Lab Workbook Estimating Accelerator Performance and Events Tracing

Estimating Accelerator Performance and Events
Tracing

Introduction

This lab guides you through the steps involved in estimating the expected performance of an application
when functions are implemented in hardware, without going through the entire build cycle. You will further
analyze how data movement is taking place by inserting an events tracer.

Objectives

After completing this lab, you will be able to:
e Use the SDx environment to obtain an estimate of the speedup that you can expect from your
selection of functions to accelerate

o Differentiate between the flows targeting Standalone OS and Linux OS
e Track various events taking place with respect to hardware accelerators
Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises three primary steps: You will create an SDx project, estimate performance speedup
targeting the Standalone OS and then estimate performance speedup targeting the Linux OS.

General Flow for this Lab

Step 1: Step 2: Step 3: Step 4:
Create an Performance Performance Tracing
SDx Project |:> Estimation |:> Estimation |:> Accelerator
targeting targeting Events
Standalone Linux Activities
v www.xilinx.com/university Zynq 4-1
i‘ X”—INXJ Xup@xilinx.com

© copyright 2016 Xilinx

Estimating Accelerator Performance and Events Tracing Lab Workbook

Create an SDx Project Step 1

1-1.

1-1-1.

1-1-2.

1-1-3.

1-1-4.

1-1-5.

1-1-6.

Launch SDx and create a project, called lab4, using the Empty Application
template and then using the provided source files, targeting the Zed or
Zybo board and Standalone OS.

Open SDx, select c:\xup\SDSoC\labs as the workspace and click OK.

Create a new project called lab4

Click Next to see Choose Hardware Platform window showing various available platforms.
Select either zybo or zed (depending on the board you are using) and click Next.

Select Standalone as the target OS, and click Next.

Select Empty Application and click Finish.

1-2. Import the provided source files from source\lab4\src folder.

1-2-1. Right click on src under lab4 in the Project Explorer tab and select Import...

1-2-2. Click on File System under General category and then click Next.

1-2-3. Click on the Browse button, browse to c:\xup\SDSoC\source\lab4\src folder, and click OK.

1-2-4. Either select all the files in the right-side window or select src checkbox in the left-side window
and click Finish to import the files into the project.

Performance Estimation Targeting Standalone Step 2

2-1. Mark sharpen_filter for the hardware acceleration. Run an initial
performance estimate of the hardware only.

2-1-1. Click on the “+" (* IE]x) sign in the HW Functions area to open up the list of functions which
are in the source files.

2-1-2. Select the sharpen_filter function and click OK.

2-1-3. Set the Clock Frequency to 100 MHz.

2-1-4. In Options panel of the SDx Project Settings pane, click on Estimate Performance checkbox.

This selects the Estimate build configuration and performs the estimation flow.

Zyng 4-2 www.xilinx.com/university (' XI LINX

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Estimating Accelerator Performance and Events Tracing

Options
Data motion network clock frequency (MHz): |142.86 -
Generate emulation model |Debug ¥

[¥] Generate bitstream

[¥] Generate SD card image

[| Insert AXI performance monitor
[Enable event tracing

[Z]Estimate performance

Root function; main u

Figure 1. Selecting Estimate performance option (Zedboard)

2-1-5. Select Build Configurations > Set Active > Debug

2-1-6. Right-click on lab4 and select Build Project.

The SDx environment builds the project. A dialog box displaying the status of the build process
appears.

2-1-7. After the build is over, you can see an initial report. This report contains a hardware-only estimate
summary which is calculated from the hardware compilation. There is a link that can be clicked to
run the software on the board and obtain the software performance results. Clicking this link will
also update the report with an estimated comparison of hardware accelerated implementation
versus the software-only information.

