

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 110
PG074 December 18, 2012

Chapter 7: Customizing and Generating the Core

<component name>/example_design

The example_design directory contains the example design files provided with the core.

.

/example_design/cc_manager

The cc_manager directory contains the clock compensation source file.

/example_design/clock_module

The clock_module directory contains the clock module source f ile.

Table 7‐4: example_design Directory

Name Description

<component name>/example_design

<component name>_exdes.v[hd] Example design source file

v6_icon.ngc
v6_ila.ngc
v6_vio.ngc
k7_icon.ngc
k7_ila.ngc
k7_vio.ngc

NGC files for the debug cores compatible with the ChipScope
Pro Analyzer tool

<component name>_exdes.ucf Aurora 64B/66B example design constraints

<component name>_exdes.xdc Aurora 64B/66B example design constraints (only for 7 series
devices)

<component name>_reset_logic.v[hd] Aurora 64B/66B reset logic

Back to Top

Table 7‐5: cc_manager Directory

Name Description

<component name>/example_design/cc_manager

<component name>_standard_cc_module.v[hd] Clock compensation module source f ile

Back to Top

Table 7‐6: clock_module Directory

Name Description

<component name>/example_design/clock_module

<component name>_clock_module.v[hd] Clock module source f ile

<component name>_enable_generator.v[hd] Clock enable generator

Back to Top

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 111
PG074 December 18, 2012

Chapter 7: Customizing and Generating the Core

/example_design/gt

The gt directory contains the Verilog/VHDL wrapper files for the GTX/GTH transceiver.

/example_design/traffic_gen_and_check

The traffic_gen_and_check directory contains frame generator and frame checker
modules for Aurora 64B/66B core.

<component name>/implement

The implement directory contains scripts and support f iles for both Linux and Windows
operating systems. These scripts automate the process of synthesizing and implementing
the files needed for the example design.

Table 7‐7: gt Directory

Name Description

<component name>/example_design/gt

<component name>_gt_wrapper.v[hd]
<component name>_multi_wrapper.v[hd]
<component name>_gth_init.v[hd] (2)
<component name>_gtx.v[hd] (1)
<component name>_quad.v[hd] (3)
<component name>_gth_reset.v[hd](2)
<component name>_gth_rx_pcs_cdr_reset.v[hd](2)
<component name>_gth_tx_pcs_cdr_reset.v[hd](2)

Verilog/VHDL wrapper files for the GTX/GTH
transceiver

1. For Virtex-6 FPGA GTX transceivers or Virtex-7/Kintex-7 FPGA GTX/GTH transceivers.
2. For Virtex-6 FPGA GTH transceivers.
3. For Virtex-6 FPGA GTH transceivers.

Back to Top

Table 7‐8: traffic_gen_and_check Directory

Name Description

<component name>/example_design/traff ic_gen_and_check

<component name>_frame_check.v[hd]
<component name>_frame_gen.v[hd]

Example design traff ic generation and checker f iles

Back to Top

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 112
PG074 December 18, 2012

Chapter 7: Customizing and Generating the Core

/implement/results

The results directory is created by the implement script, after which the implement script
results are placed in the results directory.

<component name>/simulation

The simulation directory contains the test bench files for the example design.

Table 7‐9: implement Directory

Name Description

<component name>/implement

implement.bat Windows batch file that processes the example design through the Xilinx
tool flow

implement.sh Linux shell script that processes the example design through the Xilinx tool
flow

xst.scr XST script f ile for the example design

xst.prj XST project f ile for the example design

Chipscope_prj.cpj ChipScope ™ Pro tool project f ile

planAhead_ise.tcl PlanAhead™ tool script f iles for the example design using ISE tools flow

synplify.prj
implement_synplify.sh
implement_synplify.bat

Synplify Pro script f iles for Aurora 64B/66B example design

Back to Top

Table 7‐10: results Directory

Name Description

<component name>/implement/results

Implement script result f iles

Back to Top

Table 7‐11: simulation Directory

Name Description

<component name>/simulation

<component name>_.v[hd] Test bench f ile for simulating the example design

Back to Top

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 113
PG074 December 18, 2012

Chapter 7: Customizing and Generating the Core

/simulation/functional

The functional directory contains functional simulation scripts provided with the core.

/simulation/timing

The timing directory contains timing simulation scripts provided with the core.

Table 7‐12: functional Directory

Name Description

<component name>/simulation/functional

simulate_mti.do
ModelSim macro f ile that compiles the example design sources, the structural
simulation model, and the demonstration test bench then runs the functional
simulation to completion

wave_mti.do ModelSim macro f ile that opens a Wave window

simulate_mti.sh Linux shell script to invoke ModelSim and run example design

simulate_mti.bat Windows batch f ile to invoke ModelSim and run example design

simulate_isim.sh
ISim macro f ile that compiles the example design sources and the structural
simulation model. The demonstration test bench then runs the functional
simulation to completion in the Linux operating system.

simulate_isim.bat
ISim macro f ile that compiles the example design sources and the structural
simulation model. The demonstration test bench then runs the functional
simulation to completion in the Windows operating system.

wave_isim.tcl ISim macro f ile that opens a Wave window with top-level signals.

Back to Top

Table 7‐13: timing Directory

Name Description

<component name>/simulation/timing

simulate_mti.do ModelSim macro f ile that compiles the SDF f iles of the core and the demonstration
test bench then runs the timing simulation to completion

wave_mti.do ModelSim macro file that opens a Wave window

Back to Top

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 114
PG074 December 18, 2012

Chapter 7: Customizing and Generating the Core

<component name>/src

The src directory contains the source files related to the Aurora example design.

