

Partial Reconfiguration User Guide www.xilinx.com 93
UG702 (v12.3) October 5, 2010

Required Files and Directory Structure

The XST file specifies the appropriate PRJ file as the input file. The PRJ file contains all the
HDL files for an RM as well as the language and library to into which to compile the
source. For example:

verilog work "../../Source/red_fast/led_fast.v"
verilog work "../../Source/red_fast/red_fast.v"

Examples of both the .xst and .prj files can also be seen in UG627, the XST User Guide,
or generated from ISE® Design Suite.

In the example, the required directories are Red_Fast, Red_Slow, Red_Blank,
Green_Fast, Green_Slow, Green_Blank, Blue_Fast, Blue_Slow, Blue_Blank
and Static. If the NGDBUILD_TOP variable is used and $STATIC is removed from the
RM list, the /Static directory is not required.

If the option RUN_RM_SYNTH is set to NO, the directory for each RM must contain the netlist
for each module.

Configuration Directories
These directories do not require any specific content, but must be created for
implementation to run. In the example above, they are the FastConfig, SlowConfig,
FSFConfig, and BlankConfig directories.

run
-ifn red.prj
-ifmt mixed
-ofn red
-ofmt NGC
-p xc5vlx50t-3-ff1136
-top red
-opt_mode Speed
-opt_level 1
-power NO
-iuc NO
-keep_hierarchy NO
-netlist_hierarchy as_optimized
-rtlview Yes
-glob_opt AllClockNets
-read_cores YES
-write_timing_constraints NO
-hierarchy_separator /
-bus_delimiter <>
-case maintain
-slice_utilization_ratio 100
-bram_utilization_ratio 100
-dsp_utilization_ratio 100
-reduce_control_sets off
-verilog2001 YES
-fsm_extract YES
-fsm_encoding Auto
-safe_implementation No
-fsm_style lut

94 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v12.3) October 5, 2010

Chapter 5: Command Line Scripting

Export Directories
Export directories are created by the script to hold Configurations which have completed
implementation. The names are based on the Configuration name (X<config_name>)
and in the example are XFastConfig, XSlowConfig, XFSFConfig, and
XBlankConfig. The files in these directories are overwritten each time the scripts are run.
To save runs for analysis or comparison, save copies in a new location.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 95
UG702 (v12.3) October 5, 2010

Chapter 6

Configuring the FPGA Device

This chapter describes how to configure the FPGA device, and includes:

• About Configuring the FPGA Device

• Configuration Modes

• Downloading a Full Bit File

• Downloading a Partial Bit File

• System Design for Configuring an FPGA Device

• Partial Bit File Integrity

• Partial Bitstream CRC Checking

• Configuration Frames

• Configuration Time

• Configuration Debugging

About Configuring the FPGA Device
This section describes the system design considerations when configuring the FPGA
device with a partial bit file, as well as architectural features in the FPGA that facilitate
Partial Reconfiguration.

Because most aspects of Partial Reconfiguration are no different than standard full
configuration, this section concentrates on the details that are unique to PR.

Any of the following configuration ports can be used to load the partial bitstream:
SelectMAP, Serial, JTAG, or ICAP (Internal Configuration Access Port).

To use SelectMAP or Serial modes for loading a partial bit file, these pins must be reserved
for use after the initial device configuration. This is achieved by using the UCF constraint
CONFIG_MODE (only needed to select a width of 16 or 32) and the bitgen -g persist
option.

Partial bitstreams contain all the configuration commands and data necessary for Partial
Reconfiguration. The task of loading a partial bitstream into an FPGA does not require
knowledge of the physical location of the RM because configuration frame addressing
information is included in the partial bitstream. A partial bitstream cannot be sent to the
wrong part of the FPGA device.

A Partial Reconfiguration controller retrieves the partial bitstream from nonvolatile
memory, then delivers it to a configuration port. The Partial Reconfiguration control logic
can either reside in an external device (for example a processor) or in the fabric of the
FPGA device to be reconfigured. A user-designed internal PR controller loads partial
bitstreams through the ICAP interface. As with any other logic in the static design, the

http://www.xilinx.com

96 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v12.3) October 5, 2010

Chapter 6: Configuring the FPGA Device

internal Partial Reconfiguration control circuitry operates without interruption
throughout the Partial Reconfiguration process.

Internal configuration can consist of either a custom state machine, or an embedded
processor such as MicroBlaze™ processor or PowerPC® 405 processor (PPC405).

As an aid in debugging Partial Reconfiguration designs and PR control logic, the Xilinx®
iMPACT™ tool can be used to load full and partial bitstreams into an FPGA device by
means of the JTAG port.

For more information on loading a bitstream into the configuration ports, see the
”Configuration Interfaces” chapter in UG071, Virtex-4 FPGA Configuration Guide, UG191,
Virtex-5 FPGA Configuration User Guide, or UG360, Virtex-6 FPGA Configuration User Guide.

Configuration Modes
Partial Reconfiguration is supported via the following configuration modes:

• ICAP

A good choice for user configuration solutions. Requires the instantiation of an ICAP
controller as well as logic to drive the ICAP interface.

• JTAG

A good interface for quick testing or debug. Can be driven via iMPACT or ChipScope
Analyzer using a Xilinx configuration cable that supports JTAG.

• Slave SelectMAP or Slave Serial

Good choice to perform full configuration and Partial Reconfiguration over the same
interface.

Master modes are not directly supported due to IPROG housecleaning that will clear the
configuration memory.

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug071.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug191.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug360.pdf

Partial Reconfiguration User Guide www.xilinx.com 97
UG702 (v12.3) October 5, 2010

Downloading a Full Bit File

Downloading a Full Bit File
The FPGA device in a digital system is configured after power on reset by downloading a
full bit file either directly from a PROM or from a general purpose memory space by a
microprocessor. A full bit file contains all the information necessary to reset the FPGA
device, configure it with a complete design and verify that the bit file is not corrupt.
Figure 6-1 illustrates this process.

After the initial configuration is completed and verified, the FPGA device enters user
mode, and the downloaded design begins functioning. If a corrupt bit file is detected, the
DONE signal is never asserted, the FPGA device never enters user mode, and the corrupt
design never starts functioning.

Downloading a Partial Bit File
A partially reconfigured FPGA device is in user mode while the partial bit file is loaded.
This allows the portion of the FPGA logic not being reconfigured to continue functioning
while the reconfigurable portion is modified. Figure 6-2 illustrates this process.

X-Ref Target - Figure 6-1

Figure 6-1: Configuring With a Full Bit File

X12031

Partial Configuration Bit File

Config. Data HeaderCheck Sum

Configuration Mode User Mode

FPGA

Start
Vcc Rise

Vcc
Stable

Power-on
Reset

Download Full
Bit File

DONE
Asserted

http://www.xilinx.com

98 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v12.3) October 5, 2010

Chapter 6: Configuring the FPGA Device

The partial bit file has no header, nor is there a startup sequence that brings the FPGA
device into user mode. The bit file contains (essentially) only frame address and
configuration data, plus a final checksum value. When all the information in a partial bit
file is sent to the FPGA device by means of dedicated modes or through the ICAP, no
external DONE signal is raised to indicate completion.

You must monitor the data being sent to know when configuration has completed. The end
of a partial bit file has a DESYNCH word (0000000D) that informs the configuration engine
that the bit file has been completely delivered. This word is given after a series of padding
NO OP commands, ensuring that once the DESYNCH has been reached, all the configuration
data has already been sent to the target frames throughout the device. As soon as the
complete partial bitfile has been sent to the configuration port, it is safe to release the
reconfiguration region for active use.

System Design for Configuring an FPGA Device
A partial bit file can be downloaded to the FPGA device in the same manner as a full bit
file. An external microprocessor determines which partial bit file should be downloaded,
where it exists in an external memory space, and directs the partial bit file to a standard
FPGA configuration port such as JTAG, SelectMAP or serial interface. The FPGA device
processes the partial bit file correctly without any special instruction that it is receiving a
partial bit file.

It is common to assert the INIT or PROG signals on the FPGA configuration interface
before downloading a full bit file. This must not be done before downloading a partial bit
file, as that would indicate the delivery of a full bit file, not a partial one.

Any indication to the working design that a partial bit file will be sent (such as holding
enable signals and disabling clocks) must be done in the design, and not by means of
dedicated FPGA configuration pins. Figure 6-3 shows the process of configuring through a
microprocessor.