% labl % lab2 % lab3 % labd #lab3a | £]SDSoC Report Viewer 32 | = O
Performance and resource estimation report for the 'lab4’ project
Click Here to get software-only application performance and speedup
Mote: Performance estimation assumes warst-case latency of HW functions, it also assumes
warst-case data transfer size for arrays (if transfer size cannot be determined at compile time).
If the HW function latency and data transfer size at run-time is smaller than such assumptions,
the performance estimation will be mare pessimistic than the actual performance.
Details
Performance estimates for ‘sharpen_filter in SDSoC lab de ...
HW accelerated (Estimated cycles) 13833811
Resource utilization estimates for HW functions
Resource Used Total % Utilization
Dsp 0 220 0
BRAM 1 140 071
LUT 274 53200 0.52
FF 185 106400 017
(a) Zed
v www.xilinx.com/university Zynq 4-3
i‘ XILINX*’ Xup@xilinx.com

© copyright 2016 Xilinx

Estimating Accelerator Performance and Events Tracing

Lab Workbook

b
E

£l SDSoC Repor... &2

Performance and resource estimation report for the ‘lab4’
project

Click Here to get software-only application performance and speedup

Mote: Performance estimation assumes worst-case latency of HW functions, it also assumes
warst-case data transfer size for arrays (if transfer size cannot be determined at compile
time). If the HW function latency and data transfer size at run-time is smaller than such
assumptions, the performance estimation will be more pessimistic than the actual
performance,

Details

Performance estimates for ‘sharpen_filter in SD50C_lab_de ...

HW accelerated (Estimated cycles) 13501554
Resource utilization estimates for HW functions
Resource Used Total % Utilization

DSP 0 80 0

BRAM 1 60 1.67

LUT 274 17600 156

FF 184 35200 0.52

(b) Zybo

Figure 2. Initial estimate of hardware only performance

2-2. Connect and power up the board. Click on the Click Here link of the
initial estimation report to run the application and get the entire application
speedup.

2-2-1. Connect the board and power it ON.

2-2-2. Click on the Click Here link in the SDSoC Report Viewer tab to get the software only application
performance and speedup.

Since the board is connected using JTAG and the OS is Standalone, the Local connection will be
used.
~* Run application to get its performance ﬁ1
Runs the application on the target to capture baseline software performance data
Please select correct target connection, ensure the board is connected and powered on.
Connection:
If?) [OK l l Cancel
Figure 3. Making connection to download and running application
Zyng 4-4 www.xilinx.com/university

Xup@xilinx.com
© copyright 2016 Xilinx

& XILINX.

Lab Workbook Estimating Accelerator Performance and Events Tracing

2-2-3. Click OK.

A default bitstream (without the accelerator functionality) and the application will be downloaded
and executed.

£ labl £ lab?2 £ lab3 £ lab4 4 lab2a 2D SDSoC Report Viewer 2 = O

Performance, speedup and resource estimation report for the
‘lab4’ project

Mote: Performance estimation assumes worst-case latency of HW functions, it also assumes
warst-case data transfer size for arrays (if transfer size cannot be determined at compile time].
If the HW function latency and data transfer size at run-time is smaller than such assumptions,
the performance estimation will be more pessimistic than the actual performance.

Summary

Performance estimates for ‘'main’ function
SW-only (Measured cycles)

HW accelerated (Estimated cycles) 16438154967

Estimated speedup 1.66

Details

Performance estimates for ‘sharpen_filter in SDSoC_lab_de ...

SW-only (Measured cycles)
HW accelerated (Estimated cycles) 13833811

Estimated speedup 157.59

Resource utilization estimates for HW functions

Resource Used Total % Utilization

DspP 0 220 0

BRAM 1 140 071

LUT 274 53200 0.52
FF 185 106400 017

(a) Zed
8 XILINX www.xilinx.com/university Zynq 4-5
© xup@xilinx.com

© copyright 2016 Xilinx

Estimating Accelerator Performance and Events Tracing Lab Workbook

Performance, speedup and resource estimation report for the
‘lab4’ project

Mote: Performance estimation assumes worst-case latency of HW functions, it also assumes
warst-case data transfer size for arrays (if transfer size cannot be determined at compile
time). If the HW function latency and data transfer size at run-time is smaller than such
assumptions, the performance estimation will be more pessimistic than the actual
performance.

