v
i¢ X"_le Step 6: Reviewing Design Run Settings

Step 6: Reviewing Design Run Settings

One of the main differences between the Non-Project Mode you used in Lab #1, and the Project
Mode which you are now using, is the support of design runs for synthesis and implementation.
Non-Project Mode does not support design runs.

Design runs are a way of configuring and storing the many options available in the different
steps of the synthesis and implementation process. You can configure these options and save
the configurations as strategies to be used in future runs. You can also define Tcl.pre and
Tcl.post scripts to run before and after each step of the process, to generate reports before and
after the design progresses.

Before launching the synthesis and implementation runs you will review the settings and
strategies for these runs.

1. In the Flow Navigator, select Synthesis Settings under Synthesis.

The Project Settings dialog box opens. The Synthesis Settings provides you access to the
many options available for configuring Vivado synthesis. For a complete description of
these options, see the Vivado Design Suite User Guide: Synthesis (UG901).

Figure 22: Synthesis Settings

Design Flows Overview 33
UG888 (v2013.1) March 20, 2013

& XILINX.

2. After reviewing the various synthesis options, select the Implementation button on the

Step 6: Reviewing Design Run Settings

left side of the Project Settings dialog box, as shown in Figure 22.

The Project Settings change to reflect the Implementation settings. You will not modify
the Implementation options in this lab., you can view the available options for

Implementation runs. For a complete description of these options, see the Vivado Design
Suite User Guide: Implementation (UG904).

Select an option above to see a description of it

I QK I I Cancel Apply

gl"' Project Settings @
a Implementation |
@ Constraints
General
I_.-;]“ Default constraint set: | = constrs_1 (active] -
i
Simulation Incremental Compile
@ Use checkpoint: B
Synthesis Options
I) Strategy: A Vivado Implementation Defaults (Vivado Implementation 2013) - | By
Implementztion Description: Vivado Implementation Defaults
-&‘031 -/ Opt Design (opt_design) -
Bitstream is_enabled =
__ td.pre
=L~ ol post
P -verbose |
-directive [Default
More Options
-| Power Opt Design (power_opt_design) =

Figure 23: Implementation Settings

3. Click Cancel to close the Project Settings dialog box.

You are now ready to launch Vivado synthesis and implementation.

Design Flows Overview

UG888 (v2013.1) March 20, 2013

34

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2013.1;d=ug904-vivado-implementation.pdf

b
i. X"—le Step 7: Synthesizing and Implementing the Design

Step 7: Synthesizing and Implementing the Design

After configuring the synthesis and implementation run options, you can:

e Use the Run Synthesis command to run only synthesis.

e Use the Run Implementation command, which will first run synthesis if it has not been run,
then run implementation.

e Use the Generate Bitstream command, which will first run synthesis and then run
implementation if they have not been run, then write the bitstream for programming the
Xilinx device.

For this tutorial, we will run these steps one at a time.

1.

In the Flow Navigator, click on the Run Synthesis button, and wait for this task to
complete.

Notice the progress bar in the upper-right corner of the Vivado IDE, indicating the run is
in-progress. Vivado launches the synthesis engine in a background process to free up
the tool for other actions. While the synthesis process is running in the background, you
can continue browsing Vivado IDE windows, run reports, further evaluate the design. You
will notice that the Log window displays the synthesis log at the bottom of the IDE. This
is also available through the Reports window.

After synthesis has completed, the Synthesis Completed dialog box prompts you to
choose the next step.

Synthesis Completed @

[0} Synthesis successfully completed.

Open Synthesized Design

View Reports

Don't show this dialog again

| 0K || Cancel |

Figure 24: Synthesis Complete

2. Select Run Implementation, and click OK.
The implementation process is launched, and placed into a background process after
some initialization. The next step in this tutorial shows you how you can perform design
analysis of the synthesized design, while you wait for implementation to complete.
Design Flows Overview 35

UG888 (v2013.1) March 20, 2013

v
i¢ X"—l NX Step 8: Analyzing the Synthesized Design

Step 8: Analyzing the Synthesized Design

Opening the synthesized design enables design analysis, timing constraint definition, I/O
planning, floorplanning and debug core insertion. These features are covered in other tutorials,
but you can take a quick look in this step.