X-Ref Target - Figure 6-2

Figure 6-2: Configuring With a Partial Bit File

X12032

Partial Configuration Bit File

Config. Data

Configuration Mode User Mode

FPGA

Start
Vcc Rise

Initial Configuration Done
Asserted

Download
Partial Bit File

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 99
UG702 (v12.3) October 5, 2010

System Design for Configuring an FPGA Device

In addition to the standard configuration interfaces, Partial Reconfiguration supports
configuration by means of the Internal Configuration Access Port (ICAP). The ICAP
protocol is identical to SelectMAP and is described in the Configuration User Guide for the
FPGA device. The ICAP library primitive can be instantiated in the HDL description of the
FPGA design, thus enabling analysis and control of the partial bit file before it is sent to the
configuration port. The partial bit file can be downloaded to the FPGA device through
general purpose IO or gigabit transceivers and then routed to the ICAP in the FPGA fabric.

The ICAP must be used, with an 8-bit bus only, for Partial Reconfiguration for encrypted
Virtex-6 partial bit files. Reconfiguration through external configuration ports is not
permitted when encryption is used.

X-Ref Target - Figure 6-3

Figure 6-3: Configuring by Means of a Microprocessor

X12033

Self-reconfiguring
FPGA

ICAP uP

uP

RP A

JTAG
port

RP A

FPGA

full
configuration

RM A1
config.

RM A2
config.

RM A3
config.

Off-chip memory or System ACE

http://www.xilinx.com

100 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v12.3) October 5, 2010

Chapter 6: Configuring the FPGA Device

Partial Bit File Integrity
Error detection and recovery of partial bit files have unique requirements compared to
loading a full bit file. If an error is detected in a full bit file when it is being loaded into an
FPGA device, the FPGA device never enters user mode. The error is detected after the
corrupt design has been loaded into configuration memory, and specific signals are
asserted to indicate an error condition. Because the FPGA device never enters user mode,
the corrupt design never becomes active. The designer determines the system behavior for
recovering from a configuration error such as downloading a different bit file if the error
condition is detected.

Downloading partial bit files cannot use this methodology for error detection and
recovery. The FPGA device is by definition already in user mode when the partial bit file is
loaded. Because the configuration circuitry supports error detection only after a bit file has
been loaded, a corrupt partial bit file can become active, potentially damaging the FPGA
device if left operating for an extended period of time.

If a CRC error is detected during a partial reconfiguration, it will assert the INIT_B pin of
the FPGA (INIT_B goes low to indicate a CRC error). It is important to note that if a system
monitors INIT_B for CRC errors during the initial configuration, a CRC error during a
partial reconfiguration may trigger the same response. To detect the presence of a CRC
error from within the FPGA, the CRC status can be monitored through the ICAP block. The
Status Register (STAT) indicates that the partial bit file has a CRC error by asserting the
CRC_ERROR flag (bit 0).

There are two types of partial bit file errors to consider: data errors and address errors (the
partial bit file is essentially address and data information).

If the error is in the data portion then recovery is relatively simple. Load a new partial bit
file (or even a "blank" partial bit file) and the corruption is resolved.

If the error occurs in the address portion of the partial bit file, recovery is more invasive.
The corruption could have modified the static portion of the FPGA design. In this case, the
only method for safe recovery is to download a new full bit file to ensure the state of the
static logic, which requires the entire FPGA device to be reset.

Many systems do not need a complex recovery mechanism because resetting the entire
FPGA device is not critical, or the partial bit file is stored locally. In that case, the chance of
bit file corruption is not appreciable. Systems where the bit files have a risk of becoming
corrupted, such as sending the partial bit file over a radio link, should contain design
circuitry to mitigate the problem. One possibility is to process the partial bit file locally in
the FPGA fabric immediately before it is loaded into the ICAP to partially reconfigure the
device.

The static logic of the FPGA design could contain a circuit that analyzes the partial bit file
before it is sent to the ICAP. If an error is detected, the Partial Reconfiguration is stopped
and retried, or a known good partial bit file is loaded instead. Figure 6-4 illustrates this
process.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 101
UG702 (v12.3) October 5, 2010

Partial Bit File Integrity

The partial bit file contains CRC information that can be used to check integrity, or you
may generate custom CRC information and send it with the partial bit file. This scheme is
similar to the Asymmetric Key Encryption application described in Chapter 2, Common
Applications.

X-Ref Target - Figure 6-4

Figure 6-4: Partial Bit File Error Detection

Buffer

FPGA

CRC
Verify

ICAP

Corruption

Host
Bit Files

X12034

http://www.xilinx.com

102 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v12.3) October 5, 2010

Chapter 6: Configuring the FPGA Device

Partial Bitstream CRC Checking
Because a partial bitstream is being loaded into an active design, and because the built-in
CRC check does not occur until the end of the bitstream, it is recommended that you
implement a CRC checker that can check the bitstream data prior to loading it into the
FPGA. A complete solution to this problem requires both a software and a hardware
solution. The software solution will calculate CRC values on blocks or frames of data and
insert the CRC value into the bitstream. The hardware solution will recalculate a CRC
value and compare it to the software value embedded in the bitstream.

This solution should be necessary only for scenarios where there is a potential risk to the
integrity of the stored bit files. These situations would include remote uploads of partial bit
files to systems in the field or space applications subject to radiation upsets.

A high level schematic of such a solution would look like the following:

The top half this figure shows a high-level description of the software solution. This could
be implemented using a script. Xilinx also has a solution planned for BitGen in a future
software release.

The lower half of the figure shows a high-level description of the hardware solution
required. Xilinx is working on a Reference Design/IP Core for a future software release
that will work with the BitGen software solution.

If a CRC error is detected using a solution similar to this, it is the user’s responsibility to
figure out how to resend data and correct the situation. Since the data corruption will be
determined prior to the corrupt data being loaded, it is not necessary to reconfigure the
static logic.

X-Ref Target - Figure 6-5

Figure 6-5: CRC Checking for a Partial Reconfiguration Design

Software Solution

Hardware Solution

Original Partial
Bit File

Bit File split
into Sections

CRC generated
for each Section

Partial Bit File
reassembled w/CRC

BRAM ICAP

Pass?

NO

YES

ERROR

DONE

CRC calculated from
BRAM, check vs. Packet

Config Data
stored w/o CRC

Packets enter
FPGA

Shift Data
to ICAP

X12035

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 103
UG702 (v12.3) October 5, 2010

Configuration Frames

Configuration Frames
All user-programmable features inside Virtex devices are controlled by volatile memory
cells that must be configured at power-up. These memory cells are collectively known as
configuration memory. They define the LUT equations, signal routing, IOB voltage
standards, and all other aspects of the design.

Virtex architectures have configuration memory arranged in frames that are tiled about the
device. These frames are the smallest addressable segments of the device configuration
memory space, and all operations must therefore act upon whole configuration frames.
The numbers of configuration frames per device are shown in the FPGA device family-
specific Configuration User Guides (table 7-1 for Virtex-4, table 6-1 for Virtex-5, table 6-22 for
Virtex-6).

Reconfigurable Frames are built upon these configuration frames, and these are the
minimum building blocks for performing Partial Reconfiguration.

• Base regions in Virtex-6 are 40 CLBs high by 1 CLB wide.

• Base regions in Virtex-5 are 20 CLBs high by 1 CLB wide.

• Base regions in Virtex-4, are 16 CLBs high by 1 CLB wide.

Similar base regions exist for different element types, such as block RAM, IOB, IO elements
(such as ILOGIC, OLOGIC, IODELAY, and DSP48). Use the PlanAhead™ software
floorplanning capabilities to examine the sizes of these base regions.

The "Frames" referenced in the PlanAhead documentation and "Reconfigurable Frames" in
the paragraph above are not the same as the "configuration frames" as described in the
Configuration User Guides. Frames, as shown in the PR Statistics tab, refer to the minimum
reconfigurable building blocks and cannot be broken any smaller. Even if an area group
that is smaller than a single reconfigurable frame is selected, the entire frame is
reconfigured.

After a Pblock has been drawn, corresponding to a Reconfigurable Partition, details for
that Partition are shown in the Pblock Properties window. The Statistics tab shows the
number of frames (regions) covered by that Pblock and the estimated bitstream size for the
Reconfigurable Partition. As the size of the Pblock changes, the information shown here
changes accordingly.

