
Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zynq 5-1
 xup@xilinx.com
 © copyright 2016 Xilinx

Reconfiguring User Logic Using Custom ICAP
Processor and Monitoring ICAP Signals Using

Vivado Analyzer Lab

Introduction

In this lab, you will go through the project-based PR flow methodology. The design consists of the ICAP
accessed through a provided light-weight custom IP. The custom ICAP_processor IP requires bitstream
length, go, and done signals as input. The partial bitstream is provided by the processor system by
reading the partial bitfiles from the SD card, storing them in the DDR memory, and sending the
appropriate bitstream to the ICAP processor based on the user’s selection. The design has one RP with
two functional RMs. The integrated logic analyzer (ILA) core is used to monitor the ICAP signals.

Objectives

After completing this lab, you will be able to:

 Use project-based PR flow methodology
 Use Tcl script to generate a Vivado IPI design having a PS7 sub-system, provided light-weight ICAP

processor and ICAP processor interface IPs
 Add Integrated Logic Analyzer core to monitor ICAP ports
 Configure the ILA to perform advanced triggering and conditional triggering
 Enable the PR-flow methodology
 Create partition
 Use PR flow wizard to create multiple configurations
 Synthesize, implement, and generate bitstream from the project
 Use Xilinx SDK program to create an application and a bootable BOOT.bin file
 Generate the corrupted partial bit files for inducing SYNC, IDECODE, and CRC errors
 Copy the generated bitstreams and the BOOT.bin on a SD Card and verify partial reconfigurable

design functionality

Design Description

The purpose of this lab exercise is to implement a design that is dynamically reconfigurable using the
light-weight ICAP processor. The design, shown in Figure 1, consists of the processor sub-system; ICAP
processor and ICAP interface IPs, ILA and one RP. The RP has two functional RMs performing right and
left shifting patterns on LEDs. The dynamic partial reconfigurable modules are updated the user
command

.

(a) Top-Level

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zynq 5-2 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2016 Xilinx

(b) Processor Subsystem

(c) ICAP_Processor IP

Figure 1. A Complete System

Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zynq 5-3
 xup@xilinx.com
 © copyright 2016 Xilinx

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

General Flow for this Lab

Create A Project with Static Design and One RM Step 1

1-1. Start the Vivado 2016.3 program and execute the provided Tcl script to
create the design having one RP.

1-1-1. Open Vivado by selecting Start > All Programs > Xilinx Design Tools > Vivado 2016.3 >
Vivado 2016.3

1-1-2. In the Tcl Shell window enter the following command to change to the lab directory and hit Enter.

cd c:/xup/PR/labs/icap_processor_lab

1-1-3. Generate the PS design executing the provided Tcl script.

source ps7_create_zed.tcl (for ZedBoard) or

source ps7_create_zybo.tcl (for Zybo)

This script will create the block design called system. It will:

 Instantiate ZYNQ PS with SD 0 and UART 1 peripherals, M_GP0 interface, and
FCLK_CLK0 and FCLK_RESET0_N ports enabled

 Add an instance of each of the provided icap_processor and icap_interface IPs, and two
instances of AXI GPIO. Configure one GPIO instance to be 1-bit input only (axi_gpio_1
instance in the diagram) and another with both channels enabled and configured as
output only: channel 1 one-bit and channel 2 32-bit wide.

 Make FCLK_CLK0 and several other signals external so they can be monitored at one-
level above by instantiating ILA

 The design looks like as shown in Figure 2.

Step 1:
Create a

Project with
Static Design
and One RM

Step 2:
Convert the

Project in PR

Step 3:
Synthesize,

Implement, and
Generate
Bitstreams

Step 4:
Generate the

Software
Application

Step 5:
Test the Design

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zynq 5-4 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 2. The processor system

 The drc will be run next to make sure that there are no design violations, the wrapper file
will be created, and the block design will be generated.

 Once the wrapper file is generated, the script will add the provided top.v and the static
design’s rest of the modules. The design hierarchy will look like as shown in Figure 3.