Table 7‐14: src Directory

Name Description

<component name>/src

<component name>_64B66B.v[hd]
<component name>_64B66B_descrambler.v[hd]
<component name>_64B66B_scrambler.v[hd]
<component name>_aurora_lane.v[hd]
<component name>_aurora_pkg.vhd (VHDL Only)
<component name>_aurora_to_gtx.v[hd]
<component name>_block_sync_sm.v[hd]
<component name>_cbcc_gtx_6466.v[hd]
<component name>_ch_bond_code_gen.v[hd]
<component name>_channel_err_detect.v[hd]
<component name>_channel_init_sm.v[hd]
<component name>_err_detect.v[hd]
<component name>_global_logic.v[hd]
<component name>_gtx_to_aurora.v[hd]
<component name>_lane_init_sm.v[hd]
<component name>_rx_ll.v[hd]
<component name>_rx_ll_datapath.v[hd]
<component name>_sym_dec.v[hd]
<component name>_sym_gen.v[hd]
<component name>_tx_ll.v[hd]
<component name>_tx_ll_control_sm.v[hd]
<component name>_tx_ll_datapath.v[hd]
<component name>_tx_gearbox.v[hd]
<component name>_rx_gearbox.v[hd]
<component name>_ll_to_axi.v[hd]
<component name>_axi_to_ll.v[hd]

Aurora 64B/66B source files

Back to Top

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 115
PG074 December 18, 2012

Chapter 8

Constraining the Core
This chapter is relevant to the ISE® Design Suite.

Device, Package, and Speed Grade Selections
Not Applicable

Clock Frequencies
Aurora 64B/66B example design clock constraints can be grouped into following three
categories:

• GT reference clock constraint

The Aurora 64B/66B core uses one minimum reference clock and two maximum
reference clocks for the design. The number of GT reference clocks is derived based on
transceiver selection (that is, lane assignment in the second page GUI). The GT REFCLK
value selected in the f irst page of the GUI is used to constrain the GT reference clock.
TNM_NET of the GT reference clock with TIMESPEC is used to constrain GT reference
clocks.

• CORECLK clock constraint

CORECLKs are the clock based on which the core functions. CORECLKS such as
USER_CLK and SYNC_CLK are derived out of TXOUTCLK generated by the GT transceiver
based on the applied reference clock and the divider settings of the GT transceiver. The
Aurora 64B/66B core calculates the USER_CLK/SYNC_CLK frequency based on the line
rate and GT interface width. RXRECCLK_32 and RXRECCLK_64 are the received recovered
clock constraint derived out of RXRECCLK for capturing the receive data from GT
transceiver. TNM_NET of the CORECLKs with TIMESPEC is used to constrain all
CORECLKs.

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 116
PG074 December 18, 2012

Chapter 8: Constraining the Core

• System clock constraint

RECOMMENDED: The Aurora 64B/66B example design uses a debounce circuit to sample PMA_INIT
asynchronously clocked by the system clock. It is recommended to have the system clock frequency
lower than the GT reference clock frequency. TNM_NET on the System clock with TIMESPEC is used to
constrain the system clock.

• GT location constraint

LOC on INST (that is, module that contains GT instantiation) is used to constrain the GT
transceiver location. This is provided as either a tool tip or displayed adjacent to lane
selection on the second page of the GUI

False Paths

The system clock and user clock are not related to one another. No phase relationship exists
between those two clocks. Those two clocks domains need to be set as false paths. TIG
command is used to constrain the false paths.

Example Design

The generated example design is a 10.3125 Gb/s line rate, and a 156.25 MHz reference
clock. The UCF generated for the XC7K325T-FFG900-2 device follows:

User Clock Contraint: the value is selected based on the line rate of the module
NET "user_clk_i" TNM_NET = "user_clk_i";
TIMESPEC "TS_user_clk_i" = PERIOD "user_clk_i" 161.125 MHz HIGH 50%;
SYNC Clock Constraint
NET "sync_clk_i" TNM_NET = "sync_clk_i";
TIMESPEC "TS_sync_clk_i" = PERIOD "sync_clk_i" 322.25 MHz HIGH 50%;
Constraints for RX Recovered clocks
NET "gt_wrapper_i/rxrecclk_to_pll_i" TNM_NET = "rxrecclk_32";
TIMESPEC "TS_rxrecclk_32" = PERIOD "rxrecclk_32" 322.25 MHz HIGH 50%;
Constraints for Clock Enables
NET "gt_wrapper_i/enable_32_i" TNM_NET = FFS "enable_32";
TIMESPEC "TS_enable_32_multiclk" = FROM "enable_32"to "enable_32" TS_rxrecclk_32/2;

156.25MHz GTX Reference clock constraint
NET "GTXQ0_left_i" TNM_NET = "GTXQ0_left_i";
TIMESPEC "TS_GTXQ0_left_i" = PERIOD "GTXQ0_left_i" 156.25 MHz HIGH 50%;

50 MHz Board Clock Constraint
NET "INIT_CLK_i" TNM_NET = INIT_CLK;
TIMESPEC TS_INIT_CLK = PERIOD "INIT_CLK" 20 ns HIGH 50%;

NET INIT_CLK_P LOC=C25;
NET INIT_CLK_N LOC=B25;

NET RESET LOC=G19; #BUTTON
NET RESET PULLUP;
NET PMA_INIT LOC=K18; #BUTTON

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 117
PG074 December 18, 2012

Chapter 8: Constraining the Core

NET CHANNEL_UP LOC=A20; #LED
NET LANE_UP[0] LOC=A17; #LED
NET LANE_UP[1] LOC=A16; #LED
NET HARD_ERR LOC=G17; #LED
NET SOFT_ERR LOC=F17; #LED

No cross clock domain analysis. Domains are not related
TIMESPEC "TS_TIG1" = FROM "INIT_CLK" TO "user_clk_i" TIG;
NET "gt_wrapper_i/cbcc_gtx0_i/fifo_reset_i" TIG;

################################ GT CLOCK Locations ##############
Differential SMA Clock Connection
NET GTXQ0_P LOC=R8;
NET GTXQ0_N LOC=R7;

########################## GT LOC ############################
INST gt_wrapper_i/gt_multi_gt_i/GTX_INST/gtxe2_i LOC=GTXE2_CHANNEL_X0Y0;

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 118
PG074 December 18, 2012

Chapter 9

Detailed Example Design
This chapter describes the detailed example design that is delivered in the ISE® Design
Suite environment.

Directory and File Contents
See Output Generation in Chapter 7 for the directory structure and f ile contents of the
example design.