Configuration Time
The speed of configuration is directly related to the size of the partial bit file and the
bandwidth of the configuration port. The different configuration ports in Virtex
architectures have the maximum bandwidths shown in Table 6-1.

Table 6-1: Maximum Bandwidths for Configuration Ports in Virtex Architectures

Configuration Mode Max Clock Rate Data Width Maximum Bandwidth

ICAP 100 MHz 32 bit 3.2 Gbps

SelectMAP 100 MHz 32 bit 3.2 Gbps

Serial Mode 100 MHz 1 bit 100 Mbps

JTAG 66 MHz 1 bit 66 Mbps

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug071.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug191.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug360.pdf
http://www.xilinx.com

104 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v12.3) October 5, 2010

Chapter 6: Configuring the FPGA Device

The Bitstream size as reported in the PlanAhead PR Statistics tab for a Reconfigurable
Partition is an accurate estimate of the size of the partial bit file to be created. Because this
number is given in bytes, you must multiply it by 8 to find the bitstream size in bits.

Example: A small partial bit file for a Virtex-5 device contains a region spanning 200 Slices,
drawn in such a way that it covers 5 Reconfigurable Frames (100 CLBs; 5 CLBs wide by 20
CLBs high). Before the rawbits (.rbt) file is generated, the configuration time can be
estimated by using the bitstream size provided by the PlanAhead software, which is listed
as 29,520 bytes, or 236,160 bits. Using SelectMAP mode or the ICAP, this partial bit file
could be loaded in about:

236,160 bits / 3,200,000,000 bps = 0.0000738 seconds

or about 73.8 microseconds. The configuration time scales fairly linearly as the partial bit
file size grows with the number of frames, with small variances depending on the location
and contents of the frames. There is also a small amount of overhead after the last frame is
loaded.

The exact bitstream length is available in the created.rbt file by using the -b option with
BitGen. Use this number along with the bandwidth to calculate the total configuration
time. In the example above, the header of the bitstream that is created is shown in the
following file snippet of an .rbt header. The actual configuration time is about 75.6
microseconds.

Configuration Debugging
The ICAP interface can be use used to monitor the configuration process, even if other
configuration means are used (JTAG or Slave SelectMAP). In fact, the status of the
configuration is automatically pushed out to the “O” port of the ICAP without having to
issue a read.

The “O” port of the ICAP block is a 32-bit bus, but only the lowest byte is used. The
mapping of the lower byte is as follows:

Xilinx ASCII Bitstream
Created by Bitstream L.46
Design name: FFF_routed.ncd;UserID=0xFFFFFFFF
Architecture: virtex5
Part: 5vlx50tff1136
Date: Tue Jun 09 14:00:59 2009
Bits: 242016
11111111111111111111111111111111
...

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 105
UG702 (v12.3) October 5, 2010

Configuration Debugging

The most significant nibble of this byte reports the status. These Status bits indicate
whether the Sync word been received and whether a configuration error has occurred. The
following table displays the values for these conditions.

Figure 6-6 below shows a completed full configuration, followed by a Partial
Reconfiguration with a CRC error, and finally a successful Partial Reconfiguration. Using
the table above, and the description below, you can see how the “O” port of the ICAP can
be used to monitor the configuration process. If a CRC error occurs, these signals can be
used by a configuration state machine to recover from the error. These signals can also be
used by ChipScope to capture a configuration failure for debug purposes.

With this information ChipScope can also be used to capture the various points of a Partial
Reconfiguration.

Table 6-2: ICAP “O” Port Bits

Bit Number Status Bit Meaning

O[7] CFGERR_B Configuration error (active Low)

0 = A configuration error has occurred.

1 = No configuration error.

O[6] DALIGN Sync word received (active High)

0 = No sync word received.

1 = Sync word received by interface logic.

O[5] RIP Readback in progress (active High)

0 = No readback in progress.

1 = A readback is in progress.

O[4] IN_ABORT_B ABORT in progress (active Low)

0 = Abort is in progress.

1 = No abort in progress.

O[3:0] 1 Reserved

Table 6-3: ICAP Sync Bits

O[7:0] Sync Word? CFGERR?

9F No Sync No CFGERR

DF Sync No CFGERR

5F Sync CFGERR

1F No Sync CFGERR

http://www.xilinx.com

106 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v12.3) October 5, 2010

Chapter 6: Configuring the FPGA Device

The markers in the ChipScope display indicate the following:

• 1st_done

This marker indicates the completion of the initial full bitstream configuration. The
DONE pin (done_pad in this waveform) goes High.

• cfgerr

This marker indicates a CRC error is detected while loading partial bitstream. The
status can be observed through O[31:0] (icap_o_top[31:0] in the waveform).
• Icap_o_top[31:0] starts at 0x9F

• After seen SYNC word, Icap_o_top[31:0] change to 0xDF

• After detect CRC error, Icap_o_top[31:0] change to 0x5F for one cycle, and
then switches to 0x1F

• INIT_B pin is pulled low (init_pad in the waveform)

• RCRC

This marker indicates when the partial bitstream is loaded again. The RCRC command
resets the cfgerr status, and removes the pull-down on the INIT_B pin (init_pad
in this waveform).

• Icap_o_top[31:0] change from 0x1F to 0x5F when the SYNC word is seen

• Icap_o_top[31:0] change from ‘0x5F’ to ‘0xDF’ when RCRC command is
received

• pr_done

This marker indicates a successful Partial Reconfiguration.

X-Ref Target - Figure 6-6

Figure 6-6: ChipScope Display for Partial Reconfiguration

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 107
UG702 (v12.3) October 5, 2010

Configuration Debugging

• Icap_o_top[31:0] change from 0xDF to 0x9F when the DESYNC command is
received and no configuration error is detected.

It is important to note that a Partial Reconfiguration does not perform a CRC check until
the entire partial bit file has been loaded, so corrupted data will have already been loaded
into the FPGA. If the corruption occurred on an address bit, the static logic could
potentially be corrupted, and that status is indicated at the INIT_B configuration register
bit. In a system requiring high reliability, it is important to do a CRC check on the partial
bitstream prior to sending it to the configuration interface. Information on performing a
CRC check on partial bitstreams prior to loading is given in the Partial Bitstream CRC
Checking section of this chapter.

If a CRC error occurs, by default the configuration interface will try to issue a full
reconfiguration of the device. This is usually not the desired behavior. To prevent this from
happening, follow the recommendations given in Generating Bit Files in Chapter 3.

http://www.xilinx.com

108 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v12.3) October 5, 2010

Chapter 6: Configuring the FPGA Device

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 109
UG702 (v12.3) October 5, 2010

Chapter 7

Design Considerations

This section discusses design considerations, and includes:

• About Design Considerations

• Design Hierarchy

• Clocking Rules

• Decoupling Functionality

• Defining Reconfigurable Partition Boundaries

• Proxy Logic

• Black Boxes

• Module-Level Constraint Files

• Implementation Strategies

• Simulation and Verification

• Using High Speed Transceivers

• Interaction with Other Xilinx Tools

About Design Considerations
To take advantage of the Partial Reconfiguration capability of Xilinx® FPGA devices, you
must analyze the design specification thoroughly, and consider the requirements,
characteristics, and limitations associated with PR designs. This simplifies both the design
and debug processes, and avoids potential future risks of malfunction in the design.

http://www.xilinx.com

110 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v12.3) October 5, 2010

Chapter 7: Design Considerations

Design Hierarchy
This section discusses Design Hierarchy, and includes:

• About Design Hierarchy

• Design Elements Inside Reconfigurable Modules

• Packing Logic

• IO in Reconfigurable Modules

• Packing Input/Output Registers in the IOB

• Design Instance Hierarchy

• Submodules in Reconfigurable Modules

• Global Clocking

• Regional Clocking

• Controlled Routes

• Interaction with ChipScope Pro

• Interaction with System Generator for DSP and CORE Generator

About Design Hierarchy
Good hierarchical design practices resolve many complexities and difficulties when
implementing a Partially Reconfigurable FPGA design. A clear design instance hierarchy
simplifies physical and timing constraints. Registering signals at the boundary between
static and reconfigurable logic eases timing closure. Grouping logic that is packed together
in the same hierarchical level is necessary.

These are all well known design practices that are often not followed in general FPGA
designs. Following these design rules is not strictly required in a partially reconfigurable
design, but the potential negative effects of not following them are more pronounced. The
benefits of Partial Reconfiguration are great, but the extra complexity in design could be
more challenging to debug, especially in hardware.

