Lab Workbook Writing Basic Software Application

Writing Basic Software Application

Introduction

This lab guides you through the process of writing a basic software application. The software you will
develop will write to the LEDs on the Zyng board. An AXI BRAM controller and associated 8KB BRAM
were added in the last lab. The application will be run from the BRAM by modifying the linker script for the
project to place the text section of the application in the BRAM. You will verify that the design operates
as expected, by testing in hardware.

Objectives

After completing this lab, you will be able to:

e Write a basic application to access an IP peripheral in SDK

o Develop a linker script

o Partition the executable sections into both the DDR3 and BRAM spaces
e Generate an elf executable file

¢ Download the bitstream and application and verify on the Zybo board
Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 4 primary steps: You will open the Vivado project, export to and invoke SDK, create a
software project, analyze assembled object files and verify the design in hardware.

Design Description

The design was extended at the end of the previous lab to include a memory controller (see Figure 1),
and the bitstream should now be available. A basic software application will be developed to access the
LEDs on the Zybo board.

PL

AX14
——+ AXI-BRAM Controller <—>| BRAM

AXl-Lite
AXI —-‘ LED_IP

Interconnect

Block AXl4-Lite)
GPIO Push-Buttons
AXI4-Lite |
PS 4-‘ GPIO

Figure 1. Design used from the Previous Lab

i

DIP Switches

|

Y www.xilinx.com/support/university ZYNQ 4-1
i‘ XILINX® Xup@xilinx.com

© copyright 2014 Xilinx

Writing Basic Software Application Lab Workbook

General Flow for this Lab

Step 1: Step 2: Step 3: Step 4:
Open the I:D Export to Analyze Verify the
Project SDK :> Assembled :> design in
Object File hardware

In the instructions below;
{sources} refers to: C:\xup\embedded\2014_2 zynq_sources
{labs} refers to : C:\xup\embedded\2014 2 zynq_labs

{labsolutions} for the ZedBoard refers to: C:\xup\embedded\2014_2_zedboard_labsolution
or for the Zybo refers to: C:\xup\embedded\2014_2 zybo_labsolution
Opening the Project Step 1

1-1. Use the lab3 project from the last lab, or use the lab3 project in the
labsolutions directory, and save it as lab4

1-1-1. Start the Vivado if necessary and open either the lab3 project (lab3.xpr) you created in the
previous lab or the lab3 project in the {labsolutions} directory using the Open Project link in the
Getting Started page.

1-1-2. Select File > Save Project As ... to open the Save Project As dialog box. Enter lab4 as the
project name. Make sure that the Create Project Subdirectory option is checked, the project
directory path is {labs} and click OK.

This will create the lab4 directory and save the project and associated directory with lab4 name.

Export to SDK and create Application Project Step 2

2-1. Export the hardware along with the generated bitstream to SDK.

To Export the hardware, the block diagram must be open and the Implemented design must be
open.

2-1-1. |Ifitis not already open, click Open Block Design > system.bd (under IP Integrator in the Flow
Navigator).

2-1-2. Select Open Implemented Design

2-1-3. Click File > Export > Export Hardware (include the bitstream) and then click File > Launch
SDK and click OK

2-2. Create an empty project called lab4. Import lab4.c file from the {sources}
directory

To tidy up the workspace and save unnecessary building of a project that is not being used, right
click on the TestApp, system_wrapper_ hw_platform_1 and the standalone_bsp_0 projects

ZYNQ 4-2 www.xilinx.com/support/university Y
Xup@xilinx.com (A X"—INX@

© copyright 2014 Xilinx

Lab Workbook Writing Basic Software Application

from the previous lab, and click Close Project, as these projects will not be used in this lab. They
can be reopened later if needed.

2-2-1. Select File > New > Application Project.

2-2-2. Enter lab4 as the Project Name, and for Board Support Package, choose Create New lab4_bsp
(should be the only option).

2-2-3. Click Next, and select Empty Application and click Finish.

2-2-4. Expand lab4 in the project view and right-click in the src folder and select Import.
2-2-5. Expand General category and double-click on File System.

2-2-6. Browse to {sources}\lab4 folder and click OK.

2-2-7. Select lab4.c and click Finish to add the file to the project. (Ignore any errors for now).
2-2-8. Expand lab4_bsp and open the system.mss

2-2-9. Click on Documentation link corresponding to btns_4bit peripheral under the Peripheral Drivers
section to open the documentation in a default browser window. As our led_ip is very similar to
GPIO, we look at the mentioned documentation.

|5 system.hdf |Hh, system.mss &3

lab4d_bsp Board Support Package

| Modify this BSP's Settings§| [Re-generate BSP Sources

Target Information

This Board Support Package is compiled to run on the following target.

Hardware Specification: Claup'embeddedilabsilabd\labd sdk\systern_wrapper_hw_platform_2\system.hdf
Target Processor: psi_cortexad_0

Operating System

Board Support Package 05,

Mame: standalone
Version: 41
Description: Standalone is a simple, low-level software layer, It provides access to basic processor features such as caches,

interrupts and exceptions as well as the basic features of a hosted environment, such as standard input and
output, profiling, abort and exit,

Documentation: standalone vl 1

Peripheral Drivers

Drivers present in the Board Support Package.

axi_bram_ctrl_0 bram Documentation Examples

btns_dbit gpio Documentation Examples

led_ip led_ip

ps?_afi_0 generic

Figure 3. Accessing device driver documentation

Y www.xilinx.com/support/university ZYNQ 4-3
i‘ XILINX@ Xup@xilinx.com

© copyright 2014 Xilinx

Writing Basic Software Application Lab Workbook

2-2-10.

2-2-11.

2-212.

2-2-13.

View the various C and Header files associated with the GPIO by clicking Files at the top of the
page.

Double-click on lab4.c in the Project Explorer view to open the file. This will populate the Outline
tab.

Double click on xgpio.h in the Outline view and review the contents of the file to see the available
function calls for the GPIO.

o= Outline &2 . (&) Make Target = O
SN EE
o xparameters.h

= xgpic.h
g mainfvoid) : int

Figure 4. Outline View

The following steps must be performed in your software application to enable reading from the
GPIO: 1) Initialize the GPIO, 2) Set data direction, and 3) Read the data

Find the descriptions for the following functions:
XGpio_lInitialize (XGpio *InstancePtr, ul6 Deviceld)

InstancePtr is a pointer to an XGpio instance. The memory the pointer references must be pre-
allocated by the caller. Further calls to manipulate the component through the XGpio API must
be made with this pointer.

Deviceld is the unique id of the device controlled by this XGpio component. Passing in a device
id associates the generic XGpio instance to a specific device, as chosen by the caller or
application developer.

XGpio_SetDataDirection (XGpio * InstancePtr, unsigned Channel, u32 DirectionMask)
InstancePtr is a pointer to the XGpio instance to be worked on.
Channel contains the channel of the GPIO (1 or 2) to operate on.

DirectionMask is a bitmask specifying which bits are inputs and which are outputs. Bits set to O
are output and bits set to 1 are input.

XGpio_DiscreteRead(XGpio *InstancePtr, unsigned channel)
InstancePtr is a pointer to the XGpio instance to be worked on.

Channel contains the channel of the GPIO (1 or 2) to operate on

Open the header file xparameters.h by double-clicking on xparameters.h in the Outline tab

The xparameters.h file contains the address map for peripherals in the system. This file is
generated from the hardware platform description from Vivado. Find the following #define used to
identify the dip peripheral:

Note: The number might be

#define XPAR_SWITCHES DEVICE_ID 1 @
different

ZYNQ 4-4 www.xilinx.com/support/university (v XILINX

Xup@xilinx.com
© copyright 2014 Xilinx

Lab Workbook Writing Basic Software Application

Notice the other #define XPAR_SW_4BIT* statements in this section for the 4 bit SW peripheral,
and in particular the address of the peripheral defined by: XPAR_SWITCHES_BASEADDR
2-2-14. Modify line 14 of lab4.c to use this macro (#define) in the XGpio_Initialize function.

#include "xparameters.h"
#include "Hgpioc.h™

int main (wvoid)

{

¥Gpio dip| push:

int i, psb_check, dip check:

xil printf("-- Scart of the Program --\r\n"):

¥Gpioc_Initialize (&dip, XPAR_DIF DEVICE ID): // Modify this
EGpioc SetDataDirection(&dip, 1,)

HEGpic _Initialize(&push, XKPAR PUSH DEVICE ID): // Modify this

XGpio_SetDataDirection (&push, 1,)
while (1)
{
psb_check = EGpio_DiscreteRead(&push, 1):
xil printf("Fush Buttons Status ix\r\n", psb_check) ;
|dip_check = XGpio DiscreteRead(&dip, 1}):
¥xil printf ("LDIF 3Jwitch Status Fxh\r'n", dip check):

ff output dip awitches walue on LED ip device
for (i=0; i< HENE 0 IH

1

Figure 5. Imported source, highlighting the code to initialize the SW_4BIT as input, and
read from it

2-2-15. Do the same for the BUTTONS,; find the macro (#define) for the BUTTONS peripheral in
xparameters.h, and modify line 17 in lab4.c, and save the file.

The project will be rebuilt. If there are any errors, check and fix your code. Your C code will
eventually read the value of the switches and output it to the led_ip.

2-3. Assign the led_ip driver from the driver directory to the led_ip instance.

2-3-1. Select standalone_bsp in the project view, right-click, and select Board Support Package
Settings.

2-3-2. Select drivers on the left (under Overview)

Y www.xilinx.com/support/university ZYNQ 4-5
i‘ XILI NX@ Xup@xilinx.com

© copyright 2014 Xilinx

Writing Basic Software Application Lab Workbook

2-3-3. If the led_ip driver has not already been selected, select Generic under the Driver column for
led_ip to access the dropdown menu. From the dropdown menu, select led_ip, and click OK.

Component Component Type Drriver Cri...
cpu_cortexad 20
bram 4.0
gpic 4.0
led_ip - 10
gEneric 20
generic 20
gEneric 20
generic 20

Figure 6. Assign led_ip driver
2-4. Examine the Driver code

The driver code was generated automatically when the IP template was created.
The driver includes higher level functions which can be called from the user
application. The driver will implement the low level functionality used to control
your peripheral.

2-4-1. In windows explorer, browse to led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_ O\src
Notice the files in this directory and open led_ip.c. This file only includes the header file for the IP.

2-4-2. Close led_ip.c and open the header file led_ip.h and notice the macros:
LED_IP_mWriteReq(...)
LED_IP_mReadReq(...)

e.g: search for the macro name LED_IP_mWriteReg:

/**

*

* Write a value to a LED IP register. A 32 bit write is performed.

* If the component is implemented in a smaller width, only the least
* significant data is written.

*

* @param BaseAddress is the base address of the LED IP device.

* @param RegOffset is the register offset from the base to write to.
* @param Data is the data written to the register.

*

* @return None.

*

* @note

* C-style signature:

*

void LED IP mWriteReg(Xuint32 BaseAddress, unsigned RegOffset,
Xuint32 Data)
*

*/
#define LED_IP mWriteReg (BaseAddress, RegOffset, Data) \
Xil Out32((BaseAddress) + (RegOffset), (Xuint32) (Data))

ZYNQ 4-6 www.xilinx.com/support/university Y
Xup@xilinx.com iA XILI NX@

© copyright 2014 Xilinx

Lab Workbook Writing Basic Software Application

For this driver, you can see the macros are aliases to the lower level functions Xil_Out32() and
Xil_Out32(). The macros in this file make up the higher level API of the led_ip driver. If you are
writing your own driver for your own IP, you will need to use low level functions like these to read
and write from your IP as required. The low level hardware access functions are wrapped in your
driver making it easier to use your IP in an Application project.

2-4-3. Modify your C code (see figure below, or you can find modified code in lab4_sol.c from the
{sources} folder) to echo the dip switch settings on the LEDs by using the led_ip driver API
macros, and save the application.

2-4-4. Include the header file:
#include "led_ip.h"
2-4-5. Include the function to write to the IP (insert before the for loop):

LED_IP_mWriteReg(XPAR_LED_IP_S_AXI_BASEADDR, 0, dip_check);

Remember that the hardware address for a peripheral (e.g. the macro
XAR_LED_IP_S AXI_BASEADDR in the line above) can be found in xparameters.h

#include "xparameters.h”
#include "xgpic.h"
#include "led ip.h"

¥apic dip, push;
int i, psb_check, dip_check;

¥il printf("-- Start of the Program --‘rin");

XGpic Initialize(&dip, XPAR_SWITCHES DEVICE _ID); // Modify this
XGpioc SetDataDirection(&dip, 1, @xffffffff);