1. Select Open Synthesized Design in the Flow Navigator and wait for the design to load.

Notice that as the Vivado IDE opens the synthesized design, the implementation continues
running in the background. At some point while you are exploring the synthesized design,
implementation will complete, and the Implementation Completed dialog box prompts you
to choose the next step.

Implementation Completed @

'0' Implementation successfully completed.

Generate Bitstream

View Reports

Don't show this dialog again

| OK. || Cancel |

Figure 25: Implementation Complete

2. Click Cancel to close the dialog without taking any action.

This leaves the synthesized design open. You will open the implemented design after
you are finished examining the features of the synthesized design.

3. Ensure that the Layout Selector pull down menu in the main Toolbar has Default Layout
selected.

4. Click the Reports window tab at the bottom of the Vivado IDE.

If the Reports window is not open, you can open it with Windows > Reports.
Double click the Vivado Synthesis Report to examine the report.

Double click the Utilization Report to examine the report.

Close all reports when you have finished examining them.

© N o U

Click the Messages window tab at the bottom of the Vivado IDE.
If the Messages window is not open, you can open it with Windows > Messages.

The Messages window provides message type filters in its banner, to display or hide
different types of messages: Errors, Critical Warnings, Warnings, Info, and Status.

Design Flows Overview 36
UG888 (v2013.1) March 20, 2013

& XILINX.

Step 8: Analyzing the Synthesized Design

3]

9. Click the Collapse All button to condense all of the Messages.
10. Expand the Synthesis messages.

11. Scroll through the Synthesis messages and notice the links to specific lines within source
files. Click some of the links and notice the source file opens in the Text Editor with the
appropriate line highlighted.

| Synthesized Design - xc7k70tfbg484 2 (active) x|
Netlist — 0O X L Project Summary % | @ Device X | @i bftwhdl x [E
Z _>,‘3:] B C:/Data/Vivado_Tutorial/Tutorial_Created_Data/project_bftfproject_bft.sres/sources_1fimports/fhdl/bft.vhdl
-~ 84 signal loadEgressFifo : std logic wector (7 downto 0); -
— | ¥ a5 - -
[’ T signal wbDataForInputReg : std logic:
zir &7
r| 88 --data n
arnd4 (round_4) :z 89 signal + std_logic_wector (31 downto 0);
egressLoop[0].egressFifo (FifoBuffer_g) £ E 20
egressLoop[1].egressFifo (FifoBuffer 91 begin |
gressLoop[2].egressFifo (FifoBuffer 92 i ‘
gressLoop[3].egressFifo (FifoBuffer) 93 ——get the ith the 3
gressLoop[4].egressFifo (FifoBuffer 14) 94 pr;cess (WbC1k) —
aressLoop[5].egressFifo :F?ft-Euf'fer_ 5| 95 begin
gressloop(E].egressFifo (Fifofuffer B 96 wbInputDataStage0 <= wbInputData;
gressLoop[7].egressFifo (FifoBuffer @ _ ’)
ingressLoop[0].ingressFifo (Fifosuffer = a7 wbInputDataStagel <= wbInputDataStagel;
ingressLoop[1].ingressFifo (FifoBuffer e R 98 end process;
ingressLoop[2].ingressFifo (FifoBuffer_11) LE/ 99
-] inaressl nonl3linaressFifo (FifaAuffer 71 @ 100 --state machine to load data from the WB bus to t
£ Sources. (] Netlist 7| 101process (wbClk)
Source File Properties —Or = 2 Lz beglr.]_ s
103 if rising_edge (wbClk) then
ol |1 104
(@ bft.vhdl 105 if ({reset = '1') then
106 readIngressFifo <="1";
Location: C:,.’DaE,vaado_Tubor\aI,fTutoria_Creahed_Dan‘project_; 107 loadState <= s0;
T =1 E] |i| 108 wbDataForInputReg <= '0°;
109 else
Library: work E] 110 readIngressFifo <="0";
Size: 10.9 KB 111 loadState <= loadNextState;
- . . - S 112 wbDataForInputReg <= wbDataForInput:
g i o= 113 end if; -
General | Properties 4| I | +
Messages [Eaiad
&, | [¥] @ 2 critical warnings [V] () 107 warnings [¥] () 288 infos [(i) 364 status
Z @ [Common 17-201] Sourding tdl script 'C: Ysers\yandyh, XLNXYAppData\Roaming Xilinx Vivadojinit. tcl -
% (@ [Common 17-347] Attempting to get a license for feature 'Synthesis’ andfor device 'xc7k70t =1
- [Common 17-343] Got license for feature 'Synthesis' and/or device 'xc7k70t'
U} @ [Synth 8-638] synthesizing module 'bft’ [bft.vhdl:52
{m} ROY[Synth 8-614] signal 'whInputData' is read in the process but is not in the sensitivity list [bft.vhdl:94]
a -5 [Synth 8-614] signal 'whbInputData5Stagel' is read in the process but s notin the sensitivity list [bft. vhdl:94]
(@ [Synth 8-226] default block is never used [bft.vhdl: 129]
@ [Synth 8-638] synthesizing module round_1' [round 1.vhdl:50]
@ [Synth 8-638] synthesizing module ‘coreTransform' [core_transform.vhdl:60
(@ [Synth 8-256] done synthesizing module 'coreTransform’ (1#15) [core_transform. vhdl:60
@ TSunth 8-2561 done sunthesizinn modle 'round 1 (2215) fround_1.vhdl: 501 A
< m =]