For additional information about design hierarchy, see WP362, Repeatable Results with
Design Preservation, and UG748, Hierarchical Design Methodology Guide.

Design Elements Inside Reconfigurable Modules
Not all logic is permitted to be actively reconfigured. Global logic and clocking resources
must be placed in the static region to not only remain operational during reconfiguration,
but to benefit from the initialization sequence that occurs at the end of a full device
configuration. Logic that must remain in static logic includes:

• Clock modifying blocks (PLL, PMCD, DCM)

• Certain clock buffers (BUFG)

BUFR is permitted in an RM with restrictions, as noted in the Clocking Rules section of
this chapter.

• Xilinx recommends that device feature blocks remain in static logic. It is possible these
elements will function properly after reconfiguration, but extensive silicon testing has
not been performed. These elements include BSCAN, CAPTURE, DCIRESET,
FRAME_ECC, ICAP, KEY_CLEAR, STARTUP, and USR_ACCESS.

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=white+papers&sub=wp362.pdf
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=12.3&topic=sw+manuals&sub=Hierarchical_Design_Methodology_Guide.pdf

Partial Reconfiguration User Guide www.xilinx.com 111
UG702 (v12.3) October 5, 2010

Design Hierarchy

Packing Logic
Any logic that must be packed together must be placed in the same group, whether it is
static or reconfigurable. For example, IO registers must remain with the IO port. Partition
boundaries are barriers to optimization. Choose the hierarchical boundaries wisely, since
the insertion of proxy logic may result in suboptimal results or routes that are impossible to
achieve.

IO in Reconfigurable Modules
Device pins can be placed in RMs, and therefore can be reconfigured. RMs must include
the IO circuitry (such as IBUF and OBUF) that is required to connect internal logic to
package pins, and the ports must connect to the static logic by name only.

In other words, the IO features must be completely contained within the module, but the
port list for the complete design remains at the top-level design description. Other
requirements of submodule IO include:

• HDL

• Each Reconfigurable Module for a Reconfigurable Partition must have the same
set of module ports.

• All external port declarations should be made at the top-level.

• Automatic IOB insertion should be enabled for the top-level synthesis and
disabled for module level synthesis.

• Synthesis tools handle declarations of submodule pins differently. Examples for
XST and Synplify are provided in the following subsections.

• UCF

• Location constraints are required for all IO placed in Reconfigurable Modules.
These constraints should be placed in the top-level UCF to ensure consistency
among the different module variants, but can be placed in a submodule UCF if
necessary.

• If you change the location of an IO in one RM within an RP, for example, by
floorplanning the RM in PlanAhead, the location will be changed in the UCF for
only that RM (the active RM). The IO must then be constrained to the new
location in all of the other RMs in that RP.

• The reconfigurable region must include AREA_GROUP RANGE constraints that
include IOB sites, along with other types such as ILOGIC or OLOGIC as needed.

In the following code examples, ports port_in and port_out are connected from the top
level to IO logic in the RM, and ports clk, reset, data_in, and data_out, connect to IO
logic at the top level. The instantiation of a submodule from static must include references
to port_in and port_out, and the submodule must include instantiations of IO logic on
the appropriate ports (iport_ini and iport_outi in this case).

• XST

• XST can be directed to insert or not insert IO buffers by means of the
BUFFER_TYPE attribute. The recommended flow using XST is to let the synthesis
tool insert IO at the top-level by default, and use this attribute to denote the IO
that should NOT receive IO buffers at the top-level. This attribute is applied to the
ports at the top level port definition. The IO components (such as IBUF and
OBUF) must be instantiated in the submodule HDL.

http://www.xilinx.com

112 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v12.3) October 5, 2010

Chapter 7: Design Considerations

The following code snippets are examples of XST Verilog and XST VHDL:

• Synplicity

• Synplicity supports this capability through the syn_black_box and
black_box_pad_pin directives. The approach here is different: all of the ports
are still listed at the top-level, but Synplicity is informed at the black box module
definition that the IO buffer is found in the submodule (still in the top-level HDL).
As with XST, any reconfigurable IO logic must be instantiated in each
Reconfigurable Module variant. The following code snippets are an example
Synplicity Verilog file and a Synpilicity VHDL, respectively:

//XST Verilog example
//top level HDL
module top (clk, reset, data_in, data_out, port_in, port_out);
 input clk, reset, data_in
 (* buffer_type = "none" *) input port_in;
 output data_out
 (* buffer_type = "none" *) output port_out;
...

--XST VHDL example
–-top level HDL
...
entity top is
port(
 clk : in std_logic;
 reset : in std_logic;
 data_in : in std_logic;
 data_out : out std_logic;
 port_in : in std_logic;
 port_out : out std_logic
);

attribute buffer_type: string;
attribute buffer_type of port_in : signal is "none";
attribute buffer_type of port_out : signal is "none";
end my_rm;
...

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 113
UG702 (v12.3) October 5, 2010

Design Hierarchy

//Synplicity Verilog example
//reconfigurable module declaration within Top level HDL
module my_rm (clk, reset, data_in, data_out, port_in, port_out)
 /*synthesis syn_black_box black_box_pad_pin="port_in, port_out"*/;
 input clk, reset, data_in;
 input port_in;
 output data_out;
 output port_out;
endmodule
--Synplicity VHDL example
–-reconfigurable module entity declaration within Top level HDL
...
entity my_rm is
port(
 clk : in std_logic;
 reset : in std_logic;
 data_in : in std_logic;
 data_out : out std_logic;
 port_in : in std_logic;
 port_out : out std_logic
);

attribute syn_black_box : boolean;
attribute syn_black_box of my_rm: component is true;
attribute black_box_pad_pin : string;
attribute black_box_pad_pin of my_rm: component is "port_in,
port_out";

end my_rm;
...

--Synplicity VHDL example
--reconfigurable module entity declaration within Top level HDL
...
entity my_rm is
port(
 clk : in std_logic;
 reset : in std_logic;
 data_in : in std_logic;
 data_out : out std_logic;
 port_in : in std_logic;
 port_out : out std_logic
);

attribute syn_black_box : boolean;
attribute syn_black_box of my_rm: component is true;
attribute black_box_pad_pin : string;
attribute black_box_pad_pin of my_rm: component is "port_in, port_out";

end my_rm;
...

http://www.xilinx.com

114 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v12.3) October 5, 2010

Chapter 7: Design Considerations

Packing Input/Output Registers in the IOB
Whenever possible, it is recommended that input and output registers belong to the same
partition as the associated input or output buffer. This will allow the implementation tools
to see when a register is connected to IO logic. When a partition boundary exists between
the register and the associated buffer, the tools cannot see across the partition boundary to
correctly place the register in the IO logic.

When this is not possible the implementation tools do have the ability to handle this
situation if the following rules are followed:

• The register must have an IOB=FORCE UCF constraint. This will allow the tools to see
through the partition boundary and see the register is connected to an IO buffer, thus
allowing the tools to place the register in the IO logic (ILOGIC/OLOGIC). Using the
IOB=FORCE will cause an error in the implementation tools if the register cannot be
placed in the IO logic. This is the desired behavior for situations that require that a
register is placed in the IO logic (for example if a register is clocked by a BUFIO, or
when an interface timing requires a fixed delay). In this case using the map -pr b
option will not place a register in the IO logic like it could in a flat flow, or when the
buffer and register are in the same partition.

• The IOB=FORCE constraint must be the instance name of the register (INST
"rp_module/out1_ff" IOB=FORCE;) Do not put this constraint on the register's
output or input net.

• The RP's AREA_GROUP constraint must contain the IO logic where the input/output
register will be placed. For instance, there must be a RANGE value that includes the
ILOGIC/OLOGIC associated with the IO buffer connected to the register. If the IO
logic site does not belong to the RP's AREA_GROUP, the tools are not allowed to utilize
that site (nor would the site be included in the partial bitstream).

• The output port of the RP must have the PARTITION_PIN_DIRECT_ROUTE
constraint to prevent the tools from inserting proxy logic between the buffer and the
register (which would prevent the register from being packed in the IO logic). Also,
this forces all RMs variants associated with this RP to have the same IOB=FORCE
constraint, and disables the ability to generate a black box RM for this RP.

Design Instance Hierarchy
The simplest method is to instantiate the Reconfigurable Partitions in the top-level
module. Each Reconfigurable Partition must correspond to exactly one instance. The
instance has multiple modules with which it is associated.

