
Lab Workbook Using PRC for Hardware Trigger and Debug Lab

 www.xilinx.com/support/university Zynq 2-1
 xup@xilinx.com
 © copyright 2015 Xilinx

Using PRC for Hardware Trigger and Debug Lab

Introduction

In this lab, you will use the Partial Reconfiguration Controller (PRC) core to reconfigure a design that has
one RP having two RMs. The provided PRC core is a Beta version which will be available in Vivado
2015.1 release. You will use the integrated logic analyzer (ILA) core to monitor the ICAP signals. You will
go through the design process and then use the provided design checkpoint to implement the design.
You will continue through the PR flow to generate the full and partial bitstreams.

Objectives

After completing this lab, you will be able to:

• Use Tcl script to generate a Vivado IPI design having a PS7 sub-system
• Add PRC in the system

• Add an Integrated Logic Analyzer core to monitor ICAP ports

• Configure the PRC to enable partial reconfiguration using hardware triggers generated by
pushbuttons

• Use the provided static dcp (design checkpoint) having the PRC functionality

• Use various Tcl scripts to synthesize the RMs, floorplan the design, add the RMs, create multiple
configurations, implement the design and generate the full and partial bitstreams for various
configurations

• Use Xilinx SDK program to create an application and a bootable BOOT.bin file
• Copy the generated bitstreams and the BOOT.bin on a SD Card and verify partial reconfigurable

design functionality

Design Description

The purpose of this lab exercise is to implement a design that is dynamically reconfigurable using the
PRC when a hardware event occurs. The hardware events are generated by pressing on-board
pushbuttons. The design, shown in Figure 1, consists of the PRC and one RP. The RP has two functional
RMs performing right and left shifting pattern on LEDs. The dynamic partial reconfigurable modules are
updated using the hardware triggers.

Using PRC for Hardware Trigger and Debug Lab Lab Workbook

Zynq 2-2 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Figure 1. A Complete System

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

General Flow for this Lab

Step 1:
Generate DCP

for Static
Design and

RMs

Step 2:
Load Static and

one RM for
each RP, and

Floorplan

Step 3:
Create

And Implement
First

Configuration

Step 4:
Create

And Implement
Other

Configurations

Step 5:
Run

PR_Verify

Step 6:
Generate Bit

Files

Step 7:
Generate the

Software
Application

Step 8:
Test the Design

Lab Workbook Using PRC for Hardware Trigger and Debug Lab

 www.xilinx.com/support/university Zynq 2-3
 xup@xilinx.com
 © copyright 2015 Xilinx

Generate DCPs for the Static Design and RMs Step 1

1-1. Start Vivado and execute the provided Tcl script to create the design
having one RP.

1-1-1. Open Vivado by selecting Start > All Programs > Xilinx Design Tools > Vivado 2015.2 >
Vivado 2015.2

1-1-2. In the Tcl Shell window enter the following command to change to the lab directory and hit Enter.

cd c:/xup/PR/labs/prc_hw_trigger_ila_lab

1-1-3. Generate the PS design executing the provided Tcl script.

source ps7_create_zed.tcl (for ZedBoard) or

source ps7_create_zybo.tcl (for Zybo)

This script will create a block design called system. It will:

• Instantiate ZYNQ PS with SD 0 and UART 1 peripherals enabled, S_HP0 (in 32-bit
mode) interface enabled, and FCLK_CLK0 and FCLK_RESET0_N ports enabled

• Add an axi_protocol_converter instance and configure it (Figure 2) to AXI4 protocol on
the slave side and AXI3 protocol on the master side. The READ_WRITE_MODE is set to
READ_ONLY since the PRC will only read the partial bitstreams from the DDR memory.
Connect the added axi_protocol_converter instance’s M_AXI interface to the S_HP0
interface of the processor system. Make the S_AXI, aclk, and aresetn ports external

Figure 2. Configuring AXI Protocol Converter IP

• Make FCLK_CLK0 and FCLK_RESET0_N external

• Connect aclk net to the S_AXI_HP0_ACLK port

• The design looks like as shown in Figure 3.