5 Td Console™, (= Messages | [Log | 2 Reports | [% Design Runs | &9 Find in Files

Figure 26: Synthesis Messages Linked to Source Files

12. In the Flow Navigator, under Synthesized Design, select Report Timing Summary.

The Report Timing Summary dialog box opens. Examine the various fields and options of

this command.
13. Click OK to run with default options.

The Timing Summary Results window

Design Flows Overview
UG888 (v2013.1) March 20, 2013

opens.

37

v
!A X"—l NX, Step 8: Analyzing the Synthesized Design

Timing - Timing Summary - timing_1 — 0O «a X

O ZT=E ¥ 4 97 (DesignTiming Summary

; >
General In.formatlon Setup Hold Pulse Width
----- Timer Settings .)
..... e — Worst Negative Slack (WNS): 2.415ns Worst Hold Sladk (WHS): MA Worst Pulse Width Sladk (WPWS): 2.197ns

- Clock Summary (2) Total Negative Slack (TNS): 0.000ns Total Hold Slack (THS): MA Total Pulse Width Negative Slack (TPWS): 0,000 ns
(- Chedk Timing (59) Mumber of Failing Endpoints: 0 Mumber of Failing Endpaints: MA Mumber of Failing Endpaints: 0
[#-Intra-Clock Paths
[#-Inter-Clock Paths
El-Path Groups All user specified timing constraints are met.
[+ User Ignored Paths
[+ Unconstrained Paths

Total Number of Endpoints: 8344 Total Number of Endpoints: NA Total Number of Endpeints: 1458

2 Timing Summary - timing_1 X

Figure 27: Report Timing Summary

Examine the Timing Summary Results window showing timing estimates prior to
implementation. Click on some of the reporting categories in the tree on the left side of
the Timing Summary Results window.

14. Select Report Power in the Flow Navigator.
The Report Power dialog box opens. Examine the various fields and options of this
command.
15. Click Run to run with default options.
The Power Results window opens. Examine the Power Results window showing power
estimates prior to implementation. The report is dynamic, with tooltips providing details
of the specific sections of the report when you move the mouse over the report, as
shown in Figure 28.
Click on some of the reporting categories in the tree on the left side of the Power Results
window to examine the different information presented.
Power - power_1 — 0O 1 X
A S 4+ 4 Summary
»
Power estimation from Synthesized netlist, Activity derived ~ On-Chip Power
from constraints files, simulation files or vectorless i
PO_"_‘"EF_SUDNY) analysis. Note: these early estimates can change after [Dynamic: 0.213wW (72%)
[=-Utilization Details implementation.
Hierarchical (0.213 W) S o Cods: 0.017W
~Clocks { _ 19% ="
E—}-Si:nals Total On-Chip Power: 0.295 W 2%, cop| [Sionsk: 0.041W
Junction Temperature: 25.7°C [Llogicc 0.013W
Thermal Margin: 59.3°C(23.6 W) WERAM: 0.045W
Effective d1A: 2.5°Cw I D& 0.095 W
Power supplied to off-chip devices: 0w O Lo 0.002 W
Confidence level: Low 28%,
[Devi Dsp
Utilization: 45% of Total
Estimation: 0.096 W