Submodules in Reconfigurable Modules
All the logic for a Reconfigurable Module must exist in the same directory. If an RM
requires submodule netlist files, the PlanAhead™ software loads them only if they exist in
the same local folder as the root RM netlist. PlanAhead needs the full contents of each
Reconfigurable Module to both constrain and implement each Configuration.

If other netlists (IP core netlists, for example) must be merged in from other directories, the
ngcbuild utility can be used to pre-assemble an RM into a single netlist that is easily
referenced in a Partial Reconfiguration project. NGCBuild takes EDIF and/or NGC
sources, along with the full set of options that are valid for ngdbuild (including -sd and
-uc), and produces a single, constraint-annotated NGC file.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 115
UG702 (v12.3) October 5, 2010

Clocking Rules

Clocking Rules
This section discusses clocking rules, and includes:

• Global Clocking

• Regional Clocking

Global Clocking
Because the clocking information for every Reconfigurable Module for a particular
Reconfigurable Partition is not known at the time of the first implementation, the PR tools
pre-route each BUFG output driving a Partition Pin on that RP to all clock regions that the
AREA GROUP encompasses. This means that clock spines in those clock regions might not
be available for static logic to use, regardless of whether the RP has loads in that region.

In the example shown in Figure 7-1, icap_clk is routed to clock regions X0Y1, X0Y2, and
X0Y3 prior to any placement, and static logic is able to use the other clock spines in that
region.

If there are a large number of global clocks driving an RP, Xilinx recommends that area
groups that encompass complete clock regions be created to ease placement and routing of
static logic. For more information on the number of clocks spines per region, see the User
Guide for your target device at http://www.xilinx.com/support/documentation.

X-Ref Target - Figure 7-1

Figure 7-1: Pre-routing Global Clock to Reconfigurable Partition

http://www.xilinx.com
http://www.xilinx.com/support/documentation

116 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v12.3) October 5, 2010

Chapter 7: Design Considerations

Regional Clocking
The BUFRs in static logic that drive Partition Pins have proxy logic inserted. This is
required to guarantee a stationary point between different configurations, just as for all
other nets that cross from static logic into Reconfigurable Partitions. The proxy logic adds
delay to the regional clock, which can have detrimental effects on timing.

To prevent timing degradation, Xilinx recommends that BUFRs and all their loads be fully
contained within the same Partition, whether static or reconfigurable. This provides
minimal skew between regional clock loads and results in the greatest chance for meeting
timing.

Regional Clocks have different restrictions in the three supported Virtex® architectures.

• Virtex-4

No proxy logic is inserted on regional clocks and regional clock spines are prerouted.
The spines will be prerouted to each clock region which may need that clock spine. For
example, if a regional clock drives a port on an RP which covers portions of two clock
regions, regional clock spines will be reserved for that regional clock in both of the
clock regions. Since there are only two regional clock spines available per clock region,
Xilinx recommends that regions for RPs which are driven by regional clocking
correspond to clock region boundaries whenever possible. In addition, Xilinx
recommends that the BUFRs be constrained to specific BUFR locations. See the ”Clock
Resources” chapter in the Virtex-4 FPGA User Guide, for more information on the
restrictions of regional clocking.

• Virtex-5

Proxy logic is inserted on regional clocks which pass between static and RPs. The
proxy logic adds delay to the regional clock, which can have detrimental effects on
timing. To prevent timing degradation, Xilinx recommends that BUFRs and all their
loads be fully contained within the same Partition, whether static or reconfigurable.
This provides minimal skew between regional clock loads and results in the greatest
chance for meeting timing. In addition Xilinx recommends that the BUFRs be
constrained to specific BUFR locations. All other limitations of regional clocking still
apply. See the ”Clock Resources” chapter in the Virtex-5 FPGA User Guide, for more
information on the restrictions of regional clocking.

• Virtex-6

No proxy logic is inserted on regional clocks and regional clock spines are prerouted.
The spines will be prerouted to each clock region which may need that clock spine. For
example, if a regional clock drives a port on an RP which covers portions of two clock
regions, regional clock spines will be reserved for that regional clock in both of the
clock regions.

Virtex-6 is the first architecture which has had multiple columns of BUFRs within the
same clock region. Partial Reconfiguration requires that all BUFRs used within one
clock region be contained in the same partition. For example, if an outside BUFR is
used in the same clock region as an inside BUFR, both would either have to be in the
static or the same RP. See the Virtex-6 FPGA Clocking Resources User Guide for more
information on the restrictions of regional clocking.

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug070.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug190.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug362.pdf

Partial Reconfiguration User Guide www.xilinx.com 117
UG702 (v12.3) October 5, 2010

Decoupling Functionality

Decoupling Functionality
Because the reconfigurable logic is modified while the FPGA device is operating, the static
logic connected to outputs of Reconfigurable Modules must ignore data from
Reconfigurable Modules during Partial Reconfiguration. The Reconfigurable Modules will
not output valid data until Partial Reconfiguration is complete and the reconfigured logic
is reset. A common design practice to mitigate this issue is to register all output signals (on
the static side of the interface) from the Reconfigurable Module. An enable signal can be
used to isolate the logic until it is completely reconfigured.

The static portion should include the logic required for the data and interface
management. It can implement mechanisms such as handshaking or disabling interfaces
(which might be required for bus structures to avoid invalid transactions). It is also useful
to consider the down-time performance effect of a PR module (that is, the unavailability of
any shared resources included in a PR module during or after reconfiguration).

You should assert local reset in the reconfigured logic after reconfiguration has completed
to ensure a known good starting state. Unlike a full device configuration, there are no
dedicated functions such as GSR (global set-reset) or GTS (global tri-state) to force logic to
an initial state. Because the logic surrounding a reconfiguring frame is operating during
the reconfiguration, it is impossible to predict the state or activity of the new logic when it
is released for use. This is true for IO logic as well as general fabric logic.

Defining Reconfigurable Partition Boundaries
Partial reconfiguration is done on a frame-by-frame basis. As such, when partial bit files
are created, they are built with a discrete number of configuration frames. When the
physical region for a Partition is defined, the PlanAhead software reports the number of
reconfigurable regions that are consumed, as well as an estimate for the corresponding
bitstream size. The estimates from PlanAhead are accurate within 2-3%.

Partition boundaries do not have to align to reconfigurable frame boundaries, but the most
efficient place and route results are achieved when this is done. Static logic is permitted to
exist in a frame that will be reconfigured, as long as:

• It is outside the area group defined by the Pblock (unless forced inside with a LOC
constraint), and

• It does not contain dynamic elements such as Block RAM, Distributed (LUT) RAM, or
SRLs.

When static logic is placed in a reconfigured frame, the exact functionality of the static
logic is rewritten, and is guaranteed not to glitch.

Irregular shaped Partitions (such as a T or L shapes) are permitted but discouraged.
Placement and routing in such regions can become challenging, because routing resources
must be entirely contained within these regions. Boundaries of Partitions can touch, but
this is not recommended, as some separation helps mitigate potential routing restriction
issues. Nested or overlapping Reconfigurable Partitions (Partitions within Partitions) are
not permitted. Design rule checks (Tools > Run DRC) validate the Partitions and settings
in a PR project.

The partial bit files that are created are based upon the AREA_GROUP RANGE constraints set
by the user. To generate the smallest bit files possible, and to avoid complications or errors,
only define AREA_GROUP RANGE constraints for the elements that exist in the full set of
Reconfigurable Modules for a Reconfigurable Partition. If you are using PlanAhead, this

http://www.xilinx.com

118 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v12.3) October 5, 2010

Chapter 7: Design Considerations

means unchecking any unnecessary element type in the Pblock Properties > General
option.

Finally, only one Reconfigurable Partition can exist per physical Reconfigurable Frame. A
Reconfigurable Frame is the smallest size physical region that can be reconfigured, and it
cannot contain logic from more than one Reconfigurable Partition. If it were to contain
logic from more than one Reconfigurable Partition, it would be very easy to reconfigure the
region with information from an incorrect Reconfigurable Module thus creating
contention. The software tools are designed to avoid that potentially dangerous
occurrence.

Proxy Logic
Partition Pins are defined as the interface between static and reconfigurable logic. No
special logic or tags are required to accommodate this definition. The software handles
these points automatically. In most cases, a LUT1 is inserted at this interface point to
represent this node. Since this LUT exists in the hierarchical level of the static logic, it exists
in the same logical and physical location for every Configuration. Since the physical
location itself is within the Reconfigurable Partition to which it connects, reconfiguration
accommodates connecting logic internal to the RM to this known interface point.