Quick Start Example Design
The quick start instructions provide a step-by-step procedure for generating an Aurora
64B/66B core, implementing the core in hardware using the accompanying example design,
and simulating the core with the provided demonstration test bench (<component
name>_tb). For detailed information about the example design provided with the Aurora
64B/66B core, see Detailed Example Design.

The quick start example design consists of these components:

• An instance of the Aurora 64B/66B core generated using the default parameters

° Full-duplex with a single GTX transceiver

° AXI4-Stream user interface

• A demonstration test bench to simulate two instances of the example design

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 119
PG074 December 18, 2012

Chapter 9: Detailed Example Design

Detailed Example Design
Each Aurora 64B/66B core includes an example design (aurora_example) that uses the
core in a simple data transfer system. For more details about the example_design
directory, see Output Generation in Chapter 7.

The example design consists of two main components:

• Frame generator (FRAME_GEN, page 85) connected to the TX interface

• Frame checked (FRAME_CHECK, page 91) connected to the RX user interface

Figure 9-1 shows a block diagram of the example design for a full-duplex core. Table 9-1,
page 120 describes the ports of the example design.

The example design uses all the interfaces of the core. There are separate AXI4-Stream
interfaces for optional flow control. Simplex cores without a TX or RX interface have no
FRAME_GEN or FRAME_CHECK block, respectively. The frame generator produces a random
stream of data for cores with a streaming/framing interface.

The scripts provided in the implement and functional subdirectories can be used to quickly
get an Aurora 64B/66B design up and running on a board, or perform a quick simulation of
the module. The design can also be used as a reference for connecting the trickier
interfaces on the Aurora 64B/66B core, such as the clocking interface.

When using the example design on a board, be sure to edit the
<component name>_example_design.ucf in the ucf subdirectory to supply the
correct pins and clock constraints. Table 9-1 describes the ports available in the example
design.

X-Ref Target - Figure 9-1

Figure 9‐1: Example Design

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 120
PG074 December 18, 2012

Chapter 9: Detailed Example Design

FRAME_GEN and FRAME CHECK

See FRAME_GEN and FRAME_CHECK in Chapter 6, Detailed Example Design.

Table 9‐1: Example Design I/O Ports

Port Direction Description

RXN[0:m-1] Input Negative differential serial data input pin.

RXP[0:m-1] Input Positive differential serial data input pin.

TXN[0:m-1] Output Negative differential serial data output pin.

TXP[0:m-1] Output Positive differential serial data output pin.

RESET Input
Reset signal for the example design. The active-High reset is
debounced using a USER_CLK signal generated from the reference
clock input.

<reference clock(s)> Input
The reference clocks for the Aurora 64B/66B core are brought to the
top level of the example design. See Clock Interface and Clocking,
page 30 for details about the reference clocks.

<core error signals> Output

The error signals from the Aurora 64B/66B core' Status and Control
interface are brought to the top level of the example design and
registered. See Status, Control, and the Transceiver Interface,
page 60 for details.

<core channel up signals> Output
The channel up status signals for the core are brought to the top
level of the example design and registered. See Status, Control, and
the Transceiver Interface, page 60 for details.

<core lane up signals> Output

The lane up status signals for the core are brought to the top level of
the example design and registered. Cores have a lane up signal for
each GTX/GTH transceiver they use. See Status, Control, and the
Transceiver Interface, page 60 for details.

PMA_INIT Input

The reset signal for the PCS and PMA modules in the GTX/GTH
transceivers is connected to the top level through a debouncer. The
signal is debounced using the INIT_CLK. See the Reset section in the
Virtex-6 FPGA GTX Transceivers User Guide, the Virtex-6 FPGA GTH
Transceivers User Guide, or the 7 Series FPGAs GTX/GTH Transceivers
User Guide for further details on GT RESET.

INIT_CLK Input
INIT_CLK is used to register and debounce the PMA_INIT signal.
INIT_CLK must not come from a GTX/GTH transceiver, and should be
set to a slow rate, preferably slower than the reference clock.

DATA_ERR_COUNT[0:7] Output Count of the number of frame data words received by the
FRAME_CHECK that did not match the expected value.

UFC_ERR Output Asserted (active-High) when UFC data words received by the
FRAME_CHECK that did not match the expected value.

USER_K_ERR Output Asserted (active-High) when User K data words received by the
FRAME_CHECK that did not match the expected value.

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 121
PG074 December 18, 2012

Chapter 9: Detailed Example Design

Generating the Core
To generate an Aurora 64B/66B core with default values using the CORE Generator™ tool:

1. Start the CORE Generator tool from a required directory.

For help starting and using the CORE Generator tool, see CORE Generator Help in the ISE
tool documentation.

2. Choose File > New Project.

3. Type a project name.

4. To set project options:

On the Part tab, for Family select Virtex6. For Device, select an appropriate device that
supports GTX transceivers, such as xc6vlx240t.

Note: If an unsupported silicon family is selected, the Aurora 64B/66B appears light gray in the
taxonomy tree and cannot be customized. Only devices containing GTX/GTH transceivers are
supported by the core. For a list of supported architectures, see IP Facts.

No further project options need to be set.

Optionally, on the Generation tab, set the Design Entry pull-down to Verilog.

5. After creating the project, locate the Aurora 64B/66B core v7.3 in the taxonomy tree
under:

/Communication_&_Networking/Serial_Interfaces

6. Double-click the core for generation.

The customization screens are shown in Figure 9-2 and Figure 9-3.

http://www.xilinx.com/support/documentation/dt_ise.htm
http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 122
PG074 December 18, 2012

Chapter 9: Detailed Example Design

1
X-Ref Target - Figure 9-2

Figure 9‐2: CORE Generator Tool Aurora 64B/66B Customization Screen ‐ Page 1

X-Ref Target - Figure 9-3

Figure 9‐3: CORE Generator Tool Aurora 64B/66B Customization Screen ‐ Page 2

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 123
PG074 December 18, 2012

Chapter 9: Detailed Example Design

7. In the Component Name field, enter a name for the core instance. This example uses the
name aurora_64b66b_v7_3.

8. Click Generate.

The core and its supporting f iles, including the example design, are generated in the project
directory. For detailed information about the example design f iles and directories, see
Output Generation in Chapter 7.

