCIe statistics: Plots the PCIe transaction interface utilization

6. Throughput: DMA payload throughput in Gb/s for each engine.

7. DMA Active Time: The time (in nanosecond) the DMA engine has been active in the
last one second.

8. DMA Wait Time: The time (in nanosecond) the DMA was waiting for the software to
provide more descriptors.

9. BD Errors: Indicates a count of descriptors which caused a DMA error – indicated by
the error status field in descriptor update

10. BD Short Errors: Indicates short error in descriptors in the transmit direction when the
entire buffer specified by length in the descriptor could not be fetched. This field is not
applicable for receive direction.

X-Ref Target - Figure 3-16

Figure 3-16: Software Application Screen Capture

1

6
7
8
9

10

12
13

16

15
14

4

17

11

5

2 3

UG392_c3_16_121709

http://www.xilinx.com

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 71
UG392 (v1.5) October 5, 2010

Software Design Description

11. # SW BDs: Indicates count of total descriptors set up in the descriptor ring

12. # SW Buffers: Indicates count of total data buffers associated with the ring

13. Interrupts Enabled: Indicates interrupt enable status for that DMA engine

14. PCIe Transmit: Reports the TRN transmit utilization as obtained from the transaction
monitor in hardware

15. PCIe Receive: Reports the TRN receive utilization as obtained from the transaction
monitor in hardware

16. PCIe Status: Reports the status of various PCIe fields as reported in the endpoint’s
configuration space

17. Text pane at the bottom shows up informational messages, warnings or errors.

The GUI has individual tabs for the following:

Status

• Link status for PCI Express

• DMA Engine status

The driver always maintains information on the status of the hardware. The GUI invokes
ioctl() to read this status information and updates it every few seconds.

Statistics

• Link statistics for PCI Express provided by hardware

• Graphic display of all statistics

The driver maintains a set of arrays to hold per-second sampling points of these statistics.
These statistics are periodically collected by the performance monitor handler. The arrays
are managed in a circular fashion. The GUI periodically invokes an ioctl() to read these
statistics and then displays them.

A separate test button is provided to run user tests. The test button is applicable only to the
memory path in the design as the traffic for Ethernet is generated by upper layers (that is,
TCP/IP) and by standard applications.

Test

• Test setup

• Start/Stop of test

When the user starts a test, the GUI informs the driver the parameters of the test:

• Minimum and maximum packet size. If these are different, the driver generates
packets of random sizes within these bounds.

The driver entry point sets up the test parameters and informs the block data handler,
which then starts setting up the block data buffers for transmission, reception, or both.
Similarly, if the user were to abort a test, the GUI informs the driver, which sets up the
abort mechanism. The test is aborted by stopping the transmit side flow and then allowing
the receive side flow to drain.

The GUI programming environment is GTK+.

http://www.xilinx.com

72 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 3: Functional Description

System Logging
The drivers also generate system messages which can be viewed via
/var/log/messages files or the dmesg tool or the System Logs tool. The level of logging
can be controlled by setting macros in the Makefiles, as described in Log Verbosity Level in
Chapter 5. Increasing the log verbosity level affects the driver and, therefore, the system
throughput.

http://www.xilinx.com

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 73
UG392 (v1.5) October 5, 2010

Chapter 4

Performance Estimation

This chapter presents a theoretical estimation of performance on the interface for PCI
Express, Ethernet interface, and the memory interface. It also presents a method to
measure performance.

PCI Express Performance
PCI Express is a serialized, high bandwidth and scalable point-to-point protocol that
provides highly reliable data transfer operations. The maximum transfer rate of a protocol
specification v1.1 compliant core is 2.5 Gb/s. This rate is the raw bit rate per-lane
per-direction and not the actual data-transfer rate. The effective data-transfer rate is lower
due to protocol overheads and other system design trade-offs.

The link performance of PCI Express together with packet DMA is estimated under the
following assumptions:

• Each buffer descriptor points to a 1 KB data buffer space

• Maximum Payload Size (MPS) = 128B

• Maximum Read Request Size (MRRS) = 128B

• Read Completion Boundary (RCB) = 64B

• TLPs of 3DW considered without extended CRC (ECRC): Total overhead of 20B

• One ACK assumed per TLP: DLLP overhead of 8B

• Update FC DLLPs are not accounted for but they do affect the final throughput
slightly

Performance is projected by estimating the overheads and then calculating the effective
throughput by deducting these overheads. Descriptor fetch/update as required for data
movement through DMA is also considered as an overhead.

Independent calculations are made for each direction of a C2S or a S2C DMA engine.

http://www.xilinx.com

74 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 4: Performance Estimation

The notes in Table 4-1 describe the abbreviated conventions.

Once all overheads for each DMA engine are estimated, effective throughput is calculated.
The throughput calculation for application data (packets available at the DMA streaming
interface) for a x1 link is tabulated in Table 4-2.

The S2C engine (data transmission, that is, reading data from system memory) issues read
requests and receives data through completions. This engine exercises data (actual frame)
traffic on the PCIe receive link giving a performance of ~1.38 Gb/s. This is the PCIe
memory read performance.

The C2S engine (data reception, that is, writing data to system memory) issues write
requests. This engine exercises data (actual frame) traffic on the PCIe transmit link giving
a performance ~1.64 Gb/s. This is PCIe memory write performance.

PCIe receive on C2S implies a descriptor fetch and ACK-NAK, resulting in a low overhead.
PCIe transmit on S2C is made up of descriptor and buffer fetch requests. Read requests do
not contribute towards data throughput as they are only headers.

Table 4-1: PCI Express Performance Estimation with DMA

Transaction Overhead ACK Overhead Comment

MRD:
C2S Descriptor = 20/1024 = 2.5/128

 8/1024 = 1/128
One descriptor fetch in a C2S engine for 1 KB data
(TRN-TX); 20B of TLP overhead and 8 bytes of DLLP
overhead

CPLD:
C2S Descriptor = (20+32)/1024 = 6.5/128 8/1024 = 1/128 Descriptor reception C2S engine (TRN-RX)

MWR:
C2S Descriptor = (20+12)/1024 = 4/128 8/1024 = 1/128 Descriptor update C2S engine (TRN-TX)

MWR: C2S Buffer = 20/128 8/128 MPS = 128B; Buffer write C2S engine (TRN-TX)

MRD:
S2C Descriptor = 20/1024 = 2.5/128

 8/1024 = 1/128 Descriptor fetch in S2C engine (TRN-TX)

CPLD:
S2C Descriptor = (20+32)/1024 = 6.5/128

8/1024 = 1/128 Descriptor reception S2C engine (TRN-RX)

MWR:
S2C Descriptor = (20+4)/1024 = 3/128

8/1024 = 1/128 Descriptor update S2C engine (TRN-TX)

MRD: S2C Buffer = 20/128 8/128 MRRS = 128B; Buffer fetch S2C engine (TRN-TX)

CPLD: S2C Buffer = 20/64 = 40/128 8/64 = 16/128 RCB = 64B; Buffer reception S2C engine (TRN-RX)

Notes:
1. Nomenclature for table: Memory Read transaction (MRD); Memory Write transaction (MWR); Completion with data (CPLD);

Card-to-system (C2S) for receive direction DMA; System-to-card (S2C) for transmit direction DMA.