As noted in Constraints in Chapter 3, proxy logic can be constrained in the UCF. The
pr2ucf utility generates constraints for all the proxy logic from a Configuration that has
been implemented. Providing location constraints for proxy logic is not required. This
section also includes information for setting timing constraints to and from individual and
grouped Partition Pins.

Controlled Routes
Certain connections require specific routing resources from one design element to another.
If a Partition boundary crosses this connection, a failure occurs once the proxy logic has
been inserted on that path. For these situations, the implementation tools must be
instructed to skip the proxy logic insertion. This is done by applying the
PARTITION_PIN_DIRECT_ROUTE UCF constraint to the Partition Pin of the route in
question. Following is an example of the error message and UCF syntax:

ERROR:NgdBuild:1319 - Detected a controlled route on Partition Pin
 'aurora_201_i.TX_CLK_OUT'. The connection between GTP_DUAL pin
 'aurora_201_i/aurora_mod_i/GTP_DUAL_INST.TXOUTCLK0' in Partition
 '/fpga_chip_top/aurora_201_i' and
 DCM_ADV pin 'aurora_201_clk_mod_i/clock_divider_i.CLKIN' in Partition
 '/fpga_chip_top' should reside within the same Partition. If this is
 not possible, create the following constraint and run pr_verify to
 validate that this route is the same in each configuration:

 PIN aurora_201_i.TX_CLK_OUT PARTITION_PIN_DIRECT_ROUTE = TRUE;

As noted in the message, the complete controlled route (and therefore the same pair of
source and destination elements) must exist in each Reconfigurable Module, to ensure that
no dangling wire is created. Because of this detail, controlled routes are not allowed for
black box Reconfigurable Modules.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 119
UG702 (v12.3) October 5, 2010

Black Boxes

Black Boxes
The Partial Reconfiguration software allows black boxes to be implemented as
Reconfigurable Modules. This is an effective way to reduce the size of full configuration bit
file, and therefore reduce the initial configuration time. To create a black box Partition,
create a Reconfigurable Module with no associated netlist file. The source shown in
PlanAhead is listed as Blackbox module.

Even though a black box has no user logic contained in the logical representation of the
design, the physical region is not entirely empty. As noted in the Proxy Logic section
above, a LUT1 is inserted for each Partition Pin as the interface to the Reconfigurable
Partition. Because these proxy LUTs must exist within the reconfigurable region, they
appear in the black box, along with their connections outside the region.

The BitGen compression (-g compress) feature may be enabled to reduce the size of bit
files. This option looks for repeated configuration frame structures to reduce the amount of
configuration data that must be stored in the bit file. This savings is seen in reduced
configuration and reconfiguration time. When the compression option is applied to a
routed PR design, all of the bit files (full and partial) are created as compressed bit files.
This option is especially useful when coupled with the technique of building a PR design
with black box RMs.

Module-Level Constraint Files
In order to adequately constrain the entire design, you must supply constraints for both
the static and reconfigurable portions of the design. This can be done in a number of ways.
The static logic is controlled by any constraints in the top-level netlists and the main UCFs
supplied to the PlanAhead software or the Tcl scripts. Constraints, such as IO location
constraints, to be shared across all variants of the Reconfigurable Partitions must be
included in the top-level UCFs.

If constraints apply only to specific Reconfigurable Modules, they may be supplied in one
of three different methods:

• As part of the netlist itself

Because synthesis tools can embed constraints within the design netlist, these
constraints are read in with the rest of the contents of that file.

• In a UCF placed alongside the RM netlist

After a run has been defined, it resides below the PlanAhead project in this location:

<project>\<project.data>\netlists\netlist_1\pr_modules\<RP>\<RM>

Place the UCF file in this folder, with the same name as the EDF file that exists there,
and it is used automatically when that RM is used in a Configuration. The constraints
in this UCF must be scoped to the top-level – references to instances within the RM
must have the full hierarchical path to the instance.

• In a UCF to be merged with the RM netlist using ngcbuild

Ngcbuild can be run on the command line to merge netlists and constraints. For more
information, see Design Hierarchy, page 110. This technique can be used for single
netlists to incorporate the information from a UCF into the netlist itself. The
constraints in this UCF must be scoped to the module level – references to instances
within the RM must NOT have the full hierarchical path to the instance.

http://www.xilinx.com

120 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v12.3) October 5, 2010

Chapter 7: Design Considerations

Implementation Strategies
There are trade-offs associated with optimizing any FPGA design. Partial Reconfiguration
is no different. Partitions are barriers to optimization, and reconfigurable frames require
specific layout constraints. These are the additional costs to building a reconfigurable
design. The additional overhead for timing and area needs vary from design to design. To
minimize the impact, follow the design considerations stated in this guide.

When building Configurations of a reconfigurable design, the first Configuration to be
chosen for implementation should be the most challenging one. Be sure that the physical
region selected has adequate resources (especially elements such as block RAM, DSP48,
and IO) for each Reconfigurable Module in each Reconfigurable Partition, then select the
most demanding (in terms of either timing or area) RM for each RP. If all of the RMs in the
subsequent Configurations are smaller or slower, meeting their demands will prove to be
easier. Timing budgets should be established to meet the needs of all Reconfigurable
Modules.

For a description of how to solve placement and routing problems during implementation,
see Debugging Placement and Routing Problems in Chapter 3.

Simulation and Verification
Configurations of Partial Reconfiguration designs are complete designs in and of
themselves. All standard simulation, timing analysis, and verification techniques are
supported for PR designs. Partial reconfiguration itself cannot be simulated.

Using High Speed Transceivers
Xilinx high speed transceivers (GT11, GTP, GTX) have dedicated connections to many of
their pins. These dedicated connections require that the IO connected to these pins be
handled differently than general purpose IO. For the tools to recognize the direct
connection, the transceivers and all associated IO logic must be contained within the same
Partition. This includes all the pads and buffers as well as all transceiver logic.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 121
UG702 (v12.3) October 5, 2010

Interaction with Other Xilinx Tools

Interaction with Other Xilinx Tools
This section discusses Interaction with Other Xilinx Tools, and includes:

• Interaction with ChipScope Pro

• Interaction with System Generator for DSP and CORE Generator

Interaction with ChipScope Pro
ChipScope™ Pro analyzer inserts logic analyzer, bus analyzer, and virtual IO low-profile
software cores directly into a design, allowing you to view any internal signal or node,
including embedded hard or soft processors. Instrumentation of designs can be done by
means of two methods: the Xilinx CORE Generator™ software or the ChipScope Core
Inserter. Both methods can be used in conjunction with Partial Reconfiguration, but
limitations do exist.

When using the Xilinx CORE Generator software, you create netlist-based cores to be
instantiated in the design. As long as the boundaries of the Reconfigurable Partitions are
not modified, these cores can be instantiated easily to debug the portion of the design in
question. This is easy to manage when all the ChipScope cores are placed within the static
portion of the design. The ICON core must remain in the static logic due to the fact that it
contains both BUFG and BSCAN elements.

If ILA or VLO cores are instantiated in a Reconfigurable Partition, additional measures
must be taken. The bounding region in the floorplan must include all the necessary
elements to implement the ChipScope cores, specifically enough block RAM to build the
requested functionality. Also, the 36-bit control bus must be connected from the ICON core
in the static region to the debug core located in the Reconfigurable Partition. Given the size
and physical location of this requirement, this could have a significant impact on the
Reconfigurable Partition.

If there is a need to debug signals in multiple regions (static and reconfigurable), this can
be done, but the appropriate signals (data, trigger, and/or control bus) must be threaded
up from the individual Reconfigurable Partitions to the top-level. This requires
modifications to the Partition interface and must be done for each Reconfigurable Module.
This strategy is supported for the CORE Generator flow only.

The ChipScope Core Inserter software modifies the design at the netlist itself, rather than
the HDL source. This flow is supported in PlanAhead, but probe points are limited to
signals that exist in the static logic. If an attempt to probe logic in a Reconfigurable Module
is made, the tool reports that this modification changes the Partition interface, and is
therefore not allowed.