Simulating the Example Design
The Aurora 64B/66B core provides a quick way to simulate and observe the behavior of the
core using the provided example design. Prior to simulating the core, the functional
(gate-level) simulation models must be generated. You must compile all source f iles in the
following directories to a single library as shown in Table 9-2. See the Synthesis and
Simulation Design Guide (UG626) for the ISE v14.4 tool for instructions for compiling ISE
tool simulation libraries.

The Aurora 64B/66B core provides a command line script to simulate the example design.
To run a VHDL or Verilog ModelSim simulation of the Aurora 64B/66B core, use these
instructions:

1. Launch the ModelSim simulator and set the current directory to:

<project directory>/aurora_64b66b_v7_3/simulation/functional

2. Set the MTI_LIBS variable:

modelsim> setenv MTI_LIBS <path to compiled libraries>

3. Launch the simulation script:

modelsim> do simulate_mti.do

Table 9‐2: Required Simulation Libraries

HDL Library Source Directories

Verilog UNISIMS_VER <Xilinx dir>/verilog/src/unisims
<Xilinx dir>/ secureip/<SIMULATOR>

VHDL UNISIM <Xilinx dir>/vhdl/src/unisims
<Xilinx dir>/ secureip/<SIMULATOR>

Notes:
1. SIMULATOR can be ModelSim.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/sim.pdf
http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 124
PG074 December 18, 2012

Chapter 9: Detailed Example Design

The ModelSim script compiles the example design and test bench, and adds the relevant
signals to the wave window. After the design is compiled and the wave window is displayed,
run the simulation to see the Aurora 64B/66B core power up, followed by Aurora 64B/66B
channel initialization and data transfer. Data transfer begins after the CHANNEL_UP signal
goes High.

Simplex cores need to be generated one after the other. In addition, simulating simplex
cores requires additional steps. To simulate a simplex TX or simplex RX core, perform the
following steps:

1. Generate the simplex core.

2. Generate a complementary simplex core.

3. Go to the simulation directory of the f irst core generated.

4. Set the environment variable SIMPLEX_PARTNER to point to the directory of the
complementary core.

5. Run the script as explained previously.

Note: The top-level module name of the simplex design and simplex partner design should be
similar. For example, if the top-level module name of the TX simplex design is
aurora_64b66b_simplex, the top-level module name of the simplex partner should be
rx_aurora_64b66b_simplex.

Implementing the Example Design
After the core is generated, the design can be processed by the Xilinx implementation tools.
The generated output f iles include several scripts to assist you in running the Xilinx tools.

From the command prompt, navigate to the project directory and type the following:

For Windows

ms-dos> cd aurora_64b66b_v7_3\implement

ms-dos> .\implement.bat

For Linux

% cd aurora_64b66b_v7_3/implement

%./implement.sh

These commands execute a script that synthesizes, translates, maps, place-and-routes the
example design and produces a bitmap file. The resulting f iles are placed in the results
directory created within the implement directory.

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 125
PG074 December 18, 2012

SECTION IV: APPENDICES

Verification, Compliance, and Interoperability

Migrating

Debugging

Generating a GT Wrapper File from the
Transceiver Wizard

Additional Resources

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 126
PG074 December 18, 2012

Appendix A

Verification, Compliance, and
Interoperability

Aurora 64B/66B cores are verif ied for protocol compliance using an array of automated
hardware and simulation tests. The core comes with an example design implemented using
a linear feedback shift register (LFSR) for understanding and verif ication of the core
features.

The Aurora 64B/66B core is verif ied using the Aurora 64B/66B Bus Functional Model (BFM)
and proprietary custom test benches. The Aurora 64B/66B BFM verif ies the protocol
compliance along with interface level checks and error scenarios. An automated test system
runs a series of simulation tests on the most widely used set of design configurations
chosen at random. Aurora 64B/66B cores are also tested in hardware for functionality,
performance, and reliability using Xilinx GTX transceiver demonstration boards. Aurora
verif ication test suites for all possible modules are continuously being updated to increase
test coverage across the range of possible parameters for each individual module.

Two boards can be used for verif ication:

• ML623

• KC724

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 127
PG074 December 18, 2012

Appendix B

Migrating

Introduction
This appendix explains about migrating legacy (LocalLink based) Aurora cores to the
AXI4-Stream Aurora core.

For information on migrating to the Vivado™ Design Suite, see Vivado Design Suite
Migration Methodology Guide (UG911).

Prerequisites

• ISE ® 14.4/Vivado 2012.4 tool build containing the Aurora 64B/66B v7.3 core
supporting the AXI4-Stream protocol

• Familiarity with the Aurora directory structure

• Familiarity with running the Aurora example design

• Basic knowledge of the AXI4-Stream and LocalLink protocols

• Latest product guide (PG074) of the core with the AXI4-Stream updates

• Legacy data sheet (DS528), getting started guide (UG238), and user guide (UG237) for
reference

• Migration guide (this Appendix)

http://www.xilinx.com
http://xgoogle.xilinx.com/search?getfields=*&numgm=5&filter=0&proxystylesheet=xilinx&client=xilinx&site=EntireSite&q=UG911&getfields=*&getfields=*&getfields=*&getfields=*&output=xml_no_dtd&sort=date%3AD%3AL%3Ad1&oe=UTF-8&ie=UTF-8&requiredfields=-status%3Aarchive&entqrm=0&entsp=a&ud=1&requiredfields=-status%3Aarchive&partialfields=&requiredfields=-status%3Aarchive&partialfields=&requiredfields=-status%3Aarchive&partialfields=&exclude_apps=1&as_q=&requiredfields=-status:archive&partialfields=&lang2search=

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 128
PG074 December 18, 2012

Appendix B: Migrating

Overview of Major Changes
The major change to the core is the addition of the AXI4-Stream interface:

• The user interface is modif ied from the legacy LocalLink (LL) to AXI4-Stream

• All AXI4-Stream signals are active-High, whereas LocalLink signals are active-Low

• The user interface in the example design and design top file is AXI4-Stream

• A new shim module is introduced in the AXI4-Stream Aurora core to convert
AXI4-Stream signals to LL and LL back to AXI4-Stream

° The AXI4-Stream to LL shim on the transmit converts all AXI4-Stream signals to LL

° The shim deals with active-High to active-Low conversion of signals between
AXI4-Stream and LocalLink

° Generation of SOF_N and REM bits mapping are handled by the shim

° The LL to AXI4-Stream shim on the receive converts all LL signals to AXI4-Stream

• Each interface (PDU, UFC, and NFC) has a separate AXI4-Stream to LL and LL to
AXI4-Stream shim instantiated from the design top file

• Frame generator and checker have respective LL to AXI4-Stream and AXI4-Stream to LL
shim instantiated in the Aurora example design to interface with the generated
AXI4-Stream design

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 129
PG074 December 18, 2012

Appendix B: Migrating

Block Diagrams
Figure B-1 shows an example Aurora design using the legacy LocalLink interface. Figure B-2
shows an example Aurora design using the AXI4-Stream interface.

X-Ref Target - Figure B-1

Figure B‐1: Legacy Aurora Example Design

X-Ref Target - Figure B-2

Figure B‐2: AXI4‐Stream Aurora Example Design

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 130
PG074 December 18, 2012

Appendix B: Migrating

Signal Changes

Table B‐1: Interface Changes

LocalLink Name AXI4‐S Name Difference

TX_D S_AXI_TX_TDATA Name change only

TX_REM S_AXI_TX_TKEEP
Name change.
For functional differences, see Table 2-7, page 19

TX_SOF_N Generated Internally

TX_EOF_N S_AXI_TX_TLAST Name change; Polarity

TX_SRC_RDY_N S_AXI_TX_TVALID Name change; Polarity

TX_DST_RDY_N S_AXI_TX_TREADY Name change; Polarity

UFC_TX_REQ_N UFC_TX_REQ Name change; Polarity

UFC_TX_MS UFC_TX_MS No Change

UFC_TX_D S_AXI_UFC_TX_TDATA Name change only

UFC_TX_SRC_RDY_N S_AXI_UFC_TX_TVALID Name change; Polarity

UFC_TX_DST_RDY_N S_AXI_UFC_TX_TREADY Name change; Polarity

NFC_TX_REQ_N S_AXI_NFC_TX_TVALID Name change; Polarity

NFC_TX_ACK_N S_AXI_NFC_TX_TREADY Name change; Polarity

NFC_PAUSE
S_AXI_NFC_TX_TDATA

Name change.
For signal mapping, see Table 2-11, page 22NFC_XOFF

USER_K_DATA
S_AXI_USER_K_TDATA

Name change.
For signal mapping, see Table 2-12, page 23 USER_K_BLK_NO

USER_K_TX_SRC_RDY_N S_AXI_USER_K_TX_TVALID Name change; Polarity

USER_K_TX_DST_RDY_N S_AXI_USER_K_TX_TREADY Name change; Polarity

RX_D M_AXI_RX_TDATA Name change only

RX_REM M_AXI_RX_TKEEP
Name change.
For functional difference, see Table 2-7, page 19

RX_SOF_N Removed

RX_EOF_N M_AXI_RX_TLAST Name change; Polarity

RX_SRC_RDY_N M_AXI_RX_TVALID Name change; Polarity

UFC_RX_DATA M_AXI_UFC_RX_TDATA Name change only

UFC_RX_REM M_AXI_UFC_RX_TKEEP
Name change
For functional difference, see Table 2-10, page 20

UFC_RX_SOF_N Removed

UFC_RX_EOF_N M_AXI_UFC_RX_TLAST Name change; Polarity

UFC_RX_SRC_RDY_N M_AXI_UFC_RX_TVALID Name change; Polarity

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 131
PG074 December 18, 2012

Appendix B: Migrating

Migration Steps
Generate an AXI4-Stream Aurora core from the CORE Generator™ tool using the ISE v14.4
tool or Vivado v2012.4 design tools.

Simulate the Core

1. Run the vsim -do simulate_mti.do f ile from the /simulation/functional
directory.

2. ModelSim GUI launches and compiles the modules.

3. The wave_mti.do f ile loads automatically and populates AXI4-Stream signals.

4. Allow the simulation to run. This might take some time.

a. Initially lane up is asserted.

b. Channel up is then asserted and the data transfer begins.

c. Data transfer from all flow control interfaces now begins.

d. Frame checker continuously checks the received data and reports for any data
mismatch.

5. A 'TEST PASS' or 'TEST FAIL' status is printed on the ModelSim console providing the
status of the test.

Implement the Core

1. Run ./implement.sh (for Linux) from the /implement directory.

2. The implement script compiles the core and runs through the ISE tool and generates a
bit f ile and netlist for the core.

RX_USER_K_DATA
M_AXI_USER_K_RX_TDATA

Name change
For functional difference, see Table 2-12, page 23 RX_USER_K_BLK_NO

RX_USER_K_SRC_RDY_N M_AXI_USER_K_RX_TVALID Name change; Polarity

Table B‐1: Interface Changes (Cont’d)

LocalLink Name AXI4‐S Name Difference

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 132
PG074 December 18, 2012

Appendix B: Migrating

Integrate to an Existing LocalLink‐based Aurora Design

1. The Aurora core provides a lightweight 'shim' to interface to any existing LL based
interface. The shims are delivered along with the core from the aurora_64b66b_v7_3
version of the core.

2. See Figure B-2, page 129 for the emulation of a LL Aurora core from a AXI4-Stream
Aurora core.

3. Two shims <user_component_name>_ll_to_axi.v[hd] and
<user_component_name>_axi_to_ll.v[hd] are provided in the 'src' directory of
the AXI4-Stream Aurora core.