% power_1 X

Figure 28: Report Power

Design Flows Overview 38
UG888 (v2013.1) March 20, 2013

v
i¢ X"—l NX Step 9: Analyzing the Implemented Design

16. Close the Report Timing Summary window, the Power Report window, and any open

Text Editor windows.

Step 9: Analyzing the Implemented Design

The Vivado IDE is interactive, enabling editing of design constraints and netlists on the in-
memory design. When you save the design, constraint changes are written back to the original
source XDC files. Alternatively, you can save the changes to a new constraints file to preserve the
original constraints. This flexibility supports exploration of alternate timing and physical
constraints, including floorplanning, while keeping the original source files intact.

Opening the Implemented Design

1. Select Open Implemented Design in the Flow Navigator.

2. Select Yes to close the synthesized design and Don’t Save, if prompted.
After the Implemented Design has loaded, you can see the implementation results in the
Device window.

3. Click on the Reports window tab at the bottom of the Vivado IDE.
If the Reports window is not open, you can open it with Windows > Reports. Select and
examine some of the reports from Place Design and Route Design. Close each of the
reports when you are done.

4. Select the Messages window tab at the bottom of the IDE.
If the Reports window is not open, you can open it with Windows > Messages.

5. Click the Collapse All button to condense all of the Messages. =

6. Expand the Implementation folder
View the messages from Design Initialization, Opt_Design, Place_Design, and
Route_Design.

Design Flows Overview 39

UG888 (v2013.1) March 20, 2013

v
i¢ X"—l NX Step 9: Analyzing the Implemented Design

Analyzing Routing

After the design has been placed and routed, you can generate a timing report to verify that all
the timing constraints are met. You can select paths from the Timing Report window to examine
the routed path in the Device window. If there are timing problems, you can revisit the RTL
source files or design constraints to address any problems.

7.

10.
11.

12.

In the Device window, select the Routing Resources button to display the device
routing.

This lets you see the routed connection in the Device window. Though you will need to
zoom closely into the device to see elements of the route, a zoomed-out view lets you
see the route in its entirety.

& Device x

Figure 29: Routing Resources Button

Select the Auto Fit Selection button in the Device window toolbar menu to enable the
Vivado IDE to automatically zoom into and center the selected objects.

In the Flow Navigator, under Implemented Design, click on the Report Timing
Summary button.

Click OK in the Report Summary Timing dialog to generate the default report.

On the left side pane of the Timing Summary Results window, select:
Intra-Clock Paths > bftClk > SETUP...

In the table view on the right side of the Timing Summary Report window, click on any
timing path to select it and highlight it in the Device window. Select various paths in the
Timing Summary window and examine the path routing.

On the left side pane of the Timing Summary Results window, select:
Intra-Clock Paths > bftClk > HOLD...

Click on any path in the table view on the right side of the Timing Summary Results
window to select it and highlight it in the Device window. Select various paths in the
Timing Summary Results window and examine the path routing.

Design Flows Overview 40
UG888 (v2013.1) March 20, 2013

& XILINX.

Implemented Design - xc7k70tfbg484-2 (active)
Sources — O %
A2 wet RE

Step 9: Analyzing the Implemented Design

=I-f7 Design Sources (1)
| Eibgh bft- aBFT (bft.vhd) (6

+-4fl arnd1 -round_1 - aR1 (round _1.vhd
+-4ell arnd2 - round_2 - aR2 (rou
W arnd3 - round_3 - aR3
nd4 - round_4 - aR4
® ingressFifo - FifoBuffer
: 4@ egressFifo - FifoBuffer
— A Constraints (1)
¢ [k constrs_1
H il bft_full.xde
= Simulation Sources (1)
= -G sim_1 (1
El-wbgt bft_th (bt 1
Bl uut - bft - BFT

Hierarchy | Libraries | Compile Order
&5 Sources | [}f] Netlist
Path Properties P N
« »BIh < =
Path 13

~| Summary -

Slack (Hold 0.085ns

Source [ingressLoop[4].ingressFifo/buffer_fifo/infer_fifo.twe
Destination D> ingressLoop[4].ingressFifo/buffer_fifo/infer_fifo.nes
Dath Grain hftrle 2

« i =

General | Properties Report | Cells | Options

Timing - Timing Summary - timing_1

QAT RE» R 4 Intra-Clock Paths - bftClk - Hold

T Project Summary X | Device X

S Z|ERR

2z

[e¥

R Hleds

.~ General Information - a Name Slack From To
mér S:—ttl?gss \i # Path 11 0.050 egressLoop[2].egressFifo/buffer_fifofinfer_fifo.next_wr_addr_req[1]/C egressLoop[2].egressFifo/buffer_fifofinfer_fifo.wr_addr_reg[1]/D -
CFS‘_EI; ming uTmary L b4 & Path 12 0.057 egressLoop[0] egressFifo/buffer_fifofinfer_fifo.wr_addr_reg[8]/C egressLoop[0].egressFifo/buffer_fifofinfer_fi..._ram_performance. fifo
+-Clock Summary (2) E =
: i ’E: IE.-
+1-Check Timing (52) | - L fing 00p]
B | @ Path 14 0.087 egressLoop[0].egressFifo/buffer_fifofinfer_fifo.wr_addr_reg[8]/C egressLoop[0]. egressFifo/buffer_fifofinfer_fi..._ram_performance. fifo_
& & Path 15 0.099 egressLoop[2].egressFifo/buffer_fifo/infer_fifo.wr_addr_reg[5]/C egressLoop[2]. egressFifo/buffer_fifofinfer_fi..._ram_performance. fifo
- % Path 16 0,108 egressLoop[5].egressFifo/buffer_fifofinfer_fifo.next_wr_addr_req[5]/C egressLoop[5].egressFifo/buffer_fifofinfer_fifo.wr_addr_reg[8]/D
. - & Path 17 0.111 transformLoop[3].ct/xOutStepReqg_reg_ 0/CLK egressLoop[5]. egressFifo /buffer_fifo/infer_fifo.block_ram_performance
old 0.050 ns (10) . e = Path 18 01.111 inaressl aonliil.inaressFifahuffer_fifnfinfer fifn.rd addr tmn real71C inaressl aonffilinaressFifohoffer fifafinfer fifn.two rd addr realglm ~
ulse Width 2,100 ns (30 = < T 3
[Timing Summary - timing_1 X
3 Tl Console | > Messages | [Log | [2) Reports | % Design Runs | 4 Find in Files'. (5 Timing

Figure 30: Examine Routing for Timing Paths

13. With a timing path selected, right-click to open the popup menu in either the Device
view or the Timing Summary window, and select the Schematic command

Note: Alternatively, you can press the F4 function key to open the Schematic window.

The Schematic window opens, displaying the schematic for the selected timing path. Use
commands from the popup menu in the Schematic window, such as Expand or Collapse
Outside, or Expand Cone, to traverse the schematic and examine the logic cells on the

timing path.

14. Close the Schematic window.

15. In the Device window, select the Routing Resources toolbar icon again to turn off

routing resources.

The Device window now displays just the placed instances, without the added details of

the routed connections.

Design Flows Overview
UG888 (v2013.1) March 20, 2013

41

& XILINX.

Step 11: Generating a Bitstream file

Step 11: Generating a Bitstream file

Since the XDC constraints file has LOC and IOSTANDARDs constraints set for all of the I/O ports,

you can generate a bitstream. Before launching Write Bitstream, you will review the settings for
this command.