Figure 3. The design hierarchy including the processor system and other top-level modules

Notice the “?” mark for the ila_inst instance. We will add the ila_inst next. Also notice that the top-
level IO constraints are provided through the xdc file.

1-2. Add an ILA instance with the necessary number and appropriate size
probes so all signals of interest can be monitored.

1-2-1. Click IP Catalog under Flow Navigator > Project Manager.

1-2-2. In the IP Catalog, expand Debug & Verification > Debug and double-click on the ILA entry and
click on the Customize IP button to open the Customize IP form.

The customization window will open.

1-2-3. Set the Number of Probes to 13, and Sample Data Depth to 2048. Click on the check boxes of
Capture Control and Advanced Trigger options as we want to utilize the functionality.

Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zynq 5-5
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 4. ILA customization- setting number of probes and other options

1-2-4. Click on the Probes_Ports(0..7) tab and change the size of the first four probes to 32, 32, 32, 32,
and click OK, leaving rest of the 9 probes width to 1.

Figure 5. Setting the probes widths

1-2-5. The Generate Output Products form will appear. Select Global and then click Apply.

1-2-6. Click on the Skip button as we will generate the output product when we synthesize the complete
design.

Expand the hierarchy window and notice that we have all the modules defined.

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zynq 5-6 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 6. The design hierarchy

At this stage, the standard project has been created. Next we will enable the project-based PR
flow.

Convert the Project into PR Step 2

2-1. Enable project-based PR flow. Define partition and RM.

2-1-1. Select Tools > Partial Reconfiguration Wizard… to enable the project-based PR flow.

Figure 7. Enabling the project-based PR flow

Once this is set it cannot be undone, so archive your project before selecting this option.

2-1-2. In the ensuing dialog box, click Convert to turn this project into a PR project.

Note that the Partial Reconfiguration Wizard button is now available under the Project
Navigator in the Flow Navigator tab.

Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zynq 5-7
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 8. Project Reconfiguration Wizard process available in Project Manager

2-1-3. Right-click on the reconfig_leds instance and select the Create Partition Definition… option.

2-1-4. In the dialog box that appears, enter reconfig_leds in the Partition Definition Name field, change
the Reconfigurable Module Name to left since that functionality is defined in the initial design.
Click OK.

Figure 9. Defining partition name

Notice the Diamond icon in front of the reconfig_leds indicating that it is a reconfigurable partition.
Also notice that the Partition Definitions tab is now available, showing the list and contents of all
Partition Definitions (just one at this point) in the design.

Figure 10. Reconfigurable partition and the Partition Definitions tab

2-1-5. Select the Partition Definitions tab and observe that left RM is defined having source files.

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zynq 5-8 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 11. The Partition tab

2-2. Use Partial Reconfiguration Wizard to define and add more RMs.

2-2-1. Launch the Partial Reconfiguration Wizard by selecting this option under the Tools menu or
from the Flow Navigator.

2-2-2. Click Next to get to the Edit Reconfigurable Modules page.

Here you can add, remove and edit RMs using the buttons on the left hand side of the page.
Notice that left RM is already included since we have defined it.

Figure 12. Edit Reconfigurable Modules dialog box

2-2-3. Click on the green + icon to add a new RM.

2-2-4. Enter right in the Reconfigurable Module Name field, browse to
c:\xup\PR\labs\icap_processor_lab\Sources\rModule_leds\rightshift directory, select the
rModule_leds.v file and click OK.

2-2-5. Click OK.

Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zynq 5-9
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 13. Created RMs

2-2-6. Click Next to go to the Configurations page since we have defined all the RM.

2-3. Continue with the wizard to create configurations.

2-3-1. Let the Wizard create the configurations by selecting the automatically create configurations
link.

You will see two configurations listed with default names. You can make changes to these names
if you desire by double-clicking on the Name field and typing over.

2-3-2. Change config_1 to config_left, and config_2 to config_right as meaningful names.

Figure 14. Configurations created by the wizard

2-3-3. Click on the green + icon to add another configuration.

2-3-4. Enter config_blank as the name and hit Enter.

