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About this Guide
PetaLinux provides an easy way to develop user applications for Zynq and MicroBlaze Linux systems, including
building, installing, and debugging. This guide describes how to create and debug these applications.

IMPORTANT: It is assumed that the readers of this document have basic Linux knowledge such as how
to run Linux commands, and basic PetaLinux familiarity having read and worked through the examples in
the Getting Started with PetaLinux SDK Guide.

Prerequisites
This document assumes that the following prerequisites have been satisfied:

• PetaLinux SDK has been installed.

• At least one PetaLinux BSP (Board Support Package) has been installed.

• You know how to build PetaLinux software image.

• You know how to boot PetaLinux software image.

• PetaLinux setup script has been sourced in each command console in which you work with PetaLinux.
Run the following command to check whether the PetaLinux environment has been setup on the command
console:

$ echo $PETALINUX

• If the PetaLinux working environment has been setup, it should shows the path to the installed PetaLinux.
If it shows nothing, please refer to section Environment Setup in the Getting Started with PetaLinux SDK
document to setup the environment.
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New Application

Create New Application
PetaLinux provides a tool to create user application templates for either C or C++. These templates include
application source code and Makefiles so that you can easily configure and compile applications for PetaLinux
systems, and install them into the root file system.

The basic steps are as follows:

1. Create a user application by running petalinux-new-app on your workstation:

$ petalinux-new-app [-t TYPE] <user-application-name>

e.g., to create a user application called myapp in C (the default):

$ petalinux-new-app myapp

or:

$ petalinux-new-app -t c myapp

To create a C++ application template, pass the -t c++ option, as follows:

$ petalinux-new-app -t c++ myapp

To create a autoconf application template, pass the -t autoconf option, as follows:

$ petalinux-new-app -t autoconf myapp

You can use -h or --help to see the usage of the petalinux-new-app. The new application you have
created can be found in the "$PETALINUX/software/user-apps" directory.

2. Change to the newly created application directory

$ cd $PETALINUX/software/user-apps/myapp
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Building New Application

You will see the following PetaLinux template-generated files:

Template Description

Kconfig Configuration file template - this file controls how your
application is integrated into the PetaLinux menu
configuration system, and allows you to add
configuration options for your own application to control
how it is built or installed.

Makefile Compilation file template - this is a basic Makefile
containing targets to build and install your application
into the root filesystem. This file needs to be modified
when you add additional source code files to your
project.

README A file to introduce how to build the user application.

myapp.c for C;
myapp.cpp for C++

Simple application program in either C or C++,
depending upon your choice. These files will be edited
or replaced with the real source code for your
application.

Building New Application
Once you have created the new application, the next step is to compile and build it. The required steps are
shown below:

1. Select your new application to be included in the PetaLinux build process. This is not enabled by default.
Launch the PetaLinux application configuration menu:

$ petalinux-config-apps

PetaLinux Configuration menu will show up:
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Building New Application

Figure 1: PetaLinux Configuration Menu

TIP:

• v(+) below the menu means there are more options below; you can scroll down the menu to see
those options by pressing arrow key (↓).

• ^(-) above the menu means there are more options above; you can scroll up the menu to see
those options by pressing arrow key (↑).

2. Press the down arrow key (↓) to scroll down the menu to Custom User Applications.

3. Press Enter to go into the Custom User Applications sub-menu:
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Building New Application

Figure 2: Custom User Applications Menu

You will see your new-created user application - myapp - listed in the menu.

4. Select the myapp sub-menu, the myapp sub-menu will then show up:
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Building New Application

Figure 3: myapp sub-menu

By default, there are no additional options for myapp. Advanced users can modify the Kconfig file in the
"myapp" directory, to add custom options.

5. Exit the menu and select <Yes> to Do you wish to save your new kernel configuration?:
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Building New Application

Figure 4: Save New configuration Dialog

It will take a few seconds for PetaLinux to apply the configuration change, please wait until you return to
the shell prompt on the command console.

6. Running make in the "$PETALINUX/software/petalinux-dist" directory will rebuild the PetaLinux
system image including the selected user application - myapp:

$ make

IMPORTANT:

• The above user applications build commands should be run in "$PETALINUX/software/
petalinux-dist" directory.

• You should run make image after installing the user applications (make xxxx_romfs) to update
the PetaLinux system image.