Table 4-2: PCI Express Throughput Estimate

Direction Overhead Effective Throughput (Gb/s)

PCIe transmit (C2S only) 100 × 27.5/(128 + 27.5) = 17.68% 1.64

PCIe receive (C2S only) 100 × 16.5/(128 + 16.5) = 11.41% 1.77

PCIe transmit (S2C only) 100 × 42.5/(128 + 42.5) = 24.9% 1.5

PCIe receive (S2C only) 100 × 56.5/(128 + 56.5) = 30.6% 1.38

http://www.xilinx.com

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 75
UG392 (v1.5) October 5, 2010

Ethernet Performance

Ethernet Performance
The raw line rate of the Ethernet link is 1.25 Gb/s, which is commonly referred to as gigabit
Ethernet after accounting for 8B/10B encoding overheads.

The performance, as seen by various Ethernet applications at different layers, is lesser than
the throughput seen at the driver and the Ethernet interface. This is due to the various
headers and trailers inserted in each packet by all the layers of the networking stack.
Ethernet is used as a medium to carry traffic and various protocols, including TCP/UDP,
to implement protocol specific header/trailer formats.

Consider transmission control protocol (TCP) as an example. The protocol header includes
the following:

• TCP/IP Overhead: 20 bytes TCP header + 20 bytes IP header

• Ethernet Overhead: 14 bytes Ethernet header + 4 bytes trailer

Based on this overhead, the theoretical TCP throughput is as shown in Equation 4-1, where
D is the application message size in bytes.

Equation 4-1

More precisely, for application message sizes greater than 1460 bytes, the formula is shown
in Equation 4-2, where M is the MTU size configured on the system.

Equation 4-2

The calculation of theoretical throughput is tabulated in Table 4-3. The TCP/IP protocol
overhead has a significant impact when the send message sizes are smaller than ~1200
bytes.

Memory Controller Performance
The Spartan-6 FPGA memory controller block, as used in this design, has a total of 16 I/Os
interfacing to external DDR3 memory.

Table 4-3: Theoretical Throughput Estimate for TCP

Message Size in Bytes Effectiveness (%) Theoretical Throughput (Mb/s)

64 52.46 524.59

128 68.82 688.17

256 81.53 815.29

512 89.82 898.25

1024 94.64 946.40

1442 96.15 961.47

2048 96.92 969.21

4096 97.86 978.59

TCP throughput
D

D 40 18+ +
------------------------------⎝ ⎠

⎛ ⎞ 1000 Mb/s×=

TCP throughput
D

D 40+
-----------------⎝ ⎠

⎛ ⎞ M
M 14+()

-----------------------⎝ ⎠
⎛ ⎞× 1000 Mb/s×=

http://www.xilinx.com

76 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 4: Performance Estimation

Theoretical Calculation

Equation 4-3

Equation 4-4

Equation 4-5

Equation 4-4 calculates the theoretical maximum bandwidth of the memory controller. An
estimate of memory controller performance is as calculated in Equation 4-9:

With larger burst lengths, high efficiency is achievable. With a 32-bit port using a burst
length of 32, a total of 1024 bits are transferred.

Number of bits transferred per cycle is:

Equation 4-6

Total cycles used for 1024 bits:

Equation 4-7

Assuming 10 cycles read to write overhead:

Equation 4-8

Assuming 5% efficiency overhead for refresh:

Equation 4-9

The final estimated bandwidth available to the Virtual FIFO is 7.577 Gb/s.

In the current design, with x1 PCIe at 2.5 Gb/s line rate, the theoretical maximum rate at
which the virtual FIFO can read and write to memory controller is calculated as
32 bits × 62.5 MHz = 2 Gb/s. The average data throughput provided by the PCIe and
DMA is ~1.6 Gb/s in each direction.

Measuring Performance
This section describes methods to measure performance and presents an analysis of what
to expect when different parameters are varied.

PCI Express performance is dependent on factors like maximum payload size, maximum
read request size, and read completion boundary which depend on the systems chosen.
With higher MPS values, performance improves as packet size increases.

Table 4-4 lists the registers provided by the hardware to aid in the software performance
measurement.

Maximum I/O Rate double data rate() 333.5 MHz 2× 667 Mb/s= =

Maximum Bandwidth Maximum I/O rate() Number of I/Os()× =

 667 Mb/s 16× 10.627 Gb/s= =

16 bit width() 2 double data rate()× 32 bits/cycle=

1024 32⁄ 32 cycles/transfer=

32 42⁄ 76% efficiency=

71% efficiency at 667 Mb/s for 16-bit DDR3 7577 Mb/s 7.577 Gb/s= =

Table 4-4: Performance Registers in Hardware

Register Description

DMA Completed Byte Count DMA implements a completed byte-count register per engine, which counts the
payload bytes delivered to the user on the streaming interface.

TRN-TX Utilization This register counts traffic on TRN-TX interface including TLP headers for all
transactions.

http://www.xilinx.com

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 77
UG392 (v1.5) October 5, 2010

Measuring Performance

These registers are updated once every second by hardware. Software reads them
periodically at a one second interval. The value read directly gives the throughput in bytes
per second.

The TRN monitor registers can be read to understand PCIe transaction layer utilization.
The DMA registers provide throughput measurement for the actual payload transferred.

These registers only estimate hardware performance. A software application is required to
measure application performance of both the hardware and software impact on overall
throughput.

Ethernet Performance Measurement
Ethernet performance can be measured in a private LAN environment using a standard
benchmarking tool like Netperf.

Netperf 2.4 can be used as the testbench for measuring outbound and inbound
throughput. This is a data transfer application running on top of the TCP/IP stack. The
client can be configured for different message sizes and to open a TCP connection or a UDP
connection. The two systems are connected in a private LAN connection, which avoids
other external LAN traffic. To measure the CPU utilization as accurately as possible, no
other applications (other than the standard ones) should be run during the test.

Throughput Estimate and Analysis

It is possible, based on the theoretical estimates to obtain a throughput of up to 935 Mb/s
in both inbound and outbound directions.

For jumbo frames, a higher performance is expected. Frames greater than 1514 bytes are
categorized as jumbo frames. The XPS-LL-TEMAC IP used in this TRD supports jumbo
frames up to 9K bytes.

Higher performance is expected with an increase in MTU size. A higher value of MTU
implies that a packet has more payload and less header content.

CPU Utilization Analysis

Improved CPU utilization for larger packets is expected with checksum offload enabled.
By offloading an expensive operation to hardware, such as a checksum calculation, the
CPU time can be efficiently utilized elsewhere. With small packets, little improvement can
be seen in CPU utilization with checksum offload as checksum computation does not
contribute greatly to CPU utilization overhead, as does the protocol overhead of using
small packets.

Refer to Appendix C, Setting Up a Private LAN for steps on setting up a private LAN
connection.

TRN-RX Utilization This register counts traffic on TRN-RX interface including TLP headers for all
transactions.

TRN-TX Payload This register counts payload for memory write transactions upstream, which
includes buffer write and descriptor updates.

TRN-RX payload This register counts payload for completion transactions downstream, which
includes descriptor or data buffer fetch completions.

Table 4-4: Performance Registers in Hardware (Cont’d)

Register Description

http://www.xilinx.com

78 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 4: Performance Estimation

http://www.xilinx.com

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 79
UG392 (v1.5) October 5, 2010

Chapter 5

Designing with the TRD Platform

The Targeted Reference Design (TRD) platform is intended to be a framework for system
designers to derive extensions or modify designs.

This chapter outlines various ways for a designers to evaluate, modify and re-run the TRD
for the connectivity platform.

The suggested modifications are grouped under these categories:

• Software-only modifications: Only changes required to the software driver are
covered. The same bitstream provided with the TRD works. Only driver
recompilation is required.

• Design (top-level only) modifications: Changes to parameters in the top-level file of
the design (design/source/s6_pcie_dma_ddr3_gbe.v). No other files require
modifications. The design must be re-implemented. See Implementing the Design,
page 35 for instructions on design implementation. Depending on the modification,
the software driver might require changes.

• Design Changes: This modification shows the plug-n-play feature of the TRD
platform. The design must be re-implemented after making the changes. The process
requires licenses for additional IP cores being used (if any). The software driver must
be modified accordingly.

Any change to the software driver or macros in Makefiles require re-compilation and
re-building of the kernel objects. All paths for various files mentioned in this chapter are
under the s6_pcie_dma_ddr3_gbe directory.

While describing the modifications, each section also describes the implication of the
corresponding modification on the overall functionality or performance.

Software-Only Modifications
This section describes modifications to the platform done directly in the software driver.
The same hardware design (bitstream) works.

Macro-Based Modifications
This section describes the modifications that result when compiling the software driver
with various macro options, either in the Makefile or in the driver source code.

Descriptor Ring Size

The number of descriptors to setup in the descriptor ring are defined as a compile-time
option.

http://www.xilinx.com

80 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 5: Designing with the TRD Platform

Modify the DMA_BD_CNT in driver/xdma/xdma_base.c macro to change the size of
the buffer descriptor ring used for DMA operations. Smaller rings can adversely affect
throughput, which is observed by running the performance tests.

A larger descriptor ring size uses additional memory but improves performance because
more descriptors can be queued to hardware.

Log Verbosity Level

Log verbosity level can be controlled by:

• Adding DEBUG_VERBOSE in the Makefiles, which causes the drivers to generate
verbose logs.

• Adding DEBUG_NORMAL in the Makefiles, which causes the drivers to generate
informational logs.

• Removing both these macros from the Makefiles, which causes the drivers to only
generate error logs.

Changes in the log verbosity are observed when examining the system logs. Increasing the
logging level also causes a drop in throughput.

Driver Mode of Operation

The base DMA driver is configured to run in either interrupt mode with MSI or Legacy
interrupts, or in polled mode. Only one mode can be selected. The driver is controlled by:

• Adding TH_BH_ISR in the driver/xdma/Makefile, which causes the base DMA
driver to run in interrupt mode.

By default, polled mode of operation is enabled.

Size of Block Data

The default amount of data being transmitted and received in the block data driver, which
changes the throughput observed with this driver, is modified by:

• Modifying NUM_BUFS in driver/xblockdata/user.c to change the number of
buffers in the free pool available to the driver.

Do not exceed the available system memory when changing these defaults.

Checksum Offload

By default, the hardware supports checksum offload as defined by the
C_TEMAC0_TXCSUM and C_TEMAC0_RXCSUM parameters in
s6_pcie_dma_ddr3_gbe.v. To inform the TCP/IP stack layers of checksum offload
capability in hardware, the driver needs to be compiled with an additional flag. Navigate
to the driver/xgbeth folder and modify the Makefile to include -DENABLE_CSO in the
EXTRA_CFLAGS option.

Recompiling the Ethernet driver with this option enables the checksum offload feature.
Checksum offload reduces CPU utilization.

Software Driver Code Modifications
This section describes modifications to the software driver code to change design behavior
or performance by modifying the block data handler (driver/xblockdata/user.c).

http://www.xilinx.com

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 81
UG392 (v1.5) October 5, 2010

Design Top-Level Modifications

Data is written into DDR3 memory in a flat, unstructured manner, with known patterns. It
is possible to create a packet format, with some form of CRC, which can be verified on the
receive path. Packets are generated and verified within the driver and are not conveyed to
or from any real user application as data. Transferring this data between the driver and a
user application requires significant changes in the driver entry points and in the driver's
PutPkt() and GetPkt() routines. The data is transmitted (written) into DDR3 memory, and
is looped back and received (read) from DDR3 memory.

Design Top-Level Modifications
This section describes changes to parameters in the top-level design file which can change
the design behavior. Modifications to the software driver might be required based on the
parameters being changed.

Hardware-Only Modifications
This section outlines the changes that only require parameter changes in the design
top-level file (source/s6_pcie_dma_ddr3_gbe.v). No change to software is required.

PCIe High-Performance Mode

The Endpoint block for PCI Express provides an optional high-performance mode
utilizing extra block RAMs which increases the credits as more packet buffering space is
available. This mode can be enabled by defining PCIE_HIGH_PERF during design
implementation. Enabling this option shows a change in performance.

Hardware and Software Modifications
This section outlines changes to the top-level design file (s6_pcie_dma_ddr3_gbe.v)
which also requires software driver modifications.

Jumbo Frames

To enable jumbo frames, transmit and receive FIFO size in XPS-LL-TEMAC is varied by
varying the following parameters in the top-level file:

• C_TEMAC0_TXFIFO in design/source/s6_pcie_dma_ddr3_gbe.v modifies
the transmit FIFO depth

• C_TEMAC0_RXFIFO in design/source/s6_pcie_dma_ddr3_gbe.v modifies
the receive FIFO depth

The corresponding change in software requires jumbo frames to be enabled in the Ethernet
handler:

• Add ENABLE_JUMBO in the driver/xgbeth/Makefile

Larger storage for packets implies a smaller number of packets being dropped at the
Ethernet receive interface which reduces retransmissions from upper layers in the TCP
stack.

PCIe Vendor and Device ID

The vendor and device ID for PCI Express are changed by changing parameters in the top
level file:

http://www.xilinx.com

82 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 5: Designing with the TRD Platform

• CFG_VEN_ID in the file design/source/s6_pcie_dma_ddr3_gbe.v changes
the vendor ID

• CFG_DEV_ID in the file design/source/s6_pcie_dma_ddr3_gbe.v changes the
device ID

The corresponding change in software:

• PCI_VENDOR_ID_DMA: Change this macro in driver/xdma/xdma_base.c

• PCI_DEVICE_ID_DMA: Change this macro in driver/xdma/xdma_base.c

Architectural Modifications
This section describes architecture level changes to the functionality of the platform. These
include removing and inserting a delivered application.

Aurora IP Integration
The LogiCORE IP Aurora 8B/10B implements the Aurora 8B/10B protocol using the
high-speed GTP transceivers. The core is a scalable, lightweight link-layer protocol for
high-speed serial communication. It is used to transfer data between two devices using
transceivers. It provides an easy-to-use LocalLink compliant framing interface. This core is
generated from the CORE Generator software.

A 1-lane Aurora design with 4-byte user interface data width can be connected in place of
XPS-LL-TEMAC, as shown in Figure 5-1.

X-Ref Target - Figure 5-1

Figure 5-1: Integrating Aurora

Packet
DMA

(32-bit)

C
2S

S
2C

C
2S

S
2C

x1
 L

in
k

to
 P

C
I E

xp
re

ss

3rd party IP FPGA Logic

32
-b

it
T

R
N

DMA Register
Interface

Virtual
FIFO
Layer

MIG
User

Interface

User Space Registers

LocalLink
FIFO

1.25Gb/s
Serial
Interface

NFC I/F

TX_LL

RX_LL

32-bit
Streaming
Interface

fifo_status

32-bit
Streaming
Interface

G
T

P
 T

ra
ns

ce
iv

er

 x
1

E
nd

po
in

t B
lo

ck
 fo

r
v1

.1
 P

C
I E

xp
re

ss

W
ra

pp
er

 fo
r

P
C

I E
xp

re
ss

Xilinx IPIntegrated Blocks On SP605

Memory
Controller

Block

M
IG

 W
ra

pp
er

G
T

P
Tr

an
sc

ei
ve

r

A
ur

or
a

IP

S
D

R
A

M

ug392_c5_01_120609

http://www.xilinx.com

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 83
UG392 (v1.5) October 5, 2010

Architectural Modifications

The Aurora core does not support throttling in the receive direction as the core has internal
buffers.

The suggested approach is to use a FIFO between the DMA and Aurora and to use the
native flow control (NFC) in Aurora to prevent FIFO overflow. FIFO overflow control
through NFC is a widely used option.

A LocalLink FIFO can be used for this purpose. A FIFO output indicating percentage of
FIFO being occupied can be used to drive NFC.

The round trip delay through the Aurora interfaces between the NFC request and the first
pause arriving at the originating channel partner must not exceed 256 symbol times.

For a 1.25 Gb/s rate, 1 symbol = 10 × 800 ps = 8 ns. With a 256 symbol time, the result is
256 × 8 ns = 2048 ns

With a 62.5 MHz clock (16 ns period), this is 128 clock cycles (which is the worst-case
delay). If a LL-FIFO of depth 512 is used, then the NFC should be asserted once it is
half-full.

Instead of the network driver, the same block data driver code provided is used to drive
traffic over Aurora. The Aurora serial interface can be looped back externally or connected
to another Aurora link partner.

Using Multiple Virtual FIFO Instances
The current design uses one virtual FIFO, which utilizes one 32-bit bidirectional port on
the Spartan-6 FPGA memory controller block. As additional memory bandwidth is
available, the same SDRAM can be partitioned to implement multiple FIFOs. This can be
achieved by multiple instantiations of the virtual FIFO logic. The example in Figure 5-2
shows three memory controller ports. Each virtual FIFO interface has a dedicated address
range within DDR3. This address range is defined by start and end address ranges for each
virtual FIFO instance. Inline processing (as shown) can be added between the virtual FIFO
interfaces.

http://www.xilinx.com

84 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 5: Designing with the TRD Platform

Accordingly, a software application can be developed as detailed in Software Driver Code
Modifications, page 80.

If the application developed is for image manipulation or processing, certain image
processing operations (for example: image rendering or color inversion) can be offloaded
to hardware as inline processing operations (shown in the blocks in Figure 5-2). Other
examples of inline processing include an operation on chunks of data (CRC calculation) or
some signal processing transformations (FFT or digital filtering).

X-Ref Target - Figure 5-2

Figure 5-2: DDR3 as Multiple Virtual FIFO

VFIFO Write
Control

MCB
Write Port

Control

CoreGen
FIFO

DMA S2C
Interface

MIG User Interface

Memory
Controller

32-bit
Bidirectional

PortDMA C2S
Interface

MIG Data
Write

Interface

MIG
Command
Interface

MIG Data
Read

Interface

MCB
Read Port

Control

MCB
Command

Port
Control

VFIFO-Read
Control

Virtual FIFO - 1

CoreGen
FIFO

VFIFO Write
Control

MCB
Write Port

Control

CoreGen
FIFO

DMA S2C
Interface

DMA C2S
Interface

MIG Data
Write

Interface

MIG
Command
Interface

MIG Data
Read

Interface

MCB
Read Port

Control

MCB
Command

Port
Control

VFIFO-Read
Control

Virtual FIFO - 2

CoreGen
FIFO

VFIFO Write
Control

MCB
Write Port

Control

CoreGen
FIFO

DMA S2C
Interface

DMA C2S
Interface

MIG Data
Write

Interface

MIG
Command
Interface

MIG Data
Read

Interface

MCB
Read Port

Control

MCB
Command

Port
Control

VFIFO-Read
Control

Virtual FIFO - 3

CoreGen
FIFO

UG392_c5_02_120509

32-bit
Bidirectional

Port

DMA C2S
Interface

DMA S2C
Interface

Inline
Processing

Blocks

32-bit
Bidirectional

Port

DDR3
SDRAM

http://www.xilinx.com

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 85
UG392 (v1.5) October 5, 2010

Appendix A

Register Description

This appendix is a quick reference to describe the registers programmed by the software
driver. For all registers and further details, refer to the specific user guides.

This appendix also describes the hardware registers and mapping of these registers with
respect to the base address register (BAR) in PCI Express.

All DMA engine registers are mapped to BAR0. Table A-1 describes the mapping of
multiple channel registers.

Registers for interrupt handling in the DMA are grouped under a category called common
registers. These registers are offset from BAR0 by 0x4000.

Table A-1: DMA Channel Register Address

DMA Channel Offset from BAR0

Channel-0 S2C 0x0

Channel-1 S2C 0x100

Channel-0 C2S 0x2000

Channel-1 C2S 0x2100

http://www.xilinx.com

86 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Appendix A: Register Description

Figure A-1 shows the layout of registers.

The user logic registers are mapped as described in Table A-2. XPS-LL-TEMAC and
external PHY registers are mapped to BAR1.

DMA Registers
This section describes the prominent DMA registers frequently used by the software
driver. For a detailed description of all registers available, please refer to the Northwest
Logic Packet DMA Backend Core User Guide, page 10.

Channel Specific Registers
The registers described in Table A-3 through Table A-6 are present in all channels. The
address of the register is the channel address offset from BAR0 plus the register offset.

X-Ref Target - Figure A-1

Figure A-1: Register Map

PCI Express NWL Packet DMA
USER REGISTERS

XPS-LL-TEMAC

Register
Interface

TRN Utilization-TX

TRN Utilization-RX

User Interrupt

RAF

UAW1

UAW0

AFM

RCW1

TC

Ethernet Statistics

MDIO Interface

PHY Specific
Status Register

PHY Control Register

MARVELL_PHY

Virtual FIFO Start Address

Virtual FIFO End Address

Memory Packet Size

UserApp0

DMA Engine Control

Reg_Next_Desc_Ptr

Reg_SW_Desc_Ptr

DMA Completed
Byte Count

DMA Common
Control_Status

Target
Interface

Engine Registers

BAR0 + 0x4000
B

A
R

1
+

 0
x

0

BAR0

BAR1

UG392_c6_01_120209

Table A-2: User Register Address Offsets

User Logic Register Group Range (Offset from BAR0)

User Application Advertisement Registers 0x8000—0x80FF

User Interrupt Registers 0x8100—0x81FF

TRN Utilization Registers 0x8200—0x82FF

User App0 Registers 0x9000—0x90FF

User App1 Registers 0x9100—0x91FF

http://www.xilinx.com

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 87
UG392 (v1.5) October 5, 2010

DMA Registers

DMA Engine Control (0x0004)

Next Descriptor Pointer (0x0008)

Software Descriptor Pointer (0x000C)

Table A-3: DMA Engine Control Register (0x0004)

Bit Field Mode Default Value Description

0 Interrupt enable RW 0 Enables interrupt generation.

1 Interrupt active RW1C 0
Interrupt active is set whenever an interrupt event
occurs. Write a 1 to clear.

2 Descriptor complete RW1C 0
Asserted when an interrupt on completion bit is set in
the descriptor.

3
Descriptor alignment
error RW1C 0

Asserted when the descriptor address is unaligned and
that DMA operation is aborted.

4 Descriptor fetch error RW1C 0
Asserted when the descriptor fetch errors out. That is,
the completion status is not successful.

5 SW_Abort_Error RW1C 0
Asserted when the DMA operation is aborted by
software.

8 DMA Enable RW 0
Enables the DMA engine and once enabled, the engine
compares the next descriptor pointer and software
descriptor pointer to begin execution.

10 DMA_Running RO 0 Indicates DMA in operation.

11 DMA_Waiting RO 0
Indicates DMA waiting on software to provide more
descriptors.

14 DMA_Reset_Request RW 0
Issues a request to user logic connected to DMA to abort
outstanding operation and prepare for reset. This is
cleared when user acknowledges the reset request

15 DMA_Reset RW 0
Asserting this bit resets the DMA engine and issues a
reset to the user logic

Table A-4: DMA Next Descriptor Pointer Register

Bit Field Mode Default Value Description

[31:5] Reg_Next_Desc_Ptr RW 0
Next Descriptor Pointer: Writable when DMA is not
enabled. It is read only when DMA is enabled. This should
be written to initialize the start of a new DMA chain.

[4:0] Reserved RO 5'b00000 Required for 32-byte alignment

Table A-5: DMA Software Descriptor Pointer Register

Bit Field Mode Default Value Description

[31:5] Reg_SW_Desc_Ptr RW 0
Software Descriptor Pointer: The location of the first
descriptor in the chain, which is still owned by the
software

[4:0] Reserved RO 5'b00000 Required for 32-byte alignment

http://www.xilinx.com

88 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Appendix A: Register Description

Completed Byte Count (0x001C)

Common Registers
The registers described in this section are common to all engines and are located at the
given offsets from BAR0.

Common Control and Status (0x4000)

Network Path IP Registers
This section defines the commonly used XPS-LL-TEMAC and PHY registers. For a detailed
explanation of all registers, please refer to the respective user guides.

XPS-LL-TEMAC Registers
The XPS-LL-TEMAC contains memory and addressable registers for read/write
operations. It is assumed that only TEMAC0 is used. The memory map is divided into
three types:

• Soft Registers: Registers in the XPS-LL-TEMAC wrapper; for example, the reset and
statistics registers.

Table A-6: DMA Completed Byte Count Register

Bit Field Mode Default Value Description

[31:2] DMA_Completed_Byte_Count RO 0
Completed Byte Count: Records the number of
bytes that transferred in the previous second. It
has a resolution of four bytes.

[1:0] Sample Count RO 0
Sample Count: Incremented every time a
sample is taken at a one second interval.

Table A-7: DMA Common Control and Status Register

Bit Field Mode Default Value Description

0 Global Interrupt Enable RW 0
Globally enables or disables interrupts for all DMA
engines.

1 Interrupt Active RO 0
Reflects the state of the DMA interrupt hardware output
considering the state of the global interrupt enable.

2 Interrupt Pending RO 0
Reflects the state of the DM A interrupt output without
considering the state of the global interrupt enable.

3 Interrupt Mode RO 0
0: MSI mode

1: Legacy interrupt mode

4 User Interrupt Enable RW 0 Enables generation of user interrupts.

5 User Interrupt Active RW1C 0 Indicates an active user interrupt.

23:16 S2C Interrupt Status RO 0
Bit[i] indicates interrupt status of S2C DMA engine[i]. If
S2C engine is not present, then this bit is read as zero.