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zynq 5-10 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2016 Xilinx

The Edit Configuration Runs window will show-up.

2-3-5. Click Back button to see the Edit Configurations page.

2-3-6. Click on the drop-down button of the config_blank and select <greybox>.

This module defines the input and output but won’t have any functionality, i.e. it will be a blackbox.

Figure 15. Blank configuration added

2-3-7. Click Next to get to the Edit Configuration Runs page.

As with configurations themselves, the runs used to implement each configuration can be
automatically or manually created. A parent-child relationship will define how the runs interact –
the parent run implements the static design and all RMs within that configuration, then child runs
reuse the locked static design while implementing the RMs within that configuration in that
established context.

2-3-8. Click on the automatically create configuration run link to populate the Configuration Runs
page with the minimum set of runs.

Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zynq 5-11
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 16. Configuration runs

2-3-9. Click Next to see the Summary page then Finish to complete the design setup and exit the
Wizard.

Note that the left and right RMs will be synthesized in Out-of-Context mode. The static design will
be synthesized first having left shift functionality. The results of which will be used to create partial
bitstreams of config_right and config_blank

Figure 17. Created design runs

Synthesize, Implement and Generate Bitstreams Step 3

3-1. Synthesize the design.

3-1-1. Click on the Run Synthesis to start the synthesis process.

When the synthesis is completed a dialog box will appear to open the synthesized design. At this
point you can either add a constraint file which defines the pblocks or you can floorplan the
design.

3-2. Click Cancel if you want to use the pre-created floorplan xdc file otherwise
go to 3-3.

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zynq 5-12 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2016 Xilinx

3-2-1. Click Cancel.

3-2-2. Click on Flow Navigator > Project Manager > Add Sources

3-2-3. Select the Add or Create Constraints option.

3-2-4. Click Next and then click on the Add Files button.

3-2-5. Browse to c:\XUP\PR\labs\icap_processor_lab\Sources\xdc, select fplan_zed.xdc (for ZedBoard)
or fplan_zybo.xdc (for Zybo) and click OK. Make sure that Copy constraints files into the project
is checked.

3-2-6. Click Finish to add the constraint file.

Figure 18. Floorplan constraints added to the project

3-2-7. Skip to 3-5.

3-3. Skip this and go to 3-5 if you have already done 3-2 above, otherwise click
on the Open Synthesized Design and click OK.

3-3-1. Select the Open Synthesized Design option and click OK to open the design.

3-3-2. Select Layout > Floorplanning.

3-3-3. Select Edit > Find. In the Find field. Select Sites in the Find drop-down box.

3-3-4. Ensure Name and contains are selected, and in the text box change * to *SLICE_X16Y20.

3-3-5. Click on the + button, then select OR using the drop-down button, choose Name contains again,
type *SLICE_X19Y24, and click OK.

You will see a new tab, called Sites – Find will appear showing two entries.

Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zynq 5-13
 xup@xilinx.com
 © copyright 2016 Xilinx

3-3-6. Select one entry at a time, right-click and select Mark.

You will see marked sites in the Device window. You may have to zoom out.

3-3-7. Select the reconfig_leds instance in the Netlist window, right-click, and select Floorplanning >
Draw Pblock.

3-3-8. Draw a box that bounds SLICE_X16Y20:SLICE_X19Y24 marked in the previous step.

3-3-9. Click OK to include SLICE (20 slices) as the resources to be reconfigured.

3-3-10. Select the reconfig_leds instance, select the properties tab, check the
RESET_AFTER_RECONFIG property, and select ON for the SNAPPING_ON property.

3-3-11. Click File > Save Constraints and click OK.

3-3-12. Select Create a New File option and enter fplan_zed.xdc (for ZedBoard) or fplan_zybo.xdc (for
Zybo).

3-3-13. Click OK.

3-4. Run DRC.

3-4-1. Select Tools > Report > Report DRC, then click OK to run the PR-specific design rules. There
should be no violations.

3-5. Run implementation.