Interaction with System Generator for DSP and CORE Generator
When using advanced tools and IP from Xilinx or third party sources, rules similar to those
for ChipScope Pro software must be followed. Because these tools build and modify
designs at the HDL or netlist level, they work smoothly with a bottom-up synthesis
approach required by the Partial Reconfiguration flow. Considerations must be made for
the definition of the reconfigurable regions (to ensure the proper elements are contained
within) and for timing in and out of the Reconfigurable Partition, but other than these
general requirements, these tools will work well with Partial Reconfiguration.

One significant consideration for use of Partial Reconfiguration with advanced tools and
IP is the contents of these design blocks. No global clocks or clock modifying logic (BUFG,
DCM, PLL, etc.) may exist in any module to be reconfigured. Like the ChipScope ICON

http://www.xilinx.com

122 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v12.3) October 5, 2010

Chapter 7: Design Considerations

core, certain blocks will be required to remain in static logic if they contain non-
reconfigurable design elements.

Interaction with EDK
To understand the Partial Reconfiguration flow for a processor design developed in EDK,
see UG744: Partial Reconfiguration Tutorial: Reconfigurable Processor Peripheral. This tutorial
can be downloaded from the Partial Reconfiguration web page at:

http://www.xilinx.com/tools/partial-reconfiguration

Details of the Partial Reconfiguration interaction with EDK:

• When you create a PlanAhead project and specify the top-level netlist for a design
developed in EDK, specify the top-level netlist in the synthesis directory
(../synthesis/top_level_filename.ngc)instead of the netlist in the
implementation directory (../implementation/top_level_filename.ngc).

Any netlists that you intend to use as reconfigurable modules should be removed from
the EDK implementation directory prior to launching PlanAhead. Since the removed
netlists are called out in the top-level netlist in the EDK synthesis directory, PlanAhead
will offer you the choice of treating these netlists as black boxes. After allowing
PlanAhead to create the black boxes, you can create netlists with the same port
definitions as the removed netlists outside of EDK and add these netlists as new
reconfigurable modules with PlanAhead.

• When generating bit files for a design that is an EDK processor system, you must run
the Data2MEM program on the bit file to update block RAM contents with the
compiled software program. When running in the PlanAhead environment, there are
no direct links to call the Data2MEM program. However, you can have BitGen call
Data2MEM directly using the BitGen -bd switch. In PlanAhead, when you choose the
Generate Bitstream command, a dialog box with available BitGen options opens. In
the list of options there will be a -bd switch. In the value field for the -bd switch, you
can browse to the ELF file generated by EDK.

You can also use this switch from the BitGen command line, instead of running
Data2MEM separately. An example command is shown below:

bitgen -bd <path_to_ELF_file>/executable.elf

http://www.xilinx.com
http://www.xilinx.com/tools/partial-reconfiguration

Partial Reconfiguration User Guide www.xilinx.com 123
UG702 (v12.3) October 5, 2010

Appendix A

Known Issues and Known Limitations

This appendix includes:

• Known Issues

• Known Limitations

Known Issues
For a complete listing of Partial Reconfiguration Known Issues, see Answer Record 35019.

Known Issues are:

• Typos in Tcl scripts might be silently ignored.

When using the sample Tcl scripts supplied with the Color2 design, names of
instances (such as Configurations, Reconfigurable Modules, and paths) must be
modified to accommodate user designs. If a name is misspelled or otherwise incorrect,
no error messaging is returned to communicate that mistake back to the user. Closely
examine the report files to ensure all the correct files and settings have been applied
during the synthesis and implementation runs.

Known Limitations
Following are known limitations:

• No Spartan® device families are supported by Partial Reconfiguration software.

• In PlanAhead, submodule Area Groups within an RP are not permitted.

• Encrypted partial bitfiles (by means of bitgen -g encrypt) are not supported for
Virtex-4 and Virtex-5 devices.

Encrypted partial bitfiles are supported for Virtex-6 devices. Users must supply the
same NKY file for each configuration to ensure consistency of the encryption key
values.

The ICAP must be used, with an 8-bit bus only, for Partial Reconfiguration for
encrypted Virtex-6 partial bit files. Reconfiguration through external configuration
ports is not permitted when encryption is used.

• In PlanAhead, the Data2MEM program cannot be run directly to update block RAM
contents (for example, in an EDK processor system). You can, however, run
Data2MEM as part of bitstream generation by specifying that the BitGen command
will run with the -bd switch. For details, see Interaction with EDK in Chapter 7.

• Bi-directional Partition Pins are not supported; the interface between static and
reconfigurable logic must use unidirectional pins only.

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=answer+record&sub=35019

124 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v12.3) October 5, 2010

Chapter :

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 125
UG702 (v12.3) October 5, 2010

Appendix B

Partial Reconfiguration Migration
Guide

This appendix includes:

• Overview

• Differences Between the Early Access and Production Solutions

• Migrating a Design

• Summary

Overview
This Partial Reconfiguration (PR) Migration Guide provides step-by-step instructions to
migrate designs created with the 9.2.04i Modular Design Early Access PR (EA) solution to
the Partition-based ISE® 12 solution described in this user guide.

Differences Between the Early Access and Production Solutions

Compatible Designs for Migration
Any EA design that targets Virtex®-4 or newer can be migrated to the ISE 12 solution.
Users will need to create a new PlanAhead™ project in ISE 12. To create this project, simply
follow the instructions found in Chapter 4, PlanAhead Support.

Bus Macro instantiations no longer required
Bus Macros (BMs) are no longer needed. Partition Pins are automatically managed, and
this automation replaces some of the aspects of Bus Macro functionality. Both Synchronous
and Asynchronous Bus Macros were available in the EA solution. To follow good
hierarchical design practices in registering boundaries and to decouple the reconfigurable
logic, you can add registers in HDL to replace the functionality of the output registers
delivered within Synchronous Bus Macros.

It is very important to register the partition boundaries, and to use enables with these
registers. During reconfiguration, the activity in these regions is indeterminate and could
lead to design corruption if the output of the reconfiguring logic is used. Therefore, you
should register boundaries with enables to disable the reconfigurable region during
reconfiguration.

http://www.xilinx.com

126 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v12.3) October 5, 2010

Chapter :

PR-Specific Environment Variables Deprecated
The EA solution required several different environment variables to be set. These are no
longer required for the ISE 12 solution. Please make sure to unset all environment variables
that were set specifically for the EA solution.

MODE Constraint Deprecated
With the EA solution, the tools had to be explicitly told which area groups were
reconfigurable. This was handled by specific constraints added to the UCF
(MODE=RECONFIG). These constraints are no longer required. This functionality has
been replaced by using the ‘Set Reconfigurable’ option in PlanAhead which in turn adds
the ‘Reconfigurable=TRUE’ information to the xpartition.pxml.

'NGDBuild -modular' switch deprecated
It is no longer necessary to specifically tell NGDBuild that you are running a PR design.
This concept is now handled by an xpartition.pxml file. See the following section for more
details.

Partition Information is Stored in the xpartition.pxml File
In the ISE 12 solution, a PXML file manages partition-specific information. This file is
named xpartition.pxml, and this name cannot be changed. This file is ASCII XML and is
created for each implementation. Most of the PR-specific information (everything save for
Area Group Range constraints) is contained in the xpartition.pxml file. The tools will
automatically check for the xpartition.pxml file. Any design with reconfigurable partitions
requires that the xpartition.pxml file be present and have at least one partition defined. If it
is not found, the design is treated as a ‘flat’ design.

The xpartition.pxml file is generated by PlanAhead, and should not be edited. If you are
using the Xilinx® HD Tcl scripting method to implement the design, the file will be created
when the implementation script is run.

Tcl Flow is the only Command Line Option
In the EA solution, the tools could be run directly from command line. While the tools can
also be run in 12.3 from command line, the difference is that the PXML file needs to exist
before the ISE 12 tools will treat the design as a PR design. This requires the user to script
the flow in Tcl to generate the PXML file.

Note: To help get started with the Xilinx HD Tcl scripting method, some basic ‘flat flow’ scripts can
be generated using the ‘Generate Scripts Only’ option when creating runs. To write Xilinx HD Tcl
scripts that leverage the Reconfigurable Partition promoting, implementing, and importing
functionality, see Chapter 5, Command Line Scripting.

UCF is only required in NGDBuild
There was also a requirement that the UCF be available for post-Translate implementation
processes (MAP and PAR) in the EA solution. This is no longer the case, and all
information that is required for downstream implementation processes is embedded in the
design database files.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 127
UG702 (v12.3) October 5, 2010

Migrating a Design

Manage full-design timing constraints
As ISE 12 implements complete designs in context, timing constraints and timing budgets
should be established. Review the recommendations for timing management in Chapter 3,
Software Tools Flow.