4. Instantiate both the shims along with <user_component_name>.v[hd] in the
existing LL based design top.

5. Connect the shim and AXI4-Stream Aurora design as shown in Figure B-2, page 129.

6. The latest AXI4-Stream Aurora core can be plugged into any existing LL design
environment.

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 133
PG074 December 18, 2012

Appendix B: Migrating

GUI Changes
Figure B-3 shows the AXI4-Stream signals in the IP Symbol diagram.

X-Ref Target - Figure B-3

Figure B‐3: AXI4‐Stream Signals

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 134
PG074 December 18, 2012

Appendix B: Migrating

Limitations
This section outlines the limitations of the Aurora 64B/66B core for AXI4-Stream support.

IMPORTANT: Be aware of the following limitations while interfacing the Aurora 64B/66B core with the
AXI4-Stream compliant interface core.

Limitation 1:

The AXI4-Stream specification supports four types of data stream:

• Byte stream

• Continuous aligned stream

• Continuous unaligned stream

• Sparse stream

The Aurora 64B/66B core supports only continuous aligned stream and continuous
unaligned stream. The position bytes are valid only at the end of packet.

Limitation 2:

The AXI4-Stream protocol supports transfer with zero data at the end of packet, but the
Aurora 64B/66B core expects at least one byte should be valid at the end of packet.

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 135
PG074 December 18, 2012

Appendix C

Debugging
This appendix includes details about resources available on the Xilinx Support website and
debugging tools. In addition, this appendix provides a step-by-step debugging process and
a flow diagram to guide you through debugging the Aurora 64B/66B core.

The following topics are included in this appendix:

• Finding Help on Xilinx.com

• Debug Tools

• Simulation Debug

• General Checks

• Interface Debug

Finding Help on Xilinx.com
To help in the design and debug process when using the Aurora 64B/66B core, the Xilinx
Support web page (www.xilinx.com/support) contains key resources such as product
documentation, release notes, answer records, information about known issues, and links
for opening a Technical Support WebCase. Also see the Aurora home page.

Documentation

This product guide is the main document associated with the Aurora 64B/66B core. This
guide, along with documentation related to all products that aid in the design process, can
be found on the Xilinx Support web page (www.xilinx.com/support) or by using the Xilinx
Documentation Navigator.

Download the Xilinx Documentation Navigator from the Design Tools tab on the Downloads
page (www.xilinx.com/download). For more information about this tool and the features
available, open the online help after installation.

http://www.xilinx.com
http://www.xilinx.com/products/design_resources/conn_central/grouping/aurora.htm
www.xilinx.com/support
www.xilinx.com/support
www.xilinx.com/support
www.xilinx.com/download

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 136
PG074 December 18, 2012

Appendix C: Debugging

Release Notes

Known issues for all cores, including the Aurora 64B/66B core are described in the
IP Release Notes Guide (XTP025).

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Known Issues

Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that users have access to the
most accurate information available.

Answer Records for this core are listed below, and can also be located by using the Search
Support box on the main Xilinx support web page. To maximize your search results, use
proper keywords such as

• Product name

• Tool message(s)

• Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Answer Records for the Aurora 64B/66B Core

• 42552 -- Aurora 64b/66b Issues and Answer Record List

• 52313 -- Release Notes and Known Issues

Xilinx provides premier technical support for customers encountering issues that require
additional assistance.

To contact Xilinx Technical Support:

1. Navigate to www.xilinx.com/support.

2. Open a WebCase by selecting the WebCase link located under Support Quick Links.

When opening a WebCase, include:

• Target FPGA including package and speed grade.

• All applicable Xilinx Design Tools and simulator software versions.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/support/answers/42552.htm
http://www.xilinx.com/support/answers/52313.htm
www.xilinx.com/support
www.xilinx.com/support
http://www.xilinx.com/support/clearexpress/websupport.htm

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 137
PG074 December 18, 2012

Appendix C: Debugging

• Additional f iles based on the specif ic issue might also be required. See the relevant
sections in this debug guide for guidelines about which f ile(s) to include with the
WebCase.

Debug Tools
There are many tools available to address Aurora 64B/66B core design issues. It is important
to know which tools are useful for debugging various situations.

ChipScope Pro Tool

The ChipScope™ Pro debugging tool inserts logic analyzer, bus analyzer, and virtual I/O
cores directly into your design. The ChipScope Pro debugging tool allows you to set trigger
conditions to capture application and integrated block port signals in hardware. Captured
signals can then be analyzed through the ChipScope Pro logic analyzer tool. For detailed
information for using the ChipScope Pro debugging tool, see www.xilinx.com/tools/
cspro.htm.

Reference Boards

Various Xilinx development boards support the Aurora 64B/66B core. These boards can be
used to prototype designs and establish that the core can communicate with the system.

• 7 series FPGA evaluation boards

° KC705

° KC724

Simulation Debug

Lanes and Channel do not come up in simulation

• The quickest way to debug these problems is to view the signals from one of the GTX/
GTH instances that are not working.

• Make sure that the reference clock and user clocks are all toggling.

Note: Only one of the reference clocks should be toggling, The rest will be tied low.

• Check to see that RECCLK and TXOUTCLK are toggling. If they are not toggling, you
might have to wait longer for the PMA to f inish locking. You should typically wait about
6-9 microseconds for lane up and channel up. You might need to wait longer for
simplex/ 7 series designs.

http://www.xilinx.com
www.xilinx.com/tools/cspro.htm
www.xilinx.com/tools/cspro.htm

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 138
PG074 December 18, 2012

Appendix C: Debugging

• Make sure that TXN and TXP are toggling. If they are not, make sure you have waited
long enough (see the previous bullet) and make sure you are not driving the TX signal
with another signal.

• Check the PLL/MMCM_NOT_LOCKED signal and the RESET signals on your design. If
these are being held active, your Aurora module will not be able to initialize.