3-5-1. Select the Design Runs tab and notice that the tools are reporting that the synthesis is out of
state as we added the floorplan related constraints. Since these constraints are really needed for
the implementation, we can force the synthesis run to up-to-date status.

Figure 19. Design Runs

3-5-2. Right-click on the synth_1 and select force up-to-date.

3-5-3. In the Flow Navigator, select Implementation Settings

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zynq 5-14 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2016 Xilinx

The Project Settings window having Implementation pane selected will be displayed.

3-5-4. Scroll down and click on the browse button of the tcl.pre field under the Write Bitstream group.

3-5-5. Browse to c:\XUP\PR\labs\icap_processor_lab\, select the crcFrameEnable.tcl file, and click OK.

Figure 20. Setting command to enable frame-based CRC generation

3-5-6. Click Apply and then click OK.

3-5-7. In the Flow Navigator, select Run Implementation to run place and route on all configurations.

This action runs implementation first for impl_1 and then for child_0_impl_1 and child_1_impl_1.
Behind the scenes, Vivado takes care of all the details. In addition to running place and route for
the three runs with all the PR requirements in place, it does a few more tasks specific to PR. After
impl_1 completes, Vivado automatically:

o Writes module-level (OOC) checkpoints for each routed left RM

o In a future release, these checkpoints can be used to create new configurations by
mixing and matching RMs

o Carves out the logic in each RP to create a static-only design image. This is done by
calling update_design –black_box for each instance

o Locks all placement and routing for this static-only design. This is done by calling
lock_design –level routing

o Saves this locked static parent image to be reused for all child runs

Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zynq 5-15
 xup@xilinx.com
 © copyright 2016 Xilinx

In addition, when the child run completes, module-level checkpoints are created for the routed
right and blackbox RMs. A locked static design image would be identical to the parent, so this
step is not necessary.

3-5-8. When Implementation completes, select Generate Bitstreams and click OK to run the bitstreams
generation.

This will create a full configuration bitstream having left shift functionality and three partial
bitstreams (left, right, and greybox).

The full configuration bitstream, top.bit and partial bitstream reconfig_leds_left_partial.bit will
be generated in the impl_1 directory. The partial bitstream reconfig_leds_right_partial.bit will
be generated in the child_0_impl_1 directory and reconfig_leds_greybox_partial.bit will be
generated in the child_1_impl_1 directory.

3-5-9. Using the Windows Explorer, copy the generated full and partial bitstreams from various folders
mentioned above, place them in the c:\xup\PR\labs\icap_processor_lab\bitstreams folder, and
rename as listed below.

Source Name New Name

reconfig_leds_greybox_partial.bit b_led.bit

reconfig_leds_left_partial.bit left.bit

reconfig_leds_right_partial.bit right.bit

3-5-10. In the Tcl Console tab, make sure that the current directory is

cd c:/XUP/PR/labs/icap_processor_lab

3-5-11. Execute the following command to convert the partial bit files into the bin files.

source ./bitstream_convert.tcl

Generate the Software Application Step 7

4-1. Export the hardware design and launch SDK.

4-1-1. Select File > Export > Export Hardware…

4-1-2. In the Export Hardware form, make sure that the Include bitstream checkbox is not checked and
click OK.

4-1-3. Select File > Launch SDK

4-1-4. Click OK to launch SDK.

The SDK program will open. Close the Welcome tab if it opens.

4-2. Create a Board Support Package enabling FAT file system.

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zynq 5-16 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2016 Xilinx

4-2-1. In SDK, select File > New > Board Support Package.

4-2-2. Click Finish with the default settings (with standalone operating system). This will open the
Software Platform Settings form showing the OS and libraries selections.

4-2-3. Select xilffs as the FAT file support is necessary to read the partial bit files.

4-2-4. Click OK to accept the settings and create the BSP.

4-3. Create an application.

4-3-1. Select File > New > Application Project.

4-3-2. Enter TestApp as the Project Name, and for Board Support Package, choose Use Existing
(standalone_bsp_0 should be the only option).

4-3-3. Click Next, and select Empty Application and click Finish.

4-3-4. Expand the TestApp entry in the project view, right-click the src folder, and select Import.