Using PRC for Hardware Trigger and Debug Lab Lab Workbook

Zynq 2-4 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Figure 3. The processor system

• The drc will be run next to make sure that there are no design violations, the wrapper file
will be created, and the block design will be generated.

• Once the wrapper file is generated, the script will add the provided top.v and rest of the
modules for the static design. The design hierarchy will look like as shown in Figure 4.

Figure 4. The design hierarchy including the processor system and other top-level modules

In the sources tab, notice the prc_0 and ila_0 instances have “?” since those modules have not
been added yet.

1-2. Add an instance of the PRC core. Set the global options.

1-2-1. Click on the IP Catalog in the Flow Navigator pane.

1-2-2. Expand the sub-catalog and notice the Partial Reconfiguration Controller IP entry under the
Partial Reconfiguration sub-folder.

Lab Workbook Using PRC for Hardware Trigger and Debug Lab

 www.xilinx.com/support/university Zynq 2-5
 xup@xilinx.com
 © copyright 2015 Xilinx

Figure 5. The IP Catalog

1-2-3. Double-click on the Partial Reconfiguration Controller entry and click on the Customize IP
button to open the Customize IP form.

1-2-4. Change the number of clock domain crossing stages to 2 since we have a single clock domain
design.

1-2-5. Uncheck the Enable the AXI Lite interface option as we will not be using that interface.

1-2-6. Leave rest of the global options to default values. Note that the reset signal is active_low
(FCLK_RESET0_N is connected to the port).

Figure 6. Setting the global options

1-3. Create a new virtual socket manager naming it as rp_led

1-3-1. Enter the rp_led in the new name field and change the Number of RMs allocated from 2 to 3.

Notice the rp_led is moved to the Virtual Socket Manager to configure field and the Number of
RMs allocated changed from 3 to 4 since it requires power of 2 values.

Using PRC for Hardware Trigger and Debug Lab Lab Workbook

Zynq 2-6 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

1-3-2. Change the Number of Hardware Triggers to 3 since we will have two RMs and one blanking RM.

1-3-3. Change the Number of Triggers allocated to 3 and notice that the number changes to power of 2
when you click in some other field.

Figure 7. Creating the Virtual Socket Manager

1-4. Create three reconfigurable modules and customize them with the
bitstream addresses and sizes

1-4-1. Under the Reconfigurable Module Options, enter left in the new name field.

1-4-2. Set the Bitstream address to 0x00200000 and the size to 121960.

Notice the name has moved to Reconfigurable Module to configure field.

The bitstream size is pre-determined based on the RP floorplan and the resources used. If this
information is not available then you will have to go through one additional pass to generate the
partial bitstreams, determine the size, then make changes to the core customization, and then
regenerate the bitstreams.

Lab Workbook Using PRC for Hardware Trigger and Debug Lab

 www.xilinx.com/support/university Zynq 2-7
 xup@xilinx.com
 © copyright 2015 Xilinx

Figure 8. Setting the bitstream address and the size for the RM

1-4-3. Similarly, click on New Reconfigurable Module and create two more RMs- one called right and
another called blank.

1-4-4. Set the bitstream address to 0x00300000 for the right and 0x00400000 for the blank and size to
121960 for the both.

Figure 9. Settings of the other two RMs

1-4-5. Notice the Trigger Options assigns Trigger ID 0 to left, 1 to right, and 2 to blank.

Using the drop-down button one can change the ID assignments.

Figure 10. The Trigger Options

1-4-6. Click OK to accept the settings and add the IP to the project.

1-4-7. In the Generate Output Products form, select the global option, then click on Apply, and then
click on Skip to close the synthesis option form.

Using PRC for Hardware Trigger and Debug Lab Lab Workbook

Zynq 2-8 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

1-5. Add an ILA instance with the necessary number and appropriate size ports
so all ICAP ports can be monitored.

1-5-1. In the IP Catalog expand Debug & Verification > Debug and double-click on the ILA entry and
click on the Customize IP button to open the Customize IP form.

1-5-2. Change the instance name to ila_icap and double-click to open the customization window.

1-5-3. Select Native as a Monitor Type and set the Number of Probes to 4.

Figure 11. ILA customization- Monitor Type and setting number of probes

1-5-4. Click on the Probes_Ports(0..7) tab and change the size to 32, 32, 1, 1, and click OK.

We have 32-bit input, 32-bit output, cs, and rdwr ports on the ICAP and we want to monitor those
ports.

Figure 12. Setting the probes widths

1-5-5. In the Generate Output Products form, select the global option, then click on Apply, and then
click on Skip to close the synthesis option form.

1-5-6. Click on Run Synthesis to synthesize the static design and generate the dcp.

1-5-7. When the synthesis process is completed, click Cancel.

1-5-8. Close the project.

1-5-9. Using the Windows Explorer, copy the top.dcp file from c:\xup\PR\labs
\prc_hw_trigger_ila_lab\prc_hw_trigger_ila_<board>lab\prc_hw_trigger_ila_<board>_lab.runs\syn
th_1 into the Synth\Static directory under the current lab directory. Substitute zed or zybo for
<board>.

Lab Workbook Using PRC for Hardware Trigger and Debug Lab

 www.xilinx.com/support/university Zynq 2-9
 xup@xilinx.com
 © copyright 2015 Xilinx

1-6. Generate the dcp for each of the RMs.

1-6-1. Make sure that you are in the lab directory otherwise enter the following command to change to
the lab directory and hit Enter.

cd c:/xup/PR/labs/prc_hw_trigger_ila_lab

1-6-2. Synthesize each of the RMs (two) executing the provided Tcl script.

source synth_reconfig_modules_zed.tcl (for ZedBoard) or

source synth_reconfig_modules_zybo.tcl (for Zybo)

This script will add the HDL files for a given RM, synthesize the module(s) for the RM in out of
context mode and write the design checkpoint (dcp) in the respective destination folder under the
Synth directory. After each RM’s dcp is generated, the respective design is closed.

Load Static and one RM for each RPs, and Floorplan Step 2

2-1. Load the static and one RM design for each of the RPs.

2-1-1. In the Tcl Shell window enter the following command to change to the lab directory and hit Enter.

cd c:/xup/PR/labs/prc_hw_trigger_ila_lab

2-1-2. Execute the following Tcl script to load the design checkpoint and floorplan the reconfigurable
region.

source floorplan_design_zed.tcl (for ZedBoard) or

source floorplan_design_zybo.tcl (for Zybo)

The script will do the following:

• Load the static design using the open_checkpoint command.

open_checkpoint Synth/Static/top.dcp

• Load one RM for the RP by using the read_checkpoint command.

read_checkpoint -cell reconfig_leds

Synth/rModule_leds/leftshift/shift_synth.dcp

• Define each of the loaded RMs (submodules) as partially reconfigurable by setting the
HD.RECONFIGURABLE property using the following commands.

set_property HD.RECONFIGURABLE 1 [get_cells reconfig_leds]

• Save the assembled design state for this initial configuration (Is this required or optional)
using the following command.

write_checkpoint Checkpoint/top_link_left.dcp

• Read the provided floorplan constraints file which defines the RP regions.

read_xdc Sources/xdc/fplan_zed.xdc (for ZedBoard) or

Using PRC for Hardware Trigger and Debug Lab Lab Workbook

Zynq 2-10 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

read_xdc Sources/xdc/fplan_zybo.xdc (for Zybo)

• Load the top-level constraint file by executing the following command.

read_xdc Sources/xdc/top_io_zed.xdc (for ZedBoard) or

read_xdc Sources/xdc/top_io_zybo.xdc (for Zybo)

Create and Implement the First Configuration Step 3

3-1. Create and implement the first configuration.

3-1-1. Execute the following command from the Tcl console after making sure that the working directory
is set to cd c:/xup/PR/labs/prc_hw_trigger_ila_lab.

source create_first_configuration.tcl

The script will do the following:

• Optimize, place and route the design by executing the following commands:

opt_design

place_design

route_design

• Save the full design checkpoint and create report files by executing the following
commands:

write_checkpoint -force

Implement/Config_left/top_route_design.dcp

report_utilization -file

Implement/Config_left/top_utilization.rpt

• Save checkpoints for each of the reconfigurable modules by issuing these two
commands:

write_checkpoint -force -cell reconfig_leds

Checkpoint/shift_left_route_design.dcp

• Write the debug_netx.ltx file which will be used in the Vivado

Hardware Analyzer in the Testing step.

write_debug_probes ./Implement/Config_left/debug_nets.ltx

3-2. After the first configuration is created, the static logic implementation will
be reused for the rest of the configurations. So it should be saved. But
before you save it, the loaded RM should be removed.

3-2-1. Execute the following command to update the design with the blackbox and write the checkpoint.

source lock_placement_with_blackbox.tcl

The script will do the following tasks:

Lab Workbook Using PRC for Hardware Trigger and Debug Lab

 www.xilinx.com/support/university Zynq 2-11
 xup@xilinx.com
 © copyright 2015 Xilinx

• Clear out the existing RMs executing the following commands.

update_design -cells reconfig_leds -black_box

• Lock down all placement and routing by executing the following command.

lock_design -level routing

• Write out the remaining static-only checkpoint by executing the following command.

write_checkpoint -force Checkpoint/static_route_design.dcp

Create and Implement Other Configurations Step 4

4-1. Read next set of RM dcps, create and implement the second configuration.

4-1-1. Execute the following command to create and implement the second configuration

source create_second_configuration.tcl

The script will do the following tasks:

• With the locked static design open in memory, read in post-synthesis checkpoints for the
other two reconfigurable modules.

read_checkpoint -cell reconfig_leds

Synth/rModule_leds/rightshift/shift_synth.dcp

• Optimize, place and route the design by executing the following commands.

opt_design

place_design

route_design

• Save the full design checkpoint by executing the following command.

write_checkpoint -force

Implement/Config_right/top_route_design.dcp

• Save the checkpoints for each of the reconfigurable modules by issuing the following
commands.

write_checkpoint -force -cell reconfig_leds

Checkpoint/shift_right_route_design.dcp

• Close the project

Close_project

4-2. Create the blanking configuration.

4-2-1. Execute the following command to create and implement the second configuration

source create_blanking_configuration.tcl

Using PRC for Hardware Trigger and Debug Lab Lab Workbook

Zynq 2-12 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

The script will do the following tasks:

• Open the static route checkpoint.

open_checkpoint Checkpoint/static_route_design.dcp

• For creating the blanking configuration, use the update_design -buffer_ports
command to insert LUTs tied to constants to ensure the outputs of the reconfigurable
partition are not left floating.

update_design -buffer_ports -cell reconfig_leds

• Now place and route the design. There is no need to optimize the design.

place_design

route_design

The base (or blanking) configuration bitstream, when we generate in the next section, will
have no logic for either reconfigurable partition, simply outputs driven by ground. Outputs
can be tied to VCC if desired, using the HD.PARTPIN_TIEOFF property.

• Save the checkpoint in the Config_blank directory.

write_checkpoint -force

Implement/Config_blank/top_route_design.dcp

• Close the project

Close_project

Run PR_Verify Step 5

5-1. You must ensure that the static implementation, including interfaces to
reconfigurable regions, is consistent across all Configurations. To verify
this, you run the PR_Verify utility

5-1-1. Run the pr_verify command from the Tcl Console.

source verify_configurations.tcl

The script will perform the following tasks:

• execute the pr_verify command and then close the project:

pr_verify -initial Implement/Config_left/top_route_design.dcp -

additional {Implement/Config_right/top_route_design.dcp

Implement/Config_blank/top_route_design.dcp}

You should see the message indicating the Config_left configuration is compatible with

Config_right, and the Config_left configuration is compatible with Config_blank.

• Execute the following command to close the project.

close_project

Lab Workbook Using PRC for Hardware Trigger and Debug Lab

 www.xilinx.com/support/university Zynq 2-13
 xup@xilinx.com
 © copyright 2015 Xilinx

Generate Bit Files Step 6

6-1. After all the Configurations have been validated by PR_Verify, full and
partial bit files must be generated for the entire project

6-1-1. Generate the full configurations and partial bitstreams by executing the following tcl script.

source generate_bitstreams.tcl

6-1-2. The script will do the following tasks:

• Read the first configuration in the memory and generate the bitstreams both in bit and bin
formats

open_checkpoint Implement/Config_left/top_route_design.dcp

write_bitstream -file Bitstreams/Config_left.bit -force

write_cfgmem -format BIN -interface SMAPx32 -disablebitswap

-loadbit "up 0

Bitstreams/Config_left_pblock_reconfig_leds_partial.bit"

Bitstreams/left.bin

close_project

• Generate the bitstreams for the second configuration

open_checkpoint Implement/Config_right/top_route_design.dcp

write_bitstream -file Bitstreams/Config_right.bit -force

write_cfgmem -format BIN -interface SMAPx32 -disablebitswap

-loadbit "up 0

Bitstreams/Config_right_pblock_reconfig_leds_partial.bit"

Bitstreams/right.bin

close_project

• Generate the bitstreams with black boxes.

open_checkpoint Checkpoint/static_route_design.dcp

write_bitstream -file Bitstreams/blanking.bit -force

write_cfgmem -format BIN -interface SMAPx32 -disablebitswap

-loadbit "up 0

Bitstreams/blanking_pblock_reconfig_leds_partial.bit"

Bitstreams/b_led.bin

close_project

Using PRC for Hardware Trigger and Debug Lab Lab Workbook

Zynq 2-14 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Generate the Software Application Step 7

7-1. Open the PS design that was created in Step 1. Export the hardware design
and launch SDK.

7-1-1. In Vivado, click on the Open Project link, browse to c:/xup/PR/labs/prc_hw_trigger_ila_lab/prc_
hw_trigger_ila_<board>_lab, select the prc_hw_trigger_ila_<board>_lab.xpr and click OK to open
the design created in Step 1.

7-1-2. Select File > Export > Export Hardware…

7-1-3. In the Export Hardware form, make sure that the Include bitstream checkbox is not checked and
click OK.

7-1-4. Select File > Launch SDK

7-1-5. Click OK to launch SDK.

The SDK program will open. Close the Welcome tab if it opens.

7-2. Create a Board Support Package enabling FAT file system.

7-2-1. In SDK, select File > New > Board Support Package.

7-2-2. Click Finish with the default settings (with standalone operating system).

This will open the Software Platform Settings form showing the OS and libraries selections.

7-2-3. Select xilffs as the FAT file support is necessary to read the partial bit files.

7-2-4. Click OK to accept the settings and create the BSP.

7-3. Create an application.

7-3-1. Select File > New > Application Project.

7-3-2. Enter TestApp as the Project Name, and for Board Support Package, choose Use Existing
(standalone_bsp_0 should be the only option).

7-3-3. Click Next, and select Empty Application and click Finish.

7-3-4. Expand the TestApp entry in the project view, right-click the src folder, and select Import.

7-3-5. Expand General category and double-click on File System.

7-3-6. Browse to c:\xup\PR\labs\prc_hw_trigger_ila_lab\Sources\TestApp\src and click OK.

7-3-7. Select TestApp.c and click Finish to add the file to the project.

Lab Workbook Using PRC for Hardware Trigger and Debug Lab

 www.xilinx.com/support/university Zynq 2-15
 xup@xilinx.com
 © copyright 2015 Xilinx

The program should compile successfully. Fix errors if any.

7-4. Create a zynq_fsbl application.

7-4-1. Select File > New > Application Project.

7-4-2. Enter zynq_fsbl as the Project Name, and for Board Support Package, choose Create New.

7-4-3. Click Next, select Zynq FSBL, and click Finish.

This will create the first stage bootloader application called zynq_fsbl.elf

7-5. Create a Zynq boot image.

7-5-1. Select Xilinx Tools > Create Zynq Boot Image.

7-5-2. Click the Browse button of the Output BIF file path field, browse to
c:\xup\PR\labs\prc_hw_trigger_ila_lab, and then click Save with the output as the default filename.

7-5-3. Click on the Add button of the Boot image partitions, click the Browse button in the Add Partition
form, browse to
c:\xup\PR\labs\prc_hw_trigger_ila_lab\prc_hw_trigger_ila_<board>_lab\prc_hw_trigger_ila
_<board>_lab.sdk\zynq_fsbl\Debug directory, select zynq_fsbl.elf and click Open.

7-5-4. Click OK.

7-5-1. Click again on the Add button of the Boot Image partitions, click the Browse button in the Add
Partition form, browse to c:\xup\PR\labs\prc_hw_trigger_ila_lab\Bitstreams directory, select
blanking.bit and click Open.

7-5-2. Click OK.

7-5-3. Click again on the Add button of the Boot Image partitions, click the Browse button in the Add
Partition form, browse to
c:\xup\PR\labs\prc_hw_trigger_ila_lab\prc_hw_trigger_ila_<board>_lab\prc_hw_trigger_ila_<
board>_lab.sdk\TestApp\Debug directory, select TestApp.elf and click Open.

7-5-4. Click OK.

7-5-5. Make sure that the output path is c:\xup\PR\labs\prc_hw_trigger_ila_lab and the filename is
BOOT.bin, and click Create Image.

7-5-6. Close the SDK program by selecting File > Exit.

Using PRC for Hardware Trigger and Debug Lab Lab Workbook

Zynq 2-16 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Test the Design Step 8

8-1. Place the board in the SD boot mode. Copy the BOOT.bin file on the SD
Card. Copy the partial bin files generated in the bitstreams directory on the
SD card, and place the SD card in the board. Power On the board.

8-1-1. Make sure that the board is set to boot in SD card boot mode.

8-1-2. Using the Windows Explorer, copy the BOOT.bin from the c:/xup/PR/prc_hw_trigger_ila_lab/
directory on to a SD Card.

8-1-3. Copy the three partial bin files from the bitstreams directory.

8-1-4. Place the SD Card in the board and power ON the board.

You should see the four leds OFF as the design is loaded with blank RP.

At this point you can press BTNU (ZedBoard) or BTN1 (Zybo) to reconfigure with the left shift
functionality and BTND (ZedBoard) or BTN2 (Zybo) with right shift. When you press BTNC
(ZedBoard) or BTN0 (Zybo) it will reconfigure the RP with blanking bitstream.

8-1-5. When satisfied, power OFF the board.

8-1. Connect the board with one micro-USB cable to JTAG port. Corrupt the
left.bin to have corrupted sync word and b_led.bin with the corrupted
idcode. Copy them on the SD card overwriting the clean bin files. Place the
SD card in the board. Power On the board.

8-1-1. Make sure that one micro-usb cable is connected between the JTAG port of the board and the
PC.

8-1-2. Using a Hex Editor, open left.bin file and make change to the SYNC word so it looks like as
shown below and then save the file as sync.bin

Figure 13. Corrupting the sync word

8-1-3. Similarly, open the b_led.bin file, change the IDCODE field as shown below, and save it as
idcode.bin

Figure 14. Corrupting the id code

8-1-4. Close the Hex editor program.

If you don’t have an access to the hex editor or equivalent, copy the BOOT.bin. sync.bin,
right.bin and idcode.bin files from the bitstreams_debug folder and place them on the SD card.

8-1-5. Rename the sync.bin to left.bin and idcode.bin to b_led.bin on the SD card. The renaming is
necessary as the software application is looking for the named files.

Lab Workbook Using PRC for Hardware Trigger and Debug Lab

 www.xilinx.com/support/university Zynq 2-17
 xup@xilinx.com
 © copyright 2015 Xilinx

8-1-6. Insert the SD card into the board, and power ON the board.

8-1-7. In Vivado, make sure that the working directory in the Tcl shell is
c:/xup/PR/labs/prc_hw_trigger_ila_lab. If not then set it using the cd command.

8-1-8. Enter the following command to open the hardware manager, program the FPGA, and open the
hardware manager’s dashboard.

source run_ila.tcl

8-1-9. Click the Stop Trigger button () to see the waveform.

8-1-10. Select Window > Debug Probes

8-1-11. Select icap_prim_csib probe in the Debug Probes window, right-click, and select Add Probes to
Basic Trigger Setup

Figure 15. ILA dashboard

8-1-12. Press BTN7 (ZedBoard) or BTN7 (Zybo) on the board, wait until the LEDs turn on, and then click

the Run Trigger button () to trigger the ILA.

You will see that the run is waiting for the trigger condition to occur, which is writing to the ICAP.

Figure 16. Waiting for the trigger condition to occur

Using PRC for Hardware Trigger and Debug Lab Lab Workbook

Zynq 2-18 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

8-1-13. Press the BTND (ZedBoard) or BTN2 (Zybo) and observe the LEDs are shifting right and the ILA
has triggered. Zoom in into the beginning part of the waveform and notice the SYNC word is
detected and the ICAP output changes at sample 14.

Figure 17. SYNC word detected

8-1-14. Click the Run Trigger button and then switch to the ILA-hw_ila_1 tab and observe that it is waiting
for the trigger to occur.

8-1-15. Press the BTNU(ZedBoard) or BTN1 (Zybo) to trigger the ILA and then observe the waveform.

Notice that the LEDs are still shifting right, however at 14 the ICAP output did not change.

Figure 18. SYNC word error

8-1-16. Press BTN7 on the board.

8-1-17. Press the BTND (ZedBoard) or BTN2 (Zybo) to load the right-shift RM and observe the LEDs
shifting right.

8-1-18. Click the Run Trigger button () to trigger the ILA and then switch to the ILA-hw_ila_1 tab and
observe that it is waiting for the trigger to occur.

8-1-19. Press the BTNC (ZedBoard) or BTN0 (Zybo) to trigger the ILA and then observe the waveform.

Notice that the LEDs are still shifting right. The ICAP output changed at 14 indicating SYNC word
detected. At 19 the corrupted IDCODE came and at 32 ICAP output changed to 0xFFFFFFDB >
0xFFFFFF5B > 0xFFFFFF1B followed by CSIB signal going high indicating the reconfiguration
process has been aborted.

Figure 19. IDCODE word error

8-1-20. Select File > Close Hardware Manager

8-1-21. Power off the board and close Vivado.

Lab Workbook Using PRC for Hardware Trigger and Debug Lab

 www.xilinx.com/support/university Zynq 2-19
 xup@xilinx.com
 © copyright 2015 Xilinx

Conclusion

This lab showed you how the partial reconfiguration controller (PRC) can be used with hardware events
(trigger) to reconfigure RPs. The PRC has the ICAP port which can be connected to the ICAP resource.
The ILA core can be used to monitor the ICAP ports and analyze the activities taking place during the
reconfiguration.