BUFRs require Partition Pins in Virtex-5
In the EA solution, BUFRs had several restrictions, but the network did not require Bus
Macros. In the ISE 12 solution, Partition Pins are added to the BUFR networks to meet clock
region pre-routing requirements. This is only true for Virtex-5.

Migrating a Design
EA designs can easily be migrated to the ISE 12 solution. The first step is to remove or
replace the Bus Macros in the HDL and regenerate (resynthesize) the appropriate netlists.
Once the netlists are correctly set up, a new PlanAhead project must be created in the ISE
12 solution. Do not attempt to directly migrate a 9.2.04i PlanAhead project to 12.3
PlanAhead.

Bus Macro Removal
The first step in design migration is removal of the Bus Macros, and this is done in HDL.
There are two general ways to remove BMs:

• Remove Bus Macro Instantiations

• PRO: Leaves cleaner HDL

• CON: This is time consuming and must be done for all instances

• Redefine Bus Macros

• PRO: This is the fastest way to replace large numbers of BMs

• CON: This leaves BM instantiations littered throughout a design

If you fail to make any attempt to remove the BMs and remove the BM NMC files, then you
will receive the following error in Translate (NGDBuild):

ERROR:NgdBuild:604 - logical block 'my_RP/my_BM_GENERATE[7].my_BM'
with type 'busmacro_xc5v_async_enable' could not be resolved. A pin
name misspelling can cause this, a missing edif or ngc file, case
mismatch between the block name and the edif or ngc file name, or the
misspelling of a type name. Symbol 'busmacro_xc5v_async_enable' is
not supported in target 'virtex5'.

VHDL Bus Macro Removal

Remove Only Bus Macros Instantiations

In the following example, an asynchronous BM is used. To simplify the BM removal
process in this example, the BM inputs are connected directly to the BM outputs. However,
this is not necessary and a single network could replace the BM inputs and BM outputs.
Conversely, several BMs have associated control logic and these BM types would require
both input and output signals to be preserved, as the control logic will interface the two
signals.

In a later section, the Redefine Bus Macro process is explained.

http://www.xilinx.com

128 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v12.3) October 5, 2010

Chapter :

Step 1: Remove the component declarations for all bus macros.

Example – VHDL Bus Macro Declaration to be removed:

 component busmacro_xc5v_async is
 port (
 input0 : in std_logic;
 input1 : in std_logic;
 input2 : in std_logic;
 input3 : in std_logic;
 output0 : out std_logic;
 output1 : out std_logic;
 output2 : out std_logic;
 output3 : out std_logic
);
 end component;

Step 2: Replace Bus Macro Instantiations with a 1:1 signal mapping assignment.

Example – Old VHDL Bus Macro Instantiation:

 Control1_0_BM : busmacro_xc5v_async
 port map (

 input0 => MY_ADDR_SPACE,
 input1 => PLB_SAValid,
 input2 => PLB_rdPrim,
 input3 => PLB_wrPrim,
 output0 => MY_ADDR_SPACE_pr,
 output1 => PLB_SAValid_pr,
 output2 => PLB_rdPrim_pr,
 output3 => PLB_wrPrim_pr

);

Example – New VHDL Replacement for Bus Macro, a 1:1 Assignment:

 MY_ADDR_SPACE_pr <= MY_ADDR_SPACE;
 PLB_SAValid_pr <= PLB_SAValid;
 PLB_rdPrim_pr <= PLB_rdPrim;
 PLB_wrPrim_pr <= PLB_wrPrim;

This is a very simple (asynchronous) BM, but it does convey the idea of how to replace the
BMs. There are BMs with control logic and synchronous types of BMs. These BMs need to
be replaced with register inferences and any desired control logic (enables, clock enables,
etc.) as necessary. Below is another asynchronous example, but with control logic.

Example – Old VHDL Bus Macro Instantiation with Enable:

 Control2_0_BM : busmacro_xc5v_async_enable
 port map (
 input0 => Sl_addrAck_pr,
 input1 => Sl_SSize_pr(0),
 input2 => Sl_SSize_pr(1),
 input3 => Sl_wait_pr,
 enable0 => busmacro_enable,
 enable1 => busmacro_enable,
 enable2 => busmacro_enable,
 enable3 => busmacro_enable,
 output0 => Sl_addrAck,
 output1 => Sl_SSize(0),
 output2 => Sl_SSize(1),
 output3 => Sl_wait
);

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 129
UG702 (v12.3) October 5, 2010

Migrating a Design

Example – New VHDL Replacement for Bus Macro with Enable:

 Sl_addrAck <= Sl_addrAck_pr and busmacro_enable;
 Sl_SSize(0) <= Sl_SSize_pr(0) and busmacro_enable;
 Sl_SSize(1) <= Sl_SSize_pr(1) and busmacro_enable;
 Sl_wait <= Sl_wait_pr and busmacro_enable;

Redefine Bus Macros

The BMs can be replaced with a newly created netlist that matches the BMs old name. This
method is recommended for Synchronous Bus Macros, as they can be used directly for
logic decoupling needs. The task of re-validating the PR solution is greatly simplified, as
the logic design will remain equivalent.

Create a netlist with the same interface as a BM from HDL, with the internal assignments
defined as desired. During synthesis, ensure that IO buffer insertion is disabled (for
example, in XST the option is named ‘Add I/O Buffers [-iobuf]’).

Note: These logic modules will exist in static logic, regardless of whether or not the replaced BM
was an input or an output of a Reconfigurable Partition.

Example – VHDL Bus Macro Redefined for ‘busmacro_xc5v_async’:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity busmacro_xc5v_async is
 Port (input0 : in STD_LOGIC;
 input1 : in STD_LOGIC;
 input2 : in STD_LOGIC;
 input3 : in STD_LOGIC;
 output0 : out STD_LOGIC;
 output1 : out STD_LOGIC;
 output2 : out STD_LOGIC;
 output3 : out STD_LOGIC);
end busmacro_xc5v_async;
architecture Behavioral of busmacro_xc5v_async is
begin
output0 <= input0;
output1 <= input1;
output2 <= input2;
output3 <= input3;

end Behavioral;

While this may seem like more work up front, if a design has hundreds of BMs throughout,
this will make the conversion much easier and quicker, as each of those instances do not
have to be changed. As you begin to redefine these bus macros, any problems with the
module can be fixed and the change will be consistent with all BMs of that type throughout
the design. Below is another asynchronous example, but with control logic.

http://www.xilinx.com

130 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v12.3) October 5, 2010

Chapter :

Example – VHDL Bus Macro with Enable Redefined for
‘busmacro_xc5v_async_enable’:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity busmacro_xc5v_async_enable is
 Port (input0 : in STD_LOGIC;
 input1 : in STD_LOGIC;
 input2 : in STD_LOGIC;
 input3 : in STD_LOGIC;
 enable0 : in STD_LOGIC;
 enable1 : in STD_LOGIC;
 enable2 : in STD_LOGIC;
 enable3 : in STD_LOGIC;
 output0 : out STD_LOGIC;
 output1 : out STD_LOGIC;
 output2 : out STD_LOGIC;
 output3 : out STD_LOGIC);
end busmacro_xc5v_async_enable;
architecture Behavioral of busmacro_xc5v_async_enable is
begin
output0 <= input0 and enable0;
output1 <= input1 and enable1;
output2 <= input2 and enable2;
output3 <= input3 and enable3;

end Behavioral;

Verilog Bus Macro Removal

The flow is exactly the same as the VHDL flow, except the Verilog flow does not have
module declarations. Follow the VHDL flow but use Verilog syntax.

Create a PlanAhead Project in 12.3
To create this project, follow the instructions in Creating a Partial Reconfiguration Project
in Chapter 4.

If the Redefine Bus Macro process was used, then the BM replacement netlists need to be
included as static logic source files for PlanAhead when the project is created.

Summary
Designs created and implemented with the Modular Design Early Access Partial
Reconfiguration tools can be easily converted to the Partition-based ISE 12 solution. Bus
macros must be removed or replaced, decoupling logic should be considered, and
Modular Design-specific options can be removed. In no time at all you will be
implementing designs with the latest Partial Reconfiguration software.

http://www.xilinx.com