4-3-5. Expand General category and double-click on File System.

4-3-6. Browse to c:\xup\PR\labs\icap_processor_lab\Sources\TestApp\src and click OK.

4-3-7. Select TestApp.c and click Finish to add the file to the project.

4-3-8. Right-click on TestApp and select C/C++ Building Settings.

4-3-9. Select ARM v7 GCC Compiler > Symbols, and click +

4-3-10. Enter ZED for ZedBoard or ZYBO for Zybo, and click OK.

The program should compile successfully.

Open the source file and verify that the bin file size in the program listed matches the size you
made a note earlier (except it is 4x as the program uses the size in words). If different, then
change in the program and save it.

4-4. Create a zynq_fsbl application.

4-4-1. Select File > New > Application Project.

4-4-2. Enter zynq_fsbl as the Project Name, and for Board Support Package, choose Create New.

4-4-3. Click Next, select Zynq FSBL, and click Finish. This will create the first stage bootloader
application called zynq_fsbl.elf

4-5. Create a Zynq boot image.

Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zynq 5-17
 xup@xilinx.com
 © copyright 2016 Xilinx

4-5-1. Select Xilinx Tools > Create Zynq Boot Image.

4-5-2. Click the Browse button of the Output BIF file path field, browse to
c:\xup\PR\labs\icap_processor_lab, and then click Save with the output.bif as the default filename.

4-5-3. Click on the Add button of the Boot image partitions, click the Browse button in the Add Partition
form, browse to
c:\xup\PR\labs\icap_processor_lab\icap_processor_<board>_lab\icap_processor_<board>
_lab.sdk\zynq_fsbl\Debug directory, select zynq_fsbl.elf and click Open.

4-5-4. Click OK.

4-5-1. Click again on the Add button of the Boot Image partitions, click the Browse button in the Add
Partition form, browse to c:\xup\PR\labs\icap_processor_lab\Bitstreams directory, select
top.bit and click Open.

4-5-2. Click OK.

4-5-3. Click again on the Add button of the Boot Image partitions, click the Browse button in the Add
Partition form, browse to
c:\xup\PR\labs\icap_processor_lab\icap_processor_<board>_lab\icap_processor_<board>_l
ab.sdk\TestApp\Debug directory, select TestApp.elf and click Open.

4-5-4. Click OK.

4-5-5. Make sure that the output path is c:\xup\PR\labs\icap_processor_lab and the filename is
BOOT.bin, and click Create Image.

4-5-6. Close the SDK program by selecting File > Exit.

4-5-7. Close the project in Vivado.

Test the Design Step 8

5-1. Make one copy each of left.bin, b_led.bin, and right.bin files. Rename the
copied files as sync.bin, idcode.bin, and crc.bin respectively. Corrupt the
sync.bin to have corrupted sync word, idcode.bin to have the corrupted
idcode, and crc.bin to have the corrupted first frame crc. Copy them along
with the BOOT.bin file on the SD card.

5-1-1. Using the Windows Explorer, copy the BOOT.bin from the c:/xup/PR/icap_processor_lab/
directory on to a SD Card.

5-1-2. Make one copy each of left.bin, b_led.bin, and right.bin files. Rename the copied files as
sync.bin, idcode.bin, and crc.bin respectively.

5-1-3. Using a Hex Editor, open the sync.bin file and make change to the SYNC word so it looks like as
shown below and then save the file.

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zynq 5-18 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 21. Corrupting the sync word

5-1-4. Similarly, open the idcode.bin file, change the IDCODE field as shown below, and save it.

Figure 22. Corrupting the id code

5-1-5. Similarly, open the crc.bin file, change the content of the first frame as shown below (note the file
offset [row starting at 200]), and save it. This will cause mismatch between expected and read crc.

Figure 23. Corrupting the first frame’s data

5-1-6. Close the Hex editor program.

5-1-7. Copy the partial bitfiles (the original b_led, left, right, and the new sync, idcode, and crc files) to
the SD card.