• Be sure you do not have the POWER_DOWN signal asserted

• Make sure the TXN and TXP signals from each GTX/GTH are connected to the
appropriate RXN and RXP signals from the corresponding GTX/GTH on the other side of
the channel

• If you are simulating Verilog, you will need to instantiate the "glbl" module and use it
to drive the power_up reset at the beginning of the simulation to simulate the reset
that occurs after configuration. You should hold this reset for a few cycles. The
following code can be used an example:

//Simulate the global reset that occurs after configuration at the beginning
//of the simulation.
assign glbl.GSR = gsr_r;
assign glbl.GTS = gts_r;

initial
begin

gts_r = 1'b0;
gsr_r = 1'b1;
#(16*CLOCKPERIOD_1);
gsr_r = 1'b0;

end

• If you are using a multilane channel, make sure all the GTs on each side of the channel
are connected in the correct order.

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 139
PG074 December 18, 2012

Appendix C: Debugging

Channel comes up in simulation but S_AXI_TX_TREADY is never
asserted (never goes high)

• If your module includes flow control but you are not using it, make sure the request
signals are not currently driven high. S_AXI_NFC_TX_TVALID and UFC_TX_REQ are
active-High: if they are high, S_AXI_TX_TREADY will stay low because the channel will
be allocated for flow control.

• Make sure DO_CC is not being driven high continuously. Whenever DO_CC is high on a
positive clock edge, the channel is used to send clock correction characters, so
S_AXI_TX_TREADY is deasserted.

• If your module includes USER K Blocks but you are not using it, make sure the
S_AXI_USER_K_TX_TVALID is not driven high. If it is high, S_AXI_TX_TREADY will
stay low as channel will be allocated for USER K Blocks.

• If you have NFC enabled, make sure the design on the other side of the channel did not
send an NFC XOFF message. This will cut off the channel for normal data until the other
side sends an NFC XON message to turn the flow on again. See ug775.pdf for more
details.

Bytes and words are being lost as they travel through the
Aurora channel

• If you are using the AXI4-Stream interface, make sure you are writing data correctly. The
most common mistake is to assume words are written without looking at
S_AXI_TX_TREADY. Also remember that the S_AXI_TX_TKEEP signal must be used
to indicate which bytes are valid when S_AXI_TX_TLAST is asserted.

• Make sure you are reading correctly from the RX interface. Data and framing signals are
only valid when M_AXI_RX_TVALID is asserted.

Problems while compiling the design

• Make sure you include all the f iles from the src directory when compiling.

• If you are using VHDL, make sure to include the aurora_pkg.vhd f ile in your
synthesis.

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 140
PG074 December 18, 2012

Appendix C: Debugging

General Checks
Ensure that all the timing constraints for the core were properly incorporated from the
example design and that all constraints were met during implementation.

• Does it work in post-place and route timing simulation? If problems are seen in
hardware but not in timing simulation, this could indicate a PCB issue. Ensure that all
clock sources are active and clean.

• If using MMCMs in the design, ensure that all MMCMs have obtained lock by
monitoring the LOCKED port.

• If your outputs go to 0, check your licensing.

Interface Debug

AXI4‐Stream Interfaces

If data is not being transmitted or received, check the following conditions:

• If transmit s_axi_tx_tready is stuck low following the s_axi_tx_tvalid input
being asserted, the core cannot send data.

• If the receive s_axi_tx_tvalid is stuck low, the core is not receiving data.

• Check that the USER_CLK inputs are connected and toggling.

• Check that the AXI4-Stream waveforms are being followed. See. Figure 3-12.

• Check core configuration.

• Add appropriate core specif ic checks.

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 141
PG074 December 18, 2012

Appendix D

Generating a GT Wrapper File from the
Transceiver Wizard

The transceiver attributes play a vital role in the functionality of the Aurora 64B/66B core.
Use the latest transceiver wizard to generate the transceiver wrapper f ile.

RECOMMENDED: Xilinx strongly recommends that you update the transceiver wrapper file in the
Design Suite tool releases when the transceiver wizard has been updated but the Aurora core has not.

This appendix provides instructions to generate these transceiver wrapper files:

• Case 1: Virtex-7/Kintex-7 FPGA Wrapper Compatibility

• Case 2: Virtex-6 GTX FPGA Wrapper Compatibility

• Case 3: Virtex-6 GTH FPGA Wrapper Compatibility

Case 1: Virtex‐7/Kintex‐7 FPGA Wrapper
Compatibility
Use these steps to generate the transceiver wrapper f ile using the 7 series FPGAs
Transceivers Wizard:

1. Using the IP catalog, run the latest version of the 7 series FPGAs Transceivers Wizard.
Make sure the Component Name of the transceiver wizard matches the Component
Name of the Aurora 64B/66B core.

2. Select the protocol template: Aurora 64B/66B

3. Change the Line Rate in both TX and RX based on the application requirement.

4. Select the Reference Clock from the drop-down box menu in both TX and RX based on
the application requirement.

5. Select transceiver(s) and the clock source(s) based on the application requirement.

6. On Page 3, select External Data Width of RX to be 32 Bits and Internal Data Width to be
16 Bits

7. Keep all other settings as default.

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 142
PG074 December 18, 2012

Appendix D: Generating a GT Wrapper File from the Transceiver Wizard

8. Generate the core.

9. Replace the <component name>_gtx.v[hd] f ile in the example_design/gt/
directory available in the Aurora 64B/66B core with the generated <component
name>_gt.v[hd] f ile generated from the 7 series FPGAs Transceivers Wizard.

The transceiver settings for the Aurora 64B/66B core are up to date now.

Case 2: Virtex‐6 GTX FPGA Wrapper
Compatibility
Use these steps to generate the transceiver wrapper f ile using the Virtex®-6 FPGAs
Transceivers Wizard:

1. Using the ISE® CORE Generator™ IP catalog, run the latest version of the Virtex-6 GTX
FPGAs Transceivers Wizard. Make sure the Component Name of the transceiver wizard
matches the Component Name of the Aurora 64B/66B core.

2. Select the protocol template: Aurora 64B/66B

3. Change the Line Rate in both TX and RX based on the application requirement.

4. Select the Reference Clock from the drop-down box menu in both TX and RX based on
the application requirement.

5. Select Data Path Width under RX to 16. Ensure Decoding is set to 64B/66B

6. Select transceiver(s) and the clock source(s) based on the application requirement.

7. Keep all other settings as default.

8. Generate the core.

9. Replace the <component name>_gtx.v[hd] f ile in the example_design/gt/
directory available in the Aurora 64B/66B core with the generated <component
name>_gt.v[hd] f ile generated from the Virtex-6 GTX FPGAs Transceivers Wizard.