To build all the selected user applications into an complete PetaLinux system image:

$ cd $PETALINUX/software/petalinux-dist
$ make userapps_only
$ make userapps_romfs
$ make image

To build myapp into an existing PetaLinux system image:
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Building New Application

$ cd $PETALINUX/software/petalinux-dist
$ make userapps/myapp_only
$ make userapps/myapp_romfs
$ make image

TIP: There are other ways to compile and install the user applications:

• to compile all the selected user applications:

$ make userapps_only

• to install all the selected user applications:

$ make userapps_romfs

• to clean all the selected user applications:

$ make userapps_clean

• to compile a specific user application:

$ make userapps/<user-application>_only

• to install a specific user application:

$ make userapps/<user-application>_romfs

• to clean a specific user application:

$ make userapps/<user-application>_clean
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Testing New Application

Testing New Application
So far, you have created and compiled the new application. Now it’s time to test it.

1. Boot the newly created system image, either in QEMU or on your hardware board. If you are not sure
how to do it, please refer to section Test New Software Image with QEMU and section Test New
Software Image on Hardware in document Getting Started with PetaLinux SDK.

2. Confirm your user application is present on the PetaLinux system, by running the following command on
the system login console:

# ls /bin

Unless you have changed the user application’s Makefile to put the user application to somewhere else,
the user application will be put in to "/bin" directory.

3. Run your user application on the PetaLinux system console:

# <user-application-executable-file-name>

e.g., to run user application myapp:

# myapp

4. Confirm the result of the application is as expected.

If the new application is missing from the PetaLinux filesystem,double check to make sure that you completed
the _romfs and image Make targets described in the previous section. These ensure that your application
binary is copied into the root filesystem staging area, and that the PetaLinux system image are updated with
this new filesystem.
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Debugging Applications with GDB
PetaLinux supports GDB to debug your user application. This section describes the basic debugging procedure.

Preparing the build system for debugging
1. Change the user application Makefile so that compiler optimisations are disabled. Compiler optimisations

make debugging difficult because the compiler can re-order or remove instructions that do not impact the
program result, making debugging difficult.

Here is an example taken from a changed Makefile:

...
ROMFSINST=$(ROOTDIR)/tools/romfs-inst.sh

CFLAGS += -O0

APP = myapp
...

2. Change to the "$PETALINUX/software/petalinux-dist" directory:

$ cd $PETALINUX/software/petalinux-dist

3. Run petalinux-config-apps on the command console:

$ petalinux-config-apps

4. Scroll down the PetaLinux Configuration menu to Debugging:
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Preparing the build system for debugging

Figure 5: PetaLinux Configuration - Scrolling down to Debugging option

5. Select the Debugging sub-menu:

Figure 6: Debugging Menu
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Performing a Debug Session

6. Ensure that build debuggable applications and build debuggable libraries are selected.

[*] build debuggable libraries
[*] build debuggable applications

7. Enable gdbserver from the Root Filesystem Packages > base > external-sourcery-toolchain
submenu:

...
[ ] external-sourcery-toolchain-mtrace
[*] gdbserver
[ ] ldd
...

8. Exit the menu and select <Yes> to save the configuration.

9. Rebuild the PetaLinux image by running these commands from the
"$PETALINUX/software/petalinux-dist directory" (substitute your application name as
appropriate)

$ make userapps/myapp_clean
$ make userapps/myapp_only
$ make userapps/myapp_romfs
$ make image

Performing a Debug Session
1. Boot your board (or QEMU) with the new image created above.

2. Run gdbserver with the user application on the PetaLinux console (defaults listenning on port 1234):

# gdbserver host:1234 /bin/myapp
Process /bin/myapp created; pid = 73
Listening on port 1234

1234 is the gdbserver port - it can be any unused port number

3. On the workstation, navigate to the user application’s directory:

$ cd $PETALINUX/software/user-apps/myapp

4. Run GDB client

$ petalinux-gdb myapp

5. The GDB console will start:

...
PetaLinux SDK gdb library path auto-configuration
...
(gdb)

6. In the GDB console connect to the target machine using the command:
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Performing a Debug Session

• Use the IP address of the PetaLinux system, e.g.: 192.168.0.10. If you are not sure about the IP
address, run ifconfig on the target console to check.

• Use the port 1234. If you chose a different gdbserver port number in the earlier step, use that value
instead.

(gdb) target remote 192.168.0.10:1234

The GDB console will attach to the remote target. Here are the messages shown on the target console
after attaching to the target.

e.g., the IP address of the workstation is 192.168.0.9:

# gdbserver host:1234 /bin/myapp
Process /bin/myapp created; pid = 73
Listening on port 1234
Remote Debugging from host 192.168.0.9

7. Before starting the execution of the program create some breakpoints. Using the GDB console you can
create breakpoints throughout your code using function names and line numbers. For example create a
breakpoint for the main function:

(gdb) break main
Breakpoint 1 at 0x10000418: file myapp.c, line 9.

8. Run the program by executing the continue command in the GDB console. GDB will begin the execution
of the program and break at any breakpoints.

(gdb) continue
Continuing.