Summary

Performance estimates for ‘'main’ function
SW-only (Measured cycles)
HW accelerated (Estimated cycles) 16436434254
Estimated speedup 166

Details

Performance estimates for ‘sharpen_filter in SD5o0C lab_de ...

SW-only (Measured cycles)
HW accelerated (Estimated cycles) 13501554

Estimated speedup 16147

Resource utilization estimates for HW functions

Resource Used Total % Utilization
DsP 0 20 0
BRAM 1 60 1.67
LUT 274 17600 1.56
FF 184 35200 0.52
(b) Zybo

Figure 4. Comparison between the pure software and hardware accelerated

The Summary section shows that the estimated speedup between the software only and one with
the hardware accelerator is 1.24 for Zed and 1.66 for Zybo..

2-3. Add sobel_filter for the hardware acceleration. Run an initial performance
estimate of the hardware only.

2-3-1. Add the sobel filter function to the accelerator list with 100 MHz Clock Frequency.
2-3-2. Selectlab4 > Clean Project

2-3-3. Right-click on lab4 and select Build Project.

The SDx environment builds the project. A dialog box displaying the status of the build process
appears.

Zynq 4-6 www.xilinx.com/university i' XI LINX

xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Estimating Accelerator Performance and Events Tracing

2-3-4. After the build is over, the initial estimate and resources report will be displayed again.

=0 SDSoC Report Viewer 22— O

Performance and resource estimation report for the ‘lab4’ project

Click Here to get software-only application performance and speedup

Mote: Performance estimation assumes worst-case latency of HW functions, it also assumes
worst-case data transfer size for arrays (if transfer size cannot be determined at compile time).
If the HW function latency and data transfer size at run-time is smaller than such assumptions,
the performance estimation will be more pessimistic than the actual performance.

Details

Performance estimates for functions "sobel_filter in SDSo ...

HW accelerated (Estimated cycles) 13853851

Resource utilization estimates for HW functions

Resource Used Total % Utilization
DSP 0 220 0
BRAM 2 140 143
LUT 653 53200 123
FF 440 106400 041
(a) Zed

Performance and resource estimation report for the 'lab4’ project

Click Here to get software-only application performance and speedup

Mote: Performance estimation assumes worst-case latency of HW functions, it also assumes
warst-case data transfer size for arrays (if transfer size cannot be determined at compile time). If
the HW function latency and data transfer size at run-time is smaller than such assumptions, the
performance estimation will be more pessimistic than the actual performance.

Details

Performance estimates for functions 'sobel_filter in SDSo ...

HW accelerated (Estimated cycles) 13521107

Resource utilization estimates for HW functions

Resource Used Total % Utilization
DSP 0 80 0
BRAM 2 60 | 333
LuT 653 17600 | 371
FF 417 35200 118
(b) Zybo

Figure 5. Initial hardware acceleration estimate for the two functions

v www.xilinx.com/university Zynq 4-7
i‘ XI LINX“‘ Xup@xilinx.com

© copyright 2016 Xilinx

Estimating Accelerator Performance and Events Tracing

Lab Workbook

2-3-5. Click on the Click Here link in the SDSoC Report Viewer tab and click OK.

% labl % lab2 % lab3 % lab4d % lab3a

Performance, speedup and resource estimation report for the

‘lab4’ project

£l SDSoC Report Viewer 22

= 0O

Mote: Performance estimation assumes warst-case latency of HW functions, it also assumes
warst-case data transfer size for arrays (if transfer size cannot be determined at compile time).
If the HW function latency and data transfer size at run-time is smaller than such assumptions,

the performance estimation will be mare pessimistic than the actual performance.