The transceiver settings for the Aurora 64B/66B core are up to date now.

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 143
PG074 December 18, 2012

Appendix D: Generating a GT Wrapper File from the Transceiver Wizard

Case 3: Virtex‐6 GTH FPGA Wrapper
Compatibility
Use these steps to generate the transceiver wrapper f ile using the Virtex-6 GTH FPGAs
Transceivers Wizard:

1. Using the CORE Generator IP catalog, run the latest version of the Virtex-6 GTH FPGAs
Transceivers Wizard. Make sure the Component Name of the transceiver wizard matches
the Component Name of the Aurora 64B/66B core.

2. Select the protocol template: Aurora 64B/66B

3. Select the Reference Clock from the drop-down box menu in both TX and RX based on
the application requirement.

4. Select transceiver(s) and the clock source(s) based on the application requirement

5. Go to page 2 and select the Line Rate based on the application requirement. GTH0 Line
Rate can be set to ½, ¼, 1/8 of the base line rate.

6. Keep all other settings as default.

7. Generate the core.

8. Compare and update the <component name>_quad.v[hd] f ile in the
example_design/gt/ directory available in the Aurora 64B/66B core with the
generated <component name>_quad.v[hd] f ile generated from the Virtex-6 GTH
FPGAs Transceivers Wizard.

The transceiver settings for the Aurora 64B/66B core are up to date now.

http://www.xilinx.com

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 144
PG074 December 18, 2012

Appendix E

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

www.xilinx.com/company/terms.htm.

References
Unless otherwise noted, IP references are for the product documentation page. These
documents provide supplemental material useful with this product guide:

1. Xilinx Aurora website: www.xilinx.com/aurora

Aurora 64B/66B Protocol Specification (SP011)

2. AMBA AXI4-Stream Protocol Specification

3. Vivado™ Design Suite documentation: www.xilinx.com/cgi-bin/docs/
rdoc?v=2012.4;t=vivado+userguides

4. These Xilinx documents can be located from the Xilinx Support website:

° AXI Reference Guide (UG761)

° Vivado Design Suite Migration Methodology Guide (UG911)

° 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476)

° 7 Series FPGAs Overview (DS180)

° Virtex-7 FPGAs Data Sheet: DC and Switching Characteristics (DS183)

° Kintex-7 FPGAs Data Sheet: DC and Switching Characteristics (DS182)

° Virtex-6 Family Overview (DS150)

http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/support
http://www.xilinx.com/aurora
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2012.3;t=vivado+userguides
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2012.3;t=vivado+userguides
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://xgoogle.xilinx.com/search?getfields=*&numgm=5&filter=0&proxystylesheet=xilinx&client=xilinx&site=EntireSite&q=ug761&getfields=*&output=xml_no_dtd&sort=date%3AD%3AL%3Ad1&oe=UTF-8&ie=UTF-8&requiredfields=-status%3Aarchive&entqrm=0&entsp=a&ud=1&exclude_apps=1&as_q=&requiredfields=-status:archive&partialfields=&lang2search=
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds182_Kintex_7_Data_Sheet.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds183_Virtex_7_Data_Sheet.pdf
http://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b_protocol_spec_sp011.pdf
http://xgoogle.xilinx.com/search?getfields=*&numgm=5&filter=0&proxystylesheet=xilinx&client=xilinx&site=EntireSite&q=UG911&getfields=*&getfields=*&getfields=*&getfields=*&output=xml_no_dtd&sort=date%3AD%3AL%3Ad1&oe=UTF-8&ie=UTF-8&requiredfields=-status%3Aarchive&entqrm=0&entsp=a&ud=1&requiredfields=-status%3Aarchive&partialfields=&requiredfields=-status%3Aarchive&partialfields=&requiredfields=-status%3Aarchive&partialfields=&exclude_apps=1&as_q=&requiredfields=-status:archive&partialfields=&lang2search=

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 145
PG074 December 18, 2012

Appendix E: Additional Resources

° Virtex-6 FPGA Data Sheet: DC and Switching Characteristics (DS152)

° Virtex-6 FPGA GTX Transceivers User Guide (UG366)

° Virtex-6 FPGA GTH Transceivers User Guide (UG371)

5. Synthesis and Simulation Design Guide (UG626)

Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support of product if implemented in devices that are not defined in the
documentation, if customized beyond that allowed in the product documentation, or if
changes are made to any section of the design labeled DO NOT MODIFY.

See the IP Release Notes Guide (XTP025) for more information on this core. For each core,
there is a master Answer Record that contains the Release Notes and Known Issues list for
the core being used. The following information is listed for each version of the core:

• New Features

• Resolved Issues

• Known Issues

Revision History
The following table shows the revision history for this document.

Date Version Revision

10/16/12 1.0 Initial Xilinx release as a product guide. This document replaces UG775,
LogiCORE IP Aurora 64B/66B User Guide and DS815, LogiCORE IP Aurora
64B/66B Data Sheet.
• Added section explaining constraining of the core.
• Added section explaining core debugging.

12/18/12 1.0.1 Updated for 14.4 and 2012.4 release.
Added TKEEP description
Updated Debugging appendix.

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/sim.pdf

http://www.xilinx.com/support/documentation/data_sheets/ds152.pdf
http://www.xilinx.com/support/documentation/user_guides/ug371.pdf
http://www.xilinx.com/support/documentation/user_guides/ug366.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/sim.pdf

LogiCORE IP Aurora 64B/66B v7.3 www.xilinx.com 146
PG074 December 18, 2012

Appendix E: Additional Resources

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties
which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in
a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring
fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/
warranty.htm#critapps.
© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, ARM, ARM1176JZ-S,
CoreSight, Cortex, and PrimeCell are trademarks of ARM in the EU and other countries.All other trademarks are the property of
their respective owners.

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/warranty.htm#critapps