31:24 C2S Interrupt Status RO 0
Bit[i] indicates interrupt status of C2S DMA engine[i]. If
C2S engine is not present, then this bit is read as zero.

http://www.xilinx.com

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 89
UG392 (v1.5) October 5, 2010

Network Path IP Registers

• Direct Registers: Registers in the soft TEMAC core

• Indirect Registers: Registers in the soft TEMAC core which are indirectly addressable
or external PHY registers. These registers are accessed through directly accessible
registers as detailed in the XPS-LL-TEMAC data sheet.

The register offsets are mentioned from BAR1 for directly addressable registers.

Reset and Address Filter Register (0x0)

Statistics Registers

Only certain statistics registers which indicate errors are read in the design.

Receive Configuration Word Register (Indirect, 0x240)

This register sets the behavior of the receive TEMAC interface.

Table A-8: Reset and Address Filter Register

Bit Field Mode Default Value Description

31 HtRst RW 0

TEMAC Reset: This bit provides a means for resetting the soft
TEMAC core. This bit is self clearing.

0: Normal operation, TEMAC core not reset

1: Initiate a reset of the TEMAC core

18 StatsRst RW 0

Statistics Counters Reset: This bit provides a means for resetting the
statistics counters if present. This bit is self clearing.

0: Normal operation, statistics counters not reset

1: Initiate a reset of the statistics counters

Table A-9: Statistics Register

Offset Register Description

0x298 FCS Errors (lower 32 bits) A count of received frames that failed the CRC check and were at
least 64 bytes in length.

0x2B8
Length/Type out of range
(lower 32 bits)

A count of frames received that had length/type field not
matching the number of data bytes received.

0x2F0 Underrun Errors (lower 32 bits) A count of frames that would otherwise be transmitted but could
not be completed due to FIFO underrun.

Table A-10: Receive Configuration Word Register

Bit Field Mode Default Value Description

31 RST RW 0

Reset: When this bit is 1, the receiver is reset. The bit automatically resets
to 0. The reset also sets all of the receiver configuration registers to default
values.

0: No reset

1: Initiates a receiver reset

30 JUM RW 1

Jumbo Frame Enable: When this bit is 1, the receiver accepts frames over
the maximum length specified in the IEEE 802.3 specification.

0: Receive jumbo frames disabled

1: Receive jumbo frames enabled

http://www.xilinx.com

90 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Appendix A: Register Description

Transmit Configuration Word Register (Indirect, 0x280)

This register sets the behavior of the transmit path of the TEMAC.

Management Configuration Register (Indirect, 0x340)

This register programs the MDIO clock divider and successful programming of this
register generates the MDIO clock used to program the PHY.

29 FCS RW 1

In-Band FCS Enable: When this bit is 1, the receiver provides the FCS field
with the rest of the frame data. When this bit is 0 the FCS field is stripped
from the receive frame data. In either case the FCS field is verified.

0: Strip the FCS field from the receive frame data

1: Provide the FCS field with the receive frame data

28 RX RW 1

Receive Enable: When this bit is 1, the receiver logic is enabled to operate.
When this bit is 0, the receiver ignores activity on the receive interface.

0: Receive disabled

1: Receive enabled

25 LT_DIS RW 0

Length/Type Field Valid Check Disable: When this bit is 1, it disables the
Length/Type field check on the receive frame.

0: Perform Length/Type field check

1: Do not perform Length/Type field check

Table A-10: Receive Configuration Word Register (Cont’d)

Bit Field Mode Default Value Description

Table A-11: Transmit Configuration Word Register

Bit Field Mode
Default
Value

Description

31 RST RW 0

Reset. When this bit is 1, the transmitter is reset. The bit automatically resets to 0.
The reset also sets all of the transmitter configuration registers to their default
values.

0: no reset

1: initiates a transmitter reset

30 JUM RW 1

Jumbo Frame Enable When this bit is 1, the transmitter sends frames over the
maximum length specified in IEEE 802.3 specification.

0: send jumbo frames disabled

1: send jumbo frames enabled

29 FCS RW 0

In-Band FCS Enable. When this bit is 1, the transmitter accepts the FCS field with
the rest of the frame data. When this bit is 0 the FCS field is calculated and
supplied by the transmitter.

0: transmitter calculates and sends FCS field

1: FCS field is provided with transmit frame data

28 TX RW 1

Transmit Enable. When this bit is 1, the transmit logic is enabled to operate.

0: transmit disabled

1: transmit enabled

http://www.xilinx.com

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 91
UG392 (v1.5) October 5, 2010

User Application Registers

Address Filter Mode Register (Indirect, 0x390)

User Application Registers
The various user registers are described in this section. All registers are 32 bits wide. Bit
fields not defined are considered reserved with a read always returning a value of zero.

Design Version Register (0x8000)
This register tracks the design version so that code maintenance is easily traceable. The
software driver uses this register to associate the correct version with the hardware design.

Table A-12: Management Configuration Register

Bit Field Mode
Default
Value

Description

6 MDIO_EN RW 0

MDIO Enable: When this bit is 1, the MDIO (MII Management)
interface is used to access the PHY.

0: MDIO disabled

1: MDIO enabled

5:0 CLK_DIVIDE RW 0
Clock Divide: This value is used to derive the MDC (MII
Management interface clock) signal. The maximum permitted
frequency is 2.5 MHz.

Table A-13: Address Filter Mode Register

Bit Field Mode
Default
Value

Description

31 PM RW 0

Promiscuous Receive Address Mode Enable: When this bit is 1, the
receive address filtering is disabled and all destination addresses are
accepted. When this bit 0, the receive address filtering is enabled.

0: address filtering enabled

1: address filtering disabled (all addresses accepted)

Table A-14: Design Version Register

Bit
Location

Field Mode Default Value Description

31:28 Device RO 0000
• 0000: Spartan-6
• 0001: Virtex-6

11:4 Version RO 0001_0000 Defines TRD version; updated based on release versions.

3:0 Sub-version RO 0000 Non-AXI version of design.

http://www.xilinx.com

92 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Appendix A: Register Description

User Application Advertisement Registers

UserApp Advertisement Register (0x8004)

This register advertises which user application is connected to which DMA engine. This
enables the software to associate appropriate descriptors with relevant DMA engines in
case Ethernet path and memory path are swapped in hardware.

The following bits in the register are engine indicators:

• [31:28]: S2C Engine 0

• [27:24]: S2C Engine 1

• [15:12]: C2S Engine 0

• [11:8]: C2S Engine 1

User Interrupt Registers
These registers handle the various interruptible conditions in the user application. For an
interruptible condition, if the interrupt is enabled, an user interrupt is signaled to the DMA
which gets converted to either MSI or a legacy interrupt message upstream depending on
the interrupt mode enabled by the software driver in the configuration space for PCI
Express.