Breakpoint 1, main (argc=1, argv=0xbff35ec4) at myapp.c:9
9 {

9. To print out a listing of the code at current program location use the list command.

(gdb) list
4 * Replace this with your application code
5 */
6 #include <stdio.h>
7
8 int main(int argc, char *argv[])
9 {
10 printf("Hello, PetaLinux World!\n");
11 printf("cmdline args:\n");
12 while(argc--)
13 printf("%s\n",*argv++);

10. Try the step, next and continue commands. Try setting and removing breakpoints using the break
command. More information on the commands can be obtained using the GDB console help command.

11. When the program finishes, the GDB server application on the target system will exit. Here is an example
of messages shown on the console:
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GUI Debugging

~ # gdbserver host:1234 /bin/myapp
Process /bin/myapp created; pid = 58
Listening on port 1234
Remote debugging from host 192.168.0.9
Hello, PetaLinux World!
cmdline args:
/bin/myapp

Child exited with status 0
GDBserver exiting
~ #

TIP: A .gdbinit file will be automatically created, to setup paths to libraries. You may add your own GDB
initialisation commands at the end of this file if desired.

GUI Debugging
GDB debugging is supported in the PetaLinux Eclipse SDK, for more details please refer to the PetaLinux SDK
Eclipse Plugin Guide (UG979) .

Going Further With GDB
For more information on general usage of GDB, please refer to the GDB project documentation:

• http://www.gnu.org/software/gdb/documentation
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Customising the Application Template
In the previous section, you modified the application Makefile for debugging. In this section, we will change the
Kconfig file and the source file to customise the application template.

As mention in the earlier sections, the Kconfig file in the user application directory allows you to configure
your user application with Linux Kconfig mechanism.

In this section, we will see a simple example of how to change the Kconfig template and the source file.

1. Change the source file to print a configurable welcome string. Here is the change (highlighted) to the
source file:

#include <stdio.h>

int main(int argc, char *argv[])
{

char *welcome;
#ifdef WELCOME

welcome=WELCOME;
#else

welcome="PetaLinux World!";
#endif

printf("Hello, %s\n",welcome);

printf("cmdline args:\n");
while(argc--)

printf("%s\n",*argv++);

return 0;
}

2. Change the Kconfig file of the user application to add a configuration option:
USER_APPS_MYAPP_WELCOME. Here is the change (highlighted) to the Kconfig file:

if USER_APPS_MYAPP
comment "No additional options for MYAPP"

config USER_APPS_MYAPP_WELCOME
string "Welcome String:"
help
Welcome string for myapp

endif

3. Change the user application Makefile to pass the configurable option to the user application executable.
Here is an example (highlighted):
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ROMFSDIR=$(ROOTDIR)/romfs
ROMFSINST=$(ROOTDIR)/tools/romfs-inst.sh

include $(ROOTDIR)/config/.config
ifneq ($(CONFIG_USER_APPS_MYAPP_WELCOME),)
CFLAGS += -DWELCOME=\"$(CONFIG_USER_APPS_MYAPP_WELCOME)\"
endif

APP = myapp

4. Re-run the application configuration menu:

$ petalinux-config-apps

5. When the PetaLinux Configuration menu appears, the newly created configuration option will be
visible under the following sub menu:

Custom User Applications --->
myapp --->

You should see the new Welcome String configuration on the myapp sub-menu list:

Figure 7: myapp menu with new configuration option

6. Choose the Welcome String: option and then input a string, e.g., "It’s a user application
test!".

7. Exit and save the configuration change.
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8. Rebuild application, filesystem and PetaLinux image:

$ make userapps/myapp_only
$ make userapps/myapp_romfs
$ make image

9. Boot the new image on hardware or with QEMU. When the system boots, run the new application.

# myapp
Hello, It’s a user application test!
cmdline args:
myapp

One final thing to note, any configuration settings you choose for your application will be saved if you save your
default configurations in the top level menuconfig system.
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Trouble Shooting
This section describes some common issues you may experience when creating and testing user application,
and ways to solve them.

Problem/Error Message Description and Solution

GDB Error message:
<IP Address>:<port>:
Connection refused. GDB
cannot connect to the
target board using <IP>:
<port>

Problem Description:
This error message tells that the GDB client failed to connect to
the GDB server.

Solution:
1. Check whether the gdbserver is running on the target

system.

2. Check whether there is another gdb client already
connected to the GDB server. This can be done by looking
at the target console. If you can see:

Remote Debugging from host <IP>

it means there is another GDB client connecting to the
server.

3. Check whether the IP address and the port is correctly set.
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Additional Resources

References
• PetaLinux SDK Application Development Guide (UG981)
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• PetaLinux SDK Eclipse Plugin Guide (UG979)
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• PetaLinux SDK Getting Started Guide (UG977)

• PetaLinux SDK Installation Guide (UG976)
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