Summary

Performance estimates for ‘'main’ function

I 807256819

Estimated speedup 34

SW-only (Measured cycles)
HW accelerated (Estimated cycles)

Details

Performance estimates for functions "sobel_filter in SD5So ...

I 13853851

Estimated speedup 38555

SW-only (Measured cycles)
HW accelerated (Estimated cycles)

Resource utilization estimates for HW functions

Resource Used Total % Utilization
DSP 0 220 0
BRAM 2 140 143
LUT 653 53200 123
FF 440 106400 041
(a) Zed

www.xilinx.com/university
xup@xilinx.com
© copyright 2016 Xilinx

Zyng 4-8

& XILINX.

Lab Workbook Estimating Accelerator Performance and Events Tracing

Performance, speedup and resource estimation report for the 'lab4’
project

Mote: Performance estimation assumes worst-case latency of HW functions, it also assumes
warst-case data transfer size for arrays (if transfer size cannot be determined at compile time). If
the HW function latency and data transfer size at run-time is smaller than such assumptions, the
performance estimation will be more pessimistic than the actual performance.

Summary

Performance estimates for 'main’ function

HW accelerated (Estimated cycles) I 805597385
Estimated speedup 34.07
Details

Performance estimates for functions 'sobel_filter in SDSo ...

HW accelerated (Estimated cycles) I 13521107
Estimated speedup 395.03

Resource utilization estimates for HW functions

Resource Used Total % Utilization
DSP 0 80 0
BRAM 2 60 | 333
LuT 653 17600 | 371
FF 417 35200 118
(b) Zybo

Figure 6. Actual performance estimation with two functions in hardware

Performance Estimation Targeting Linux Step 3

3-1. Create a new empty application project called lab4a targeting Linux OS.
Import the provided source files from source\lab4\src folder

For this portion of the lab, you will need an Ethernet port on the PC
configured with 192.168.0.1 as an IP address and an Ethernet cable.

3-1-1. Select File > New > SDx Project to open the New Project GUI.
3-1-2. Enter lab4a as the project name.

3-1-3. Click Next to see Choose Hardware Platform window showing various available platforms.

v www.xilinx.com/university Zynq 4-9
i‘ XI LINX“ xup@xilinx.com

© copyright 2016 Xilinx

Estimating Accelerator Performance and Events Tracing Lab Workbook

3-1-4. Select either zybo or zed (depending on the board you are using) and click Next.

3-1-5. Select Linux SMP as the target OS, and click Next.

3-1-6. Select Empty Application and click Finish.

3-1-7. Right click on src under lab4a in the Project Explorer tab and select Import...

3-1-8. Click on File System under General category and then click Next.

3-1-9. Click on the Browse button, browse to c:\xup\SDSoC\source\lab4\src folder, and click OK.

3-1-10. Either select all the files in the right-side window or select src checkbox in the left-side window
and click Finish to import the files into the project.

3-2. Mark sharpen_filter for the hardware acceleration. Run an initial
performance estimate of the hardware only.

3-2-1. Click on the “+" (* IE]x) sign in the HW Functions area to open up the list of functions which
are in the source files.

3-2-2. Select the sharpen_filter function and click OK.
3-2-3. Set the Clock Frequency to 100 MHz.
3-2-4. In Options panel of the SDx Project Settings pane, click on the Estimate Performance checkbox.

3-2-5. Right-click on lab4a and select Build Project

This selects the Debug build configuration and performs the estimation flow.

3-2-6. After the build is over, you will see an initial report.

3-3. Copy the sd_card contents to the SD Card. Configure the board to boot
from SD card. Connect and power up the board. Configure the board’s
Ethernet address to 192.168.0.10 and the PC’s to 192.168.0.1

3-3-1. Configure the board to boot from SD card.

3-3-2. Using the Windows Explorer copy the content of the lab4a > Debug > sd_card onto the (micro)
SD card. Insