
Lab Workbook Hardware Debugging

 www.xilinx.com/support/university ZYNQ 6-1
 xup@xilinx.com
 © copyright 2016 Xilinx

Hardware Debugging

Introduction

In this lab you will use the uart_led design that was introduced in the previous labs. You will use Mark
Debug feature and also the available Integrated Logic Analyzer (ILA) core (in IP Catalog) to debug the
hardware.

Objectives

After completing this lab, you will be able to:
 Use the Integrated Logic Analyzer (ILA) core from the IP Catalog as a debugging tool
 Use Mark Debug feature of Vivado to debug a design
 Use hardware debugger to debug a design

Procedure

This lab is broken into steps that consist of general overview statements providing information on the
detailed instructions that follow. Follow these detailed instructions to progress through the lab.

Note: You will notice certain procedures have different variations depending on development
board being ZedBoard or Zybo. It will be explicitly mentioned in notes when such variation is
encountered

Design Description

The design consists of a uart receiver receiving the input typed on a keyboard and displaying the binary
equivalent of the typed character on the 8 LEDs. When a push button is pressed, the lower and upper
nibbles are swapped. The block diagram is as shown in Figure 1.

In this design we will use board’s USB-UART which is controlled by the Zynq’s ARM Cortex-A9 processor.
Our PL design needs access to this USB-UART. So first thing we will do is to create a Processing System
design which will put the USB-UART connections in a simple GPIO-style and make it available to the PL
section. The complete system is shown in Figure 2.

The provided design places the UART (RX) pin of the PS (Processing System) on the Cortex-A9 in a
simple GPIO mode to allow the UART to be connected (passed through) to the Programmable Logic.
The processor samples the RX signal and sends it to the EMIO channel 0 which is connected to Rx input
of the HDL module provided in the Static directory. This is done through a software application provided
in the lab6.sdk folder hierarchy.

Lab Workbook Hardware Debugging

ZYNQ 6-2 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 1. The Complete Design on PL

Figure 2. The Complete System

Lab Workbook Hardware Debugging

 www.xilinx.com/support/university ZYNQ 6-3
 xup@xilinx.com
 © copyright 2016 Xilinx

General Flow

Create a Vivado Project using IDE Step 1

In this design we will use board’s USB-UART which is controlled by the
Zynq’s ARM Cortex-A9 processor. Our PL design needs access to this
USB-UART. So first thing we will do is to create a Processing System
design which will put the USB-UART connections in a simple GPIO-style
and make it available to the PL section.

1-1. Launch Vivado and create a project targeting the XC7Z020clg484-1 device
(ZedBoard), or the XC7Z010clg400-1 (Zybo), and use provided the tcl
scripts (ps7_create_<board>.tcl) to generate the block design for the PS
subsystem. Also, add the Verilog HDL files, uart_led_pins_<board>.xdc and
uart_led_timing.xdc files from the <2016_2_ZYNQ_sources>\lab6 directory.

References to <2016_2_ZYNQ_labs> is a placeholder for the
c:\xup\fpga_flow\2016_2_ZYNQ_labs directory and <2016_2_ZYNQ_sources> is a place
holder for the c:\xup\fpga_flow\2016_2_ZYNQ_sources directory.

Reference to <board> means either the ZedBoard or the Zybo.

1-1-1. Open Vivado by selecting Start > All Programs > Xilinx Design Tools > Vivado 2016.2 >
Vivado 2016.2

1-1-2. Click Create New Project to start the wizard. You will see Create A New Vivado Project dialog
box. Click Next.

1-1-3. Click the Browse button of the Project location field of the New Project form, browse to
<2016_2_ZYNQ_labs>, and click Select.

1-1-4. Enter lab6 in the Project name field. Make sure that the Create Project Subdirectory box is
checked. Click Next.

1-1-5. Select RTL Project option in the Project Type form, and click Next.

1-1-6. Using the drop-down buttons, select Verilog as the Target Language and Simulator Language in
the Add Sources form.

1-1-7. Click on the Green Plus button, then the Add Files… button and browse to the
<2016_2_ZYNQ_sources >\lab6 directory, select all the Verilog files (led_ctl.v, meta_harden.v,

Step 1:
Create a
Vivado

Project using
IDE

Step 2: Add
the ILA Core

Step 3:

Synthesize
the Design
and Mark

Debug

Step 4:

Implement
and Generate

Bitstream

Step 5:
Debug in
Hardware

Lab Workbook Hardware Debugging

ZYNQ 6-4 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2016 Xilinx

uart_baud_gen.v, uart_led.v, uart_rx.v, uart_rx_ctl.v and uart_top.v), click OK, and then click
Next.

1-1-8. Click Next to get to the Add Constraints form.

1-1-9. Click on the Green Plus button, then Add Files… and browse to the
c:\xup\fpga_flow\2016_2_ZYNQ_sources \lab6 directory (if necessary), select
uart_led_timing_<board>..xdc and the appropriate uart_led_pins_<board>.xdc and click Open.

1-1-10. Click Next.

1-1-11. In the Default Part form, Use the Boards option, you may select the Zedboard or the Zybo
depending on your board from the Display Name drop down field.

You may also use the Parts option and various drop-down fields of the Filter section. If using the
ZedBoard, select the XC7Z020clg484-1 part. If using the Zybo, select the XC7Z010clg400-1 part.

Note: Notice that Zedboard and Zybo may not be listed under Boards menu as they are not
in the tools database. If not listed then you can download the board files for the desired
boards either from Digilent Inc website or from the XUP website’s workshop material
pages.

1-1-12. Click Next.

1-1-13. Click Finish to create the Vivado project.

1-1-14. In the Tcl Shell window enter the following command to change to the lab directory and hit Enter.

cd c:/xup/fpga_flow/2016_2_ZYNQ_sources/lab6

1-1-15. Generate the PS design by executing the provided Tcl script.

source ps7_create_zed.tcl (for ZedBoard) or

source ps7_create_zybo.tcl (for Zybo)

This script will create a block design called system, instantiate ZYNQ PS with one GPIO channel
49 and one EMIO channel. It will then create a top-level wrapper file called system_wrapper.v
which will instantiate the system.bd (the block design). You can check the contents of the tcl files
to confirm the commands that are being run.

1-1-16. Double-click on the uart_led entry to view its content.

Notice in the Verilog code, the BAUD_RATE and CLOCK_RATE parameters are defined to be
115200 and 100 MHz respectively.

Note: Zybo has an on-board clock of 125 Mhz and hence the uart led.v has to be modified
on line 38. CLOCK_RATE parameter will be modified to match the on-board clock rate of
125 Mhz.

Lab Workbook Hardware Debugging

 www.xilinx.com/support/university ZYNQ 6-5
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 3. CLOCK_RATE parameter of uart_led for Zybo board

Add the ILA Core Step 2

2-1-1. Click IP Catalog under the Project Manager tasks of the Flow Navigator pane.

2-1-2. The catalog will be displayed in the Auxiliary pane.

2-1-3. Expand the Debug & Verification > Debug folders and double-click the ILA entry.

Figure 4. ILA in IP Catalog

Lab Workbook Hardware Debugging

ZYNQ 6-6 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2016 Xilinx

This exercise will be connecting the ILA core/component to the LED port which is 8-bit wide.

2-1-4. Click Customize IP on the following Add IP window. The ILA IP will open.

2-1-5. Change the component name to ila_led.

2-1-6. Change the Number of Probes to 2.

Figure 5. Setting the component name and the number of probes field

2-1-7. Select the Probe Ports tab and change the PROBE1 port width to 8, leaving the PROBE0 width to
1.

Figure 6. Setting the probes widths

2-1-8. Click OK.

The Generate Output Products dialog box will appear.

Lab Workbook Hardware Debugging

 www.xilinx.com/support/university ZYNQ 6-7
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 7. The Generate Output Products

2-1-9. Click the Generate button to generate the core including the instantiation template. Click OK at
the warning box. Notice the core is added to the Design Sources view.

Figure 8. Newly generate ila core added in the design source

2-1-10. Select the IP Sources tab, expand the IP(1) > ila_led > Instantiation Template, and double-
click the ila_led.veo entry to see the instantiation template.

2-1-11. Instantiate the ila_led in design by copying lines 56 – 62 and pasting to ~line 69 (before
“endmodule” on the last line) in the uart_top.v file.

2-1-12. Change your_instance_name to ila_led_i0.

Lab Workbook Hardware Debugging

ZYNQ 6-8 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2016 Xilinx

2-1-13. Change the following port names in the Verilog code to connect the ila to existing signals in the
design:
.clk(CLK) . clk(clk_pin)
.probe0(PROBE0) . probe0(rx_data_rdy_out)
.probe1(PROBE1) . probe1(led_pins)

Figure 9. Instantiating the ILA Core in the uart_top.v

2-1-14. Select File > Save File.

Notice that the ILA Core instance is in the design hierarchy.

Figure 10. ILA Core added to the design

Synthesize the Design and Mark Debug Step 3

3-1. Synthesize the design. Open the synthesized design. View the schematic.
Add Mark Debug on the rx_data bus between the uart_rx_i0 and led_ctl_i0
instances.

3-1-1. Click on Run Synthesis under the Synthesis tasks of the Flow Navigator pane. Click Save to
Save Project if prompted.