User Interrupt Enable Register (0x8100)

This is the user interrupt enable register which enables/disables specific user interrupts.

Table A-15: UserApp Advertisement Register

Bit
Location

Field Mode Default Value Description

31:28 S2C_0 RO 0001
A value of 0001 indicates network path connected to S2C
engine-0.

27:24 S2C_1 RO 0010
A value of 0010 indicates memory path connected to S2C
engine-1.

15:12 C2S_0 RO 1001
A value of 1001 indicates network path connected to C2S
engine-0.

11:8 C2S_1 RO 1010
A value of 1010 indicates memory path connected to C2S
engine-1.

Table A-16: User Interrupt Enable Register

Bit
Location

Field Mode
Default
Value

Description

31 PLB Error Enable RW 0
Setting this bit enables PLB error conditions to generate
interrupts over PCIe.

30
TEMAC
Interrupt Enable

RW 0
Setting this bit enables TEMAC interrupt conditions to
generate interrupts over PCIe.

http://www.xilinx.com

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 93
UG392 (v1.5) October 5, 2010

User Application Registers

The enable fields described in Table A-16 are set in combination with interruptible
conditions generates a user interrupt into DMA which translates to interrupts on a PCIe
link.

User Interrupt Status Register (0x8104)

This is the user interrupt status register which indicates what caused the user interrupt.
Relevant bits get set on corresponding errors. Software is required to write a 1 to clear the
set bits which acknowledge the user interrupt.

TRN Monitor Registers
This defines the registers implemented for measuring TRN utilization.

These registers are updated once every second by hardware. These registers have a
resolution of four bytes and provide a 2-bit sample count which increments every second.
The sample count provides a mechanism for software to keep track of distinct reads and
also to synchronize register values across the same one second interval.

Transmit Utilization Byte Count (0x8200)

This register counts the utilization of the transmit interface of the PCIe core. It increments
every clock cycle when both trn_tx_src_rdy_n and trn_tx_dst_rdy_n are asserted.

29
MCB TX Error
Enable

RW 0
Setting this enables MCB specific TX error conditions to
generate interrupts to the system.

28
MCB RX Error
Enable

RW 0
Setting this enables MCB specific RX error conditions to
generate interrupts to the system.

Table A-16: User Interrupt Enable Register (Cont’d)

Bit
Location

Field Mode
Default
Value

Description

Table A-17: User Interrupt Status Register

Bit Location Field Mode
Default
Value

Description

31 PLBError RW 0
Indicates PLB error as cause of user interrupt. Write 1 to
clear.

30 TEMAC Interrupt RW 0
Indicates TEMAC error as the cause of user interrupt. Write
1 to clear.

29 MCB_TxErr RW 0
Memory controller error on transmit interface (MCB TX
FIFO overflow). Write 1 to clear.

28 MCB_RxErr RW 0
Memory controller error on receive interface (MCB RX FIFO
underflow). Write 1 to clear.

http://www.xilinx.com

94 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Appendix A: Register Description

Receive Utilization Byte Count (0x8204)

This register counts the utilization of the receive interface of the Endpoint for PCI Express.
It increments every clock cycle when both trn_rx_src_rdy_n and
trn_rx_dst_rdy_n are asserted.

Upstream Memory Write Byte Count (0x8208)

This register counts the payload of memory write transactions sent upstream on the
transmit interface of the PCIe core.

Downstream Completion Payload Byte Count (0x820C)

This register counts the payload of completion transactions received at the Endpoint on the
receive interface for PCI Express.

Table A-18: Transmit Utilization Byte Count Register

Bit
Location

Field Mode
Default
Value

Description

31:2 Transmit
Utilization Count

RO 0
Gives the count when TRN-TX interface was active. This
register has a resolution of four bytes. Multiply the value
obtained by four to get the byte count.

1:0 Sample Count RO 0 A 2-bit sample count which increments once every second.

Table A-19: Receive Utilization Byte Count

Bit Location Field Mode
Default
Value

Description

31:2
Receive
Utilization
Count

RO 0
This gives the count when TRN-RX interface was active. This
register has a resolution of four bytes. Multiply the value
obtained by four to get the byte count.

1:0 Sample Count RO 0 2-bit sample count which increments once every second.

Table A-20: Upstream Memory Write Byte Count

Bit Location Field Mode
Default
Value

Description

31:2
MWR Payload
Count

RO 0
This gives the count of MWR payload bytes sent across
TRN-TX. This register has a resolution of four bytes.
Multiply the value obtained by four to get the byte count.

1:0 Sample Count RO 0 2-bit sample count which increments once every second

Table A-21: Downstream Completion Payload Byte Count

Bit Location Field Mode
Default
Value

Description

31:2
CplD Payload
Count

RO 0
Gives the count of the CplD payload bytes received across
TRN-RX. This register has a resolution of four bytes.
Multiply the value obtained by four to get the byte count.

1:0 Sample Count RO 0 2-bit sample count which increments once every second

http://www.xilinx.com

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 95
UG392 (v1.5) October 5, 2010

User Application Registers

TRN Monitor Control (0x8210)

This is the monitor control registers which defines a software controlled reset. When
asserted, this clears the counters.

User App1 Registers
This group defines the registers specific to user application connected to DMA channel-1,
which is the memory application for this design.

Virtual FIFO Status Register (0x9100)

This register indicates the status of DDR3 calibration to the software driver. It enables
software to determine if the hardware is ready for operation.

Virtual FIFO Receive Packet Length Register (0x9104)

This register indicates the size of the packet in bytes to be built in the receive direction. It
initializes with a default value of 1 KB.

Virtual FIFO Start Address Register (0x9108)

This register indicates the start address for DDR3 partition. It initializes with the default
value of zero on reset. Software programming of this register is optional.

Table A-22: TRN Monitor Control Register

Bit Location Field Mode
Default
Value

Description

0 Monitor Reset RW 0
Monitor Soft Reset: When 1, resets the TRN monitor
counters.

Table A-23: Virtual FIFO Status Register

Bit Location Field Mode
Default
Value

Description

0 Calibration Status RO 0
Calibration Done: This bit indicates calibration done
status from memory controller.

Table A-24: Virtual FIFO Receive Packet Length Register

Bit Location Field Mode Default Value Description

31:0 Packet Length RW 32'h0000_0400
DDR3 Receive Packet Length: Indicates the size of
the packet (in bytes) to be built in the receive
direction.