1. In the Flow Navigator, select Bitstream Settings under Program and Debug.

The Project Settings dialog box opens. The Bitstream Settings provides you access to the
options available for the write_bitstream command. For a complete description of these
options and how to use them, see the Vivado Design Suite User Guide: Programming and

Debugging (UG908).
éff_=. Project Settings @

|) Bitstream |
@ =| Write Bitstream (write_bitstream)

General td.pre

l..u_lJ! td.post

-raw_bitfile
Simulation -mask_file

-no_binary_bitfile
-bin_file

\4

Synthesis Jogic_location_file
More Options
Implementation
P
o

Bitstream

U

Select an option above to see a description of it

| OK | | Cancel

Figure 31: Bitstream Settings

2. Click Cancel to close the Project Settings dialog box.

3. In the Flow Navigator, under the Program and Debug section, click on the Generate
Bitstream button.

4. After the bitstream has been generated, click OK in the Bitstream Generation Completed
dialog box to view the reports from the command.

Design Flows Overview 42
UG888 (v2013.1) March 20, 2013

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2013.1;d=ug908-vivado-programming-debugging.pdf

i. XIL'NX Step 12: Exiting Vivado

Step 12: Exiting Vivado

Vivado creates two files as it runs:

e The Vivado tools log (vivado. 1og) file contains the history and results of all Tcl
commands executed during the Vivado session.

e The Vivado tools journal (vivado. jou) file contains only the Tcl commands executed
during the Vivado session, without the added details recorded in the log file.

These files are a great way to learn the Tcl commands used by the Vivado tools to perform
different design tasks. The Vivado journal is also a great source of help when creating a new Tcl
script. Using the vivado. jou file from a completed design flow, you can see all of the Tcl
commands needed to complete the design. Refer to the Vivado Design Suite Tcl Command
Reference Guide (UG835) for a complete description of the Tcl commands and their options.

1. Select File > Exit, or type exit in the Tcl command line.
2. Click OK to close the Vivado tool.

3. Examine the Vivado log (vivado. 1og) file. On Windows, it may be easier to use the file
browser.

<Extract Dir>/Vivado_Tutorial/vivado.log
Note: This is the location you entered for the Start-in property in Step 1 of Lab #2.

4. Examine the contents and close the file.

Step 13: Creating a Tcl Script from the Journal File

Running in batch mode is faster and takes less memory than running in the Vivado IDE. When
you need multiple runs to complete a design, it is a good idea to use a Tcl script to automate
the flow. You can also add report generation commands into the script after key steps, and
redirect the output to specific files and directories.

Examining the Journal

In this step you manually create a Tcl script from the journal file that the Vivado tools
automatically created as you worked from Step 1 through Step 12 of this lab. When you execute
the new script, it will create a project file (.xpr) and directory structure just as you did when you
worked through these steps using the Vivado IDE. If you load this project into the Vivado IDE,
you will see all the results and project status displayed, as you would expect.

1. Open up vivado.jou file in a text editor.

2. Examine the Vivado journal (vivado.jou) file. On Windows, it may be easier to use the
file browser.

Design Flows Overview 43
UG888 (v2013.1) March 20, 2013

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2013.1;d=ug835-vivado-tcl-commands.pdf

v
i. X"—l NX Step 13: Creating a Tcl Script from the Journal File

<Extract Dir>/Vivado_Tutorial/vivado.jou

You should see something similar to what is shown below.

create project project bft C:/Vivado Tutorial/Tutorial Created Data/project bft -part xc7k70tfbg484-2
create_fileset —-simset sim 1

add files {C:/Vivado Tutorial/Sources/hdl/FifeBuffer.v C:/Vivado Tutorial/Scurces/hdl/async fifo.v C:/Vivado Tu
add _files -fileset sim 1 C:/Vivado Tutorial/Sources/hdl/bft_tb.v

add files C:/Vivado Tutcrial/Sources/hdl/bftLib

set_property library bftLib [get_files {C:/Vivado Tutorial/Sources/hdl/bftLib/round 4.vhdl C:/Vivado_Tutorial/
import files -force

import_files -fileset constrs_1 -force —norecurse C:/Vivado_Tutorial/Sourcesfbft_full.xdc

update compile order -fileset sources 1

update_compile order -fileset sources_1

update compile order -fileset sim 1

synth_design -rtl -name rtl 1

close design

launch_xsim -simset sim 1 -mode behavioral

close sim

launch_runs synth_1

wait on run synth 1

launch_runs impl 1

wait on run impl 1

open_run synth_ 1 -name netlist_1

set delay model -interconnect estimated

report_timing summary -delay_type max -path_type full clock expanded -report_unconstrained -check_timing verbos
report power -results {power 1}

open_run impl 1

current design netlist 1

close_design

report timing summary -delay type min max -path type full clock expanded -report unconstrained -check timing ve
report_power -results {power_l}

launch runs impl 1 -to step write bitstream

wait_on_run impl 1

Figure 32: Vivado Journal for Lab #2

Note: If you are using Linux, you will see different path references.
3. Remove the comment header as unnecessary (text lines starting with #).
4. Since you do not want to open the IDE in the Tcl script, remove the start_gui line.

5. Use the Save As command to save the file to
<Extract Dir>/Vivado _Tutorial/run_bft.tcl.

6. With the run_bft.tcl script opened, search and replace all occurrences of “project_bft"
with “"project_bft_batch”.

7. Examine the script and notice the differences in this Project Mode script from the Non-
Project mode script used in Lab #1 of this Tutorial.

You should take note of the add files and set property commands used for
project creation, as well as the commands to set up the constraints sets.

You should also notice that 1aunch runs is used instead of synth design, etc. Use
the launch runs command when creating or running Project based designs.

CAUTION! Mixing the individual commands (synth design, opt design..) with
launch runs could damage the Project, and is not recommended. The launch runs

& command has Tcl options to run steps independently, and create intermediate reports. See the
Vivado Design Suite Tcl Command Reference Guide (UG835) for more information.

Design Flows Overview 44
UG888 (v2013.1) March 20, 2013

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2013.1;d=ug835-vivado-tcl-commands.pdf

v
i. X"—l NX Step 13: Creating a Tcl Script from the Journal File

Editing the Batch Project Scriptlf you did not complete Lab #2 of the tutorial in one design
session, your vivado. jou file will not reflect the complete design flow from step 1 through
step 12. In this case, you can use the run_bft project.tcl script which can be found in the
Vivado Tutorial directory.

Lines 1 through 9 of the run bft.tcl script create the design project and specify the target
Xilinx part; add the source RTL and XDC files; and define the VHDL library. The script creates
synthesis and implementation runs, synth_1 and impl_1, and defines the constraint set,

constrs_1.

The next few lines elaborate the RTL design and simulate it. You don’t need to do that in the
batch flow.

1.

Remove the following lines from your script by deleting the lines, or inserting the '#'
symbol to make the lines comments in the Tcl script:

#synth design -rtl -name rtl 1

#close_design

#launch xsim -simset sim 1 -mode behavioral
#close_sim

In the previous steps in this tutorial, you ran synthesis and implementation, and analyzed
the synthesized design while implementation was running. In the batch flow, you will run
synthesis, then run the timing and power reports, and then run implementation. You
need to reorder the Tcl commands in the scrip to accomplish this. Cut the open_run
command, and the next three lines and move them up to follow the wait on run
command.

2. Cut the following lines:
open_run synth 1..
set _delay model..
report timing summary..
report_ power..

3. Paste them after the wait_on_run synth_1... line.
Now the script launches synthesis, waits for synthesis to complete. Then launches
implementation and waits for implementation to complete. Finally, the script should
launch write bitstream and wait for it to complete.

4. Remove the close_design line if one is in the file.

5. Your file should now look like the following:

Design Flows Overview 45

UG888 (v2013.1) March 20, 2013

v
i. X"—l NX Step 13: Creating a Tcl Script from the Journal File

create_project project_bft_batch C:/Vivado Tutorial/Tutorial Created Data/project_bft_batch -part xcTk70tfbg484-2
create_fileset -simset sim 1

add files {C:/Vivado Tuteorial/Sources/hdl/FifoBuffer.v C:/Vivado Tutorial/Sources/hdl/async fifo.v C:/Vivado Tutori
add files —fileset sim 1 C:/Vivado Tutorial/Sources/hdl/bft tb.v

add_files C:/Vivado Tutorial/Sources/hdl/bftLib

set_property library bftLib [get_files ({C:/Vivado_Tutorial/Sources/hdl/bftLib/round 4.vhdl C:/Vivado Tutorial/Sour
impert files -force

import files —fileset constrs 1 -force —norecurse C:/Vivado Tutorial/Sources/bft full.xdec

update compile order -fileset sources_1

update_ compile order -fileset sources_1

update compile order -fileset sim 1

launch runs synth 1

wait_on_run synth 1

open_run synth 1 -name netlist 1

set delay medel -interconnect estimated

report timing summary -delay type max -path type full clock expanded -report unconstrained —check timing verbose -
report_power -results {power 1}

launch_runs impl 1

wait on run impl 1

cpen run impl 1

current_design netlist 1

report_timing summary -delay type min max -path_type full clock_expanded -report_unconstrained -check timing verbos
report_power -results {power 1}

launch runs impl 1 -to step write bitstream

wait_on_run impl 1

Figure 33: Edited Tcl Script

Running the Batch Project Script

You can now execute your new TCL script, running Vivado tools in batch mode, which will run all
the commands in your Tcl script and then quit Vivado when finished.

1. On Windows, open a Command Prompt window. On Linux, simply skip ahead to step 3.
2. Change directory to the Xilinx installation area, and run the settings32.bat or
settings64.bat as needed to setup the Xilinx tool paths for your computer:

cd <Vivado_install area>/Vivado/2013.1
settings64

The settings64.bat file configures the path and environment on your computer to run the
Vivado tools.

3. Change directory to <Extract_Dir>/Vivado_Tutorial, and launch the Vivado tool in
batch mode:

cd <Extract Dir>/Vivado_ Tutorial
vivado -mode batch -source run bft.tcl

4. Examine the Vivado log output, as it is transcripted to the Command Prompt window.

Since the launch runs command is used, less information is echoed to the tool
transcript. Reports and run status are also gathered in the Project and will be available
after the run completes.

Because you ran the Vivado tool in batch mode, it exits after the sourced script has
completed running.

5. Review the new vivado.jou file which is the result of running this batch script. The

journal file should look like the run bft.tcl script that created it.

Design Flows Overview 46
UG888 (v2013.1) March 20, 2013

v
i¢ X"—le Step 14: Checking the Design Status

Step 14: Checking the Design Status

1.

Launch Vivado IDE and open the BFT batch project (project bft batch.xpr) that
you just created:

Start > All Programs > Xilinx Design Tools > Vivado 2013.1 > Vivado 2013.1°

As an alternative, you can launch the Vivado IDE from the command line:

> cd <Extract_Dir>/Vivado_Tutoria1/ Tutorial Created Data
> vivado -mode gui

The Vivado IDE will launch.
Open the project with File > Open Project, and locate project_bft_batch.

As you can see in the project status bar in the upper right of the Vivado IDE, the status
reflects the fact that a bitstream has been generated (write_bitstream Complete).

View the implemented design by clicking the Open Implemented Design button in the
Flow Navigator.

Quit the Vivado tool when you are finished. This concludes the tutorial.
File > Exit

Summary

After completing this tutorial, you should have learned the following:

The use of Project Mode and Non-Project Mode.

Creating an RTL project in the Vivado IDE.

Configuring the Vivado synthesis, simulation and implementation tools.
Launching the Vivado simulator, synthesis and implementation.
Applying constraints to the synthesized design.

Generating timing and power reports.

Examining routing results in the Device editor.

Generating a bitstream file.

Using a Journal file (. jou) to create a project based Tcl script.
Launching a project based Tcl script from the command line.

Switching between the Vivado Design Suite Tcl shell and the Vivado IDE.

% Your Vivado Design Suite installation may called something different than Xilinx Design Tools
on the Start menu.

Design Flows Overview 47
UG888 (v2013.1) March 20, 2013