The synthesis process will be run on the uart_top.v and all its hierarchical files. When the
process is completed a Synthesis Completed dialog box with three options will be displayed.

3-1-2. Select the Open Synthesized Design option and click OK.

3-1-3. Click on Schematic under the Synthesized Design tasks of Synthesis tasks of the Flow Navigator
pane to view the synthesized design in a schematic view.

Lab Workbook Hardware Debugging

 www.xilinx.com/support/university ZYNQ 6-9
 xup@xilinx.com
 © copyright 2016 Xilinx

3-1-4. Expand component U0 and Select the rx_data bus between the uart_rx_i0 and the led_ctl_i0
instances, right-click, and select Mark Debug.

Figure 11. Marking a bus to debug

3-1-5. Select File > Save Constraints.

3-1-6. Click OK, and then again OK to use uart_led_timing_<board>.xdc as the target.

3-1-7. Select the Netlist tab and notice that the nets which are marked/assigned for debugging have a
debug icon next to them.

Figure 12. Nets with debug icons

3-1-8. Select the Debug layout or Layout > Debug.

Notice that the Debug tab is visible in the Console pane showing Assigned and Unassigned
Debug Nets groups.

Lab Workbook Hardware Debugging

ZYNQ 6-10 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 13. Debug tab showing assigned and unassigned nets

3-1-9. Either click on the button in the left vertical tool buttons of the Debug pane, or right-click on
the Unassigned Debug Nets and select the Set up Debug… option.

3-1-10. In the Set Up Debug wizard click Next.

Note that rx_data is listed, with the Clock Domain as clk_pin_IBUF_BUFG.

Figure 14. The remaining nets after removing already assigned nets in the Set Up Debug
wizard

3-1-11. Click Next and again Next (leaving everything as defaults) then Finish.

Lab Workbook Hardware Debugging

 www.xilinx.com/support/university ZYNQ 6-11
 xup@xilinx.com
 © copyright 2016 Xilinx

3-1-12. In the Synthesized Design Schematic, click on the net on the output side of the BUFG for the
input pin named clk_pin. Hover over the now highlighted net and notice the name is
clk_pin_IBUF_BUFG. This is the clock net selected for the debug nets earlier.

Figure 15. Locating clk_pin_IBUF_BUFG in the design

3-1-13. Right click on uart_led_pins_<board>.xdc in the sources pane and select Set as Target
Constraint File. This will save the changes to the file

3-1-14. Select File > Save Constraints and click OK and Click Yes.

3-1-15. Open uart_led_pins_<board>.xdc and notice the debug nets have been appended to the bottom
of the file.

3-1-16. Perform this step if synthesis is not already up-to-date: In the Design Runs tab, right-click on the
synth_1 and select Force Up-to-Date to ensure that the synthesis process is not re-run, since the
design was not changed.

Figure 16. Forcing the design to be up-to-date

Implement and Generate Bitstream Step 4

4-1. Generate the bitstream.

4-1-1. Click on the Generate Bitstream to run the implementation and bit generation processes.

4-1-2. Click Yes to run the implementation processes.

4-1-3. When the bitstream generation process has completed successfully, a box with three options will
appear. Select the Open Hardware Manager option and click OK.

Lab Workbook Hardware Debugging

ZYNQ 6-12 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Debug in Hardware Step 5

5-1. Connect the board and power it ON. Open a hardware session, and
program the FPGA.

5-1-1. Make sure that the Micro-USB cable is connected to the JTAG PROG connector next to the
power supply connector for the Zedboard. The Zybo JTAG PROG connector is located next to the
power supply switch).

5-1-2. Turn ON the power.

5-1-3. Select the Open Hardware Manager option and click OK.

The Hardware Manager window will open indicating “unconnected” status.

5-1-4. Click on the Open target link, then Auto Connect from the dropdown menu.

You can also click on the Open recent target link if the board was already targeted before.

5-1-5. The Hardware Session status changes from Unconnected to the server name and the device is
highlighted. Also notice that the Status indicates that it is not programmed.

5-1-6. Select the device and verify that the uart_top.bit is selected as the programming file in the
General tab. Also notice that there is an entry in the Debug probes file field.

5-2. Start a terminal emulator program such as TeraTerm or HyperTerminal.
Select an appropriate COM port (you can find the correct COM number
using the Control Panel). Set the COM port for 115200 baud rate
communication. Program the FPGA and verify the functionality.

5-2-1. Start a terminal emulator program such as TeraTerm or HyperTerminal.

5-2-2. Select an appropriate COM port (you can find the correct COM number using the Control Panel).

5-2-3. Set the COM port for 115200 baud rate communication.

5-2-4. Right-click on the FPGA, and select Program Device… and click Program.

The programming bit file be downloaded and the DONE light will be turned ON indicating the
FPGA has been programmed. Debug Probes window will also be opened if not, then select
Window > Debug Probes.

5-3. Start a SDK session, point it to the c:/xup/fpga_flow/2016_2_ZYNQ_
Sources /lab6/<board>/lab6.sdk workspace.

5-3-1. Open SDK by selecting Start > All Programs > Xilinx Design Tools > SDK 2016.2 > Xilinx
SDK 2016.2

5-3-2. In the Select a workspace window, click on the browse button, browse to
c:/xup/fpga_flow/2016_2_ZYNQ_ Sources /lab6/ directory and select either

Lab Workbook Hardware Debugging

 www.xilinx.com/support/university ZYNQ 6-13
 xup@xilinx.com
 © copyright 2016 Xilinx

c:/xup/fpga_flow/2016_2_ZYNQ_ Sources /lab6/Zybo/lab6.sdk or
c:/xup/fpga_flow/2016_2_ZYNQ_ Sources /lab6/ ZedBoard/lab6.sdk and click OK.

5-3-3. Click OK.

In the Project Explorer, right-click on the uart_led_zynq, select Run As, and then Launch on
Hardware (System Debugger)

In the Debug Probes window in Vivado notice that there are two debug cores, hw_ila_1 and
hw_ila_2.

Figure 17. Debug probes

The hardware session status window also opens showing that the FPGA is programmed having
two ila cores with the idle state.

Figure 18. Hardware session status for the ZedBoard

Figure 18. Hardware session status for the Zybo

Lab Workbook Hardware Debugging

ZYNQ 6-14 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2016 Xilinx

5-3-4. Select the target FPGA (XC7A100T, XC7A35T, or XC7A200T), and click on the Run Trigger
Immediate button to see the signals in the waveform window.

Figure 19. Opening the waveform window

Two waveform windows will be created, one for each ila; one ila is of the instantiated ILA core
and another for the MARK DEBUG method.

5-4. Setup trigger conditions to trigger on a write to led port (rx_data_rdy=1)
and the trigger position to 512. Arm the trigger.

5-4-1. In the Debug Probes window, right-click on the rx_data_rdy and select Add Probes to Basic
Trigger Setup.

Figure 20. Adding a signal to trigger setup

5-4-2. In the Basic Trigger Setup window, click on the drop-down button, set the compare value (== [B]
X) and change the value from x to 1. Click OK.

Figure 21. Setting the trigger condition

Lab Workbook Hardware Debugging

 www.xilinx.com/support/university ZYNQ 6-15
 xup@xilinx.com
 © copyright 2016 Xilinx

5-4-3. Set the trigger position of the hw_ila_1 to 512.

Figure 22. Setting up the trigger position

5-4-4. Similarly, set the trigger position of the hw_ila_2 to 512.

5-4-5. Select the hw_ila_1 in the Hardware window and then click on the Run Trigger ()
button. Observe that the hw_ila_1 core is armed and showing the status as Waiting for Trigger.

Figure 23. Hardware analyzer running in capture mode

5-4-6. In the terminal emulator window, type a character, and observe that the hw_ila_1 status changes
from capturing to idle as the rx_data_rdy became 1.

5-4-7. Select the hw_ila_data_1.wcfg window and see the waveform. Notice that the rx_data_rdy goes
from 0 to 1 at 512th sample and the led_ctl_i0 [7:0] bits also changes from 0 to the bit pattern
corresponding to the character you typed.

Figure 24. Zoomed waveform view

5-4-8. Add the hw_ila_2 probes to the trigger window of the hw_ila_2 and change the trigger condtion
for rx_data[7:0]’s Radix from Hexadecimal to binary. Change XXXX_XXXX to 0101_0101 (for the
ASCII equivalent of U).

Lab Workbook Hardware Debugging

ZYNQ 6-16 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 25. Setting up trigger condition for a particular input pattern

5-4-9. In the Hardware window, right-click on the hw_ila_2 and select Run Trigger, and notice that the
status of the hw_ila_2 changes from idle to Waiting for Trigger. Also notice that the hw_ila_1
status does not change from idle as it is not armed.

5-4-10. Switch to the terminal emulator window and type U (shift+u) to trigger the core.

5-4-11. Select the corresponding waveform window and verify that it shows 55 after the trigger.

Figure 26. Second ila core triggered

5-4-12. When satisfied, close the terminal emulator program and power OFF the board

5-4-13. Select File > Close Hardware Manager. Click OK to close it.

5-4-14. Close the Vivado program by selecting File > Exit and click OK.

5-4-15. Close the SDK program by selecting File > Exit and click OK.

Conclusion

You used ILA core from the IP Catalog and Mark Debug feature of Vivado to debug the hardware design.