Table A-25: Virtual FIFO Start Address Register

Bit Location Field Mode
Default
Value

Description

31:0 Start Address RW 0x0
DDR3 Start Address: Indicates the start address in DDR3 from
where virtual FIFO starts.

http://www.xilinx.com

96 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Appendix A: Register Description

Virtual FIFO End Address Register (0x910C)

This register indicates the end address for DDR3 partition. It initializes with the default
value of 32'h07FF_FFFF on reset. Software programming of this register is optional.

Virtual FIFO Error Statistics Register (0x9110)

This register is the DDR3 error statistics register which records an error count on DDR3.
This register accumulates the DDR3 error count and is cleared on reset.

Table A-26: Virtual FIFO End Address Register

Bit Location Field Mode Default Value Description

31:0 End Address RW 32'h07FF_FFFF
DDR3 End Address: Indicates the end address in
DDR3 where the virtual FIFO wraps around to the start
address.

Table A-27: Virtual FIFO Error Statistics Register

Bit Location Field Mode
Default
Value

Description

31:0 Error Stats RW 0 DDR3 Error Statistics.

http://www.xilinx.com

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 97
UG392 (v1.5) October 5, 2010

Appendix B

Directory Structure

Introduction
This section describes the directory structure and explains the organization of various
files/folders.

Design

The design folder contains all the hardware design deliverables.

• implement: Contains the implementation scripts for the design for both windows
and Linux operating systems supporting both command line mode and the
ProjNav flow.

• ip_cores: Contains the third-party DMA IP related files and Xilinx IP files
modified for this TRD.

• sim: Contains the simulation scripts for supported simulators for both windows
and Linux operating systems

• source: Contains the source code deliverable files

• tb: Contains the testbench related files for simulation

• reference: Bit files and MCS files for golden reference and XCO files generated by
Xilinx cores. Also includes scripts for the ProjNav flow.

X-Ref Target - Figure B-1

Figure B-1: Directory Structure

s6_pcie_dma_ddr3_gbe

design

implement

ip_cores

sim

source

tb

reference

coregen_ip

license

driver

xblockdata

xdma

xgbeth

html

Makefile

readme

s6_trd_driver_build

s6_trd_driver_insert

s6_trd_driver_remove

s6_trd_app_gui

ug392_aB_01_032610

doc

xpmon

http://www.xilinx.com

98 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Appendix B: Directory Structure

• coregen_ip: Includes the CORE Generator IP and netlists used in the design

• license: Includes hardware evaluation license for Xilinx IPs

Driver

The driver folder contains all the software driver and application deliverables.

• xblockdata: Contains the source code for the block data driver

• xdma: Contains the source code for the packet DMA driver

• xgbeth: Contains the source code for the Ethernet driver

• html: Contains the software driver documentation files generated by Doxygen.

• Makefile: Contains the Makefile for the software driver and application compilation

xpmon

Contains source code for the application GUI.

doc

Contains the TRD user guide.

readme

Details the use of various simulation and implementation scripts.

s6_trd_driver_build

Contains the script to build the driver and GUI modules.

s6_trd_driver_insert

Contains the script to insert the driver modules.

s6_trd_driver_remove

Contains the script to remove the driver modules.

s6_trd_app_gui

Contains the script to invoke the XPMON application GUI

http://www.xilinx.com

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 99
UG392 (v1.5) October 5, 2010

Appendix C

Setting Up a Private LAN

Introduction
This section describes the steps used to set up a private LAN connection between two
machines for Ethernet performance measurement.

Figure C-1 shows a private LAN connection between two machines.

To set up a private LAN connection:

1. Connect the Ethernet cable between the two machines; connect as a private LAN
setup. One of them is a standard machine which has a commercial NIC and the other
has SP605 NIC. The machine with SP605 NIC is referred to as the unit-under-test
(UUT) and the other machine, with a commercial NIC, is referred to as the standard
machine.

2. Assign an IP address statically on both machines. Make sure that they have the same
netmask. This can be done on a terminal in command line mode:

$ ifconfig ethX up 172.16.64.7

For this example, it is assumed that the standard machine is assigned an IP address of
172.16.64.9 and the UUT is assigned an IP address of 172.16.64.7.

3. After the interface is activated and after assignment of a static IP address, try a ping
between the machines.

4. Install Netperf v2.4 on both machines. Netperf works with a client server model. In
this setup, UUT is programmed as the client and the other standard machine as the
server. On a terminal on the standard machine, invoke netserver:

$ netserver

5. Open a terminal on the UUT and try running Netperf

$ netperf -H <IP-address-standard machine>

This command runs a ten second TCP_STREAM test by default and reports outbound
performance. Refer to the Netperf manual for the various test options available.

X-Ref Target - Figure C-1

Figure C-1: Private LAN Setup

ug392_aC_01_120609

Private LAN

Standard PC With a
Commercial NIC

PC With
SP605 NIC

http://www.xilinx.com

100 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Appendix C: Setting Up a Private LAN

http://www.xilinx.com

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 101
UG392 (v1.5) October 5, 2010

Appendix D

Troubleshooting

Introduction
This section includes some troubleshooting tips (Table D-1). It is not meant as an
exhaustive troubleshooting guide. It is based on the following assumptions:

• User has followed instructions as explained in Chapter 2, Getting Started.

• User has made sure that the PCI Express link is up and the Endpoint device is
discovered by the host and can be seen with lspci.

• Visual indicators (LEDs) as listed on page 18 are functioning and have been checked.

Table D-1: Troubleshooting Tips

Issue Possible Resolution

Activation of Ethernet
interface fails with network
configuration GUI

1. Check the MAC address to make sure the MAC address is
programmed as provided with the SP605 Connectivity Kit.

2. If assigning an IP address statically, make sure that it does
not clash with any other IP address on the network. Contact
the network administrator regarding specific IP address
allocation.

3. In the network configuration GUI, under the Devices tab,
for the device, uncheck the bind to MAC address option in
device properties. Device properties are invoked by
double-clicking on the device.

Network is connected but
webpage does not load in the
browser

1. Check the browser's network proxy settings suitable for
your network with your network administrator

2. Make sure that the browser is not in work-offline mode

1000BASE-X Design not
working.

1. Make sure that the additional required hardware is
connected as explained in Testing 1000BASE-X Mode,
page 38. Make sure the Ethernet connection is 1 Gb/s.

2. Make sure that the correct design is downloaded to
hardware (sp605_use_1000basex)

3. Make sure that driver/xgbeth/Makefile has
DUSE_1000BASEX defined under EXTRA_CFLAGS

http://www.xilinx.com

102 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Appendix D: Troubleshooting

http://www.xilinx.com