If you don’t have an access to the hex editor or equivalent, copy the BOOT.bin. left.bin,
sync.bin, b_led.bin, idcode.bin, right.bin and crc.bin files from the bitstreams_debug folder
and place them on the SD card.

5-2. Connect the board with one micro-USB cable to JTAG port and another
micro-USB cable (ZedBoard only) to the UART port. Place the board in the
SD boot mode. Start a terminal emulator program such as TeraTerm or
HyperTerminal. Select an appropriate COM port (you can find the correct
COM number using the Control Panel). Set the COM port for 115200 baud
rate communication.

5-2-1. Make sure that one micro-usb cable is connected between the JTAG port of the board and the
PC, and another micro-usb cable (ZedBoard only) is connected between the UART port of the
board and the PC.

5-2-1. Make sure that the board is set to boot in SD card boot mode.

5-2-2. Power ON the board.

5-2-3. Start a terminal emulator program such as TeraTerm or HyperTerminal.

5-2-4. Select the appropriate COM port (you can find the correct COM number using the Control Panel).

5-2-5. Set the COM port for 115200 baud rate communication.

5-2-6. Press BTN7 to display a menu.

5-2-7. Follow the menu and test various reconfigurations.

Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zynq 5-19
 xup@xilinx.com
 © copyright 2016 Xilinx

5-3. Analyze waveforms using Vivado Analyzer.

5-3-1. Make sure that the working directory in the Tcl shell is
c:/xup/PR/labs/icap_processor_lab. If not then set it using the cd command.

5-3-2. Enter the following command to open the hardware manager, program the FPGA, and open the
hardware manager’s dashboard.

source run_ila.tcl

5-3-3. Select xc7z020_1 (for ZedBoard) or xc7z010_1 (for Zybo).

5-3-4. Click on the browse button of the Probes Files in the properties tab, browse to
c:\xup\PR\labs\icap_processor_lab\icap_processor_<board>_lab.runs\impl_1, select
debug_nets.ltx and click OK.

5-3-5. Select Window > Debug Probes.

The Debug Probes window will open up displaying the debug ports.

5-3-6. Right-click on icap_go and select Add Probes to Basic Trigger Setup.

You will see the icap_go in the Basic Trigger Setup window.

5-3-7. Change the compare value to 1.

5-3-8. Click the Run Trigger button () to trigger the ILA.

You will see that the run is waiting for the trigger condition to occur, which is writing to the ICAP.

Figure 24. Waiting for the trigger condition to occur

5-3-9. In the terminal window, type L and observe the LEDs are shifting left and the ILA has triggered.

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zynq 5-20 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Zoom in into the beginning part of the waveform, click around 400 and notice the SYNC word is
detected and the ICAP output changes from 0xFFFFFF9B to 0xFFFFFFDB around sample 395
indicating SYNC word is detected.

Figure 25. SYNC word detected

5-3-10. View the first few samples to see that the RP_enable is de-asserted when icap_go is asserted.
You want to isolate the RM when the reconfiguration is going on. You can use this signal
(RP_enable) in your RM interface logic to isolate the RP during the reconfiguration.

Figure 26. Activities around starting of the reconfiguration process

5-3-11. Click the Run Trigger button and then switch to the ILA-hw_ila_1 tab and observe that it is waiting
for the trigger to occur.

5-3-12. Type S to send the SYNC word corrupted bitstream and observe the waveform.

Notice that the LEDs are still shifting left, however around 390 the ICAP output did not change.

Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zynq 5-21
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 27. SYNC word error

5-3-13. Type R and observe the LEDs shifting right.

5-3-14. Click the Run Trigger button () to trigger the ILA and then switch to the ILA-hw_ila_1 tab and
observe that it is waiting for the trigger to occur.

5-3-15. Type i to trigger the ILA and then observe the waveform.

Notice that the LEDs are still shifting right. The ICAP output changed around 373 indicating
SYNC word detected. Around 545 the corrupted IDCODE came and around 858 the ICAP output
changed to 0xFFFFFF5B followed by status change to 0xFFFFF1B indicating the reconfiguration
was aborted.

Figure 28. IDCODE word error

5-4. Use Advance Triggering to analyze end of the configuration activities

5-4-1. In the ILA – hw_ila_1 tab, click on the drop-down button of the Trigger mode and select
ADVANCED_ONLY.

5-4-2. Click on the browse button, browse to c:/xup/PR/labs/icap_processor_lab/Sources
and select the provided ila.tsm (the trigger state machine). Click OK.

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zynq 5-22 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2016 Xilinx

Figure 29. Setting the ILA for the advanced triggering

The ila.tsm will be loaded and the window will open showing the state machine.

Figure 30. The ILA state machine

Line 1 and 8 define states. In the wait_for_icapgo state, the ILA will wait for the icap_go to
become 1 and when the condition occurs, it will go to the second state- wait_for_reconfig_done.
Once in the wait_for_reconfig_done state, it will wait for the reconfig_done to become 1. When
the condition occurs it will trigger storing the number of pre-trigger samples and filling the rest of
the buffer with the post-trigger samples.

5-4-3. Set the Trigger position to 2000 (as we are interested in what was happening before the
reconfiguration is completed).

5-4-4. Click on the Run Trigger button to arm the ILA and waiting for user input in the terminal window.

5-4-5. In the terminal window type l, r, or b to successfully reconfigure the RM.

The ILA will trigger. Switch to the waveform and view the end area. Notice that the ICAP_dataout
changes from 0xFFFFFFDB (normal reconfiguration) to successfully completed reconfiguration
(0xFFFFFF9B).

Figure 31. The triggered ILA waveform view

5-4-6. Zoom to the end of the capture (1900 – 2048 samples) and observe the activities.

Lab Workbook Reconfiguring using Custom ICAP Processor Lab

 www.xilinx.com/support/university Zynq 5-23
 xup@xilinx.com
 © copyright 2016 Xilinx

Notice that after the reconfiguration_done goes high, the RP_enable is asserted along with one-
clock cycle RP_reset pulse. This enables the brought-in RM and also resets it to the starting
desired state.

Figure 32. Zoomed view showing the activities on various signals when the
reconfiguration is done

5-5. Use Advance Triggering to analyze the crc error

5-5-1. In the ILA – hw_ila_1 tab, click on the browse button of the Trigger state machine, browse to
c:/xup/PR/labs/icap_processor_lab/Sources and select the provided ila_crc.tsm.

Observe that the second state is monitoring ICAP_dataout and waiting for 32’HFFFFF1B (the
abort word).

5-5-2. Set the trigger position to 2000.

5-5-3. Run the ILA.

5-5-4. Press L to configure RM with the left shift functionality. Notice that the ILA did not trigger since
the abort sequence did not occur.

5-5-5. Press C to configure RM with the corrupted CRC, and observe the ILA has triggered.

The ICAP_dataout changes value from 0xFFFFFFDB > 0xFFFFFF5B > 0xFFFFFF1B, i.e. sync
received to configuration error.

Figure 33. CRC error

Reconfiguring using Custom ICAP Processor Lab Lab Workbook

Zynq 5-24 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2016 Xilinx

5-5-6. If you scroll left (around sample 1785), you will see 0x44332211, the corrupted CRC, on the
DATA2ICAP_processor bus.

5-5-7. In the Hardware window, select the Zynq device and look at its properties.

5-5-8. In the Properties form, expand the CONFIG_STATUS register and note that the
BIT00_CRC_ERROR has value of 1.

If you don’t see it to be 1 then right-click on the Zynq device and select Refresh Device. The
status register will be updated. If you don’t see anything then click on the device again.

Figure 34. Verifying the CRC error in the CONFIG_STATUS register

5-5-9. Select File > Close Hardware Manager

5-5-10. Power off the board and close Vivado.

Conclusion

This lab showed you how the project based PR flow methodology works. It also showed you how the
custom ICAP_processor can be used to reconfigure RPs. The ILA core was used to monitor the ICAP
ports and analyze the activities taking place during the reconfiguration including various error conditions.
You also used advanced triggering features of the ILA.