XGpic_Initialize(&push, XPAR_BUTTONS_DEVICE_ID); // Modify this
XGpioc_SetDataDirection(&push, 1, @xffffffff);

while (1)
1
psb_check = Xopic DiscreteRead({&push, 1);
x¥1l printf({"Push Buttons Status ¥x\r\n", psb_check);
dip check = XGpic DiscreteRead(&dip, 1);
xil printf{"DIP Switch Status ¥x\ri\n", dip_check);

dip switches walue on LED ip device
IS E= L= (XPAR_LED IP S AXT BASEADDR, @, dip check);
for (i=@; i<9999999; iit);

¥
Figure 7. The completed C file

Y www.xilinx.com/support/university ZYNQ 4-7
i‘ XILI NX@ Xup@xilinx.com

© copyright 2014 Xilinx

Writing Basic Software Application Lab Workbook

2-4-6. Save the file and the program will be compiled again.

Analyze Assembled Object Files Step 3

3-1. Launch Shell and objdump lab4.elf and look at the sections it has created.
3-1-1. Launch the shell from SDK by selecting Xilinx Tools > Launch Shell.

3-1-2. Change the directory to lab4\Debug using the cd command in the shell.

You can determine your directory path and the current directory contents by using the pwd and
dir commands.

3-1-3. Type arm-xilinx-eabi-objdump —h lab4.elf at the prompt in the shell window to list various
sections of the program, along with the starting address and size of each section

You should see results similar to that below:

C:wxupsembeddedslabsslab4~1ah4. sdk~lah4~Debugrarm—xilinx—eabhi-obhjdump —h lahd.e
T

lab4.elf: file format elf3iZ2-littlearm

Size UM LHA File off
ABAAic4c |AA1PAAAAA PA1ABAARA | ARBAEAOA
CONTENTS, ALLOC,. LOAD. READOMLY. CODE
ABAAAA18 BAA1BAicdc BA1Bic4c BABAYcdc
CONTENTS, ALLOC,. LOAD,. READOMLY. CODE
ABBAAA1L8 BAA1Pic6d BHA1BAic6d BHEBA%chH4
CONTENTS, ALLOC,. LOAD,. READOMLY. CODE
.rodata B080818c B0101c?c B0181c?c OP009cYc
CONTENTS,. ALLOC, LOAD,. READOWLY. DATA
.data ABABA464 BP1P1ledd8 OH1P01ledd OHAB?edd
CONTENTS,. ALLOC, LOAD,. DATA
.eh_frame ABRBAAR4 BP18226c BE1B2Z26c BPEABAZGC
CONTENTS, ALLOC, LOAD,. READOMLY. DATA
-mmu_thl AlRR4A8 BP184808 OP104000 BEEAcBOA

Figure 8. Object dump results - .text in the DDR3 space

Verify in Hardware Step 4

4-1. Connect the board with a micro-usb cable and power it ON. Establish the
serial communication using SDK’s Terminal tab.

4-11. Selectthe & Terminal tah. |f it is not visible then select Window > Show view > Terminal.

4-1-2. Clickon ** and if required, select appropriate COM port (depends on your computer), and
configure it with the parameters as shown. (These settings may have been saved from previous
lab).

4-2. Program the FPGA by selecting Xilinx Tools > Program FPGA and
assigning system_wrapper.bit file. Run the TestApp application and verify
the functionality.

ZYNQ 4-8 www.xilinx.com/support/university v
Xup@xilinx.com iA XILINXJ

© copyright 2014 Xilinx

Lab Workbook Writing Basic Software Application

4-21.

4-2-2,

4-2-3.

4-3.

4-3-1.

4-3-2,

4-3-3.

Select Xilinx Tools > Program FPGA.
Click the Program button to program the FPGA.

Select lab4 in Project Explorer, right-click and select Run As > Launch on Hardware (GDB) to
download the application, execute ps7_init, and execute lab4.elf

Flip the DIP switches and verify that the LEDs light according to the switch settings. Verify that
you see the results of the DIP switch and Push button settings in SDK Terminal.

DIP Switch Status C
Push Buttons Status @
DIP Switch Status C
Push Buttons Status @
DIP Switch Status C
Push Buttons Status @
DIP Switch Status C
Push Buttons Status @
DIP Switch Status C

Figure 9. DIP switch and Push button settings displayed in SDK terminal
Note: Setting the DIP switches and push buttons will change the results displayed.

Change the linker script to target Code sections to the BRAM controller
and objdump lab4.elf and look at the sections it has created.

Right click on lab4 and click Generate Linker Script...

In the Basic Tab change the Heap and Stack sections to axi_bram_ctrl_S_AXI_BASEADDR
memory, click Generate, and click Yes to overwrite.

Basic | Advanced

Place Code Sections in: ps/_ddr_0_5_AXI BASEADDR -

Place Data Sections in: psf _ddr_0_5_AXI_ BASEADDR -

Place Heap and Stack in:
Heap 5Size: 1KE
Stack Size: 1 KB

Figure 10. Targeting Stack/Heap sections to BRAM

The program will compile again.

Type arm-xilinx-eabi-objdump —h lab4.elf at the prompt in the shell window to list various
sections of the program, along with the starting address and size of each section

You should see results similar to that below:

iv X"_INX www.xilinx.com/support/university ZYNQ 4-9
-~ ®

Xup@xilinx.com
© copyright 2014 Xilinx

Writing Basic Software Application Lab Workbook

Rections:

Mame Zize UMA LMA File off

text ABAAic4c BAR1IABARA BA1ABABA ABEASARA
CONTENTS, ALLOGC. LOAD, READOWLY. CODE

init HE8HEA1E G81601cd4c B8181cdc B088%cdc
COMTEMTS . ALLOC,. LOAD,. READOHLY, CODE

fFindi AUABEE1E8 ©@d18iced HO101c6d BOEE?cH4d
COMTENTS . ALLOC,. LOAD, READOMLY, CODE

-rodata BUEEE18c B0181c?c HH101cYc OBOEH?cYc
CONTEMTS,. ALLOC. LOAD,. READOMLY. DATA

.data HEPHE464 GPi01e08 BH101=-02 O00E9=08
CONTENTS,. ALLOC, LOAD, DATA

.eh_frame HOAMOAN4 010226 BE108226c B0BBa26e
CONTENTS, ALLOC, LOAD, READOMLY. DATA

-mmu_thl HAPA488A A81A48A8 BAU1084000 BEBAcBBA
CONTENTS, ALLOG, LOAD, READOWLY. DATA

Anit_array HBEEHEEE BE1680680 B010808H OWO10808
CONMTENTS, ALLOC, LOAD, DATA

fini_array AUREEEE4 @U1830608 GUOA108008 OO0010008
COMTENTS . ALLOC. LOAD,. DATA

.ARM.attributez HHBEEA33 OH1U8EUc OGO108HUc OEU1A0ACc 2=
CONMTENTS . READOMLY

.bs=s EEEEEBEE HE1880d: OP10800c OBB01000Bc 2=x=2

-heap EEEggdﬂﬂ 400E0HEE 40000000 OOE18000 29

.stack EEEE%CBB 40000488 4090004600 OO0E186008 2l

Figure 11. The ,heap and .stack sections targeted to BRAM whereas the rest of the
application is in DDR

4-4. Execute the lab4.elf application and observe the application working even
when various sections are in different memory.

4-4-1. Select lab4 in Project Explorer, right-click and select Run As > Launch on Hardware (GDB) to
download the application, execute ps7_init, and execute lab4.elf

Click Yes if prompted to stop the execution and run the new application.

Observe the SDK Terminal window as the program executes. Play with dip switches and observe
the LEDs. Notice that the system is very slow in displaying the message in the Terminal tab and
to change in the switches as the stack and heap are from a non-cached BRAM memory.

4-4-2. When finished, click on the Terminate button in the Console tab.
4-4-3. Exit SDK and Vivado.

4-4-4. Power OFF the board.

Conclusion

Use SDK to define, develop, and integrate the software components of the embedded system. You can
define a device driver interface for each of the peripherals and the processor. SDK imports an hdf file,
creates a corresponding MSS file and lets you update the settings so you can develop the software side
of the processor system. You can then develop and compile peripheral-specific functional software and
generate the executable file from the compiled object code and libraries. If needed, you can also use a
linker script to target various segments in various memories. When the application is too big to fit in the
internal BRAM, you can download the application in external memory and then execute the program.

ZYNQ 4-10 www.xilinx.com/support/university v
Xup@xilinx.com iA XILINXJ

© copyright 2014 Xilinx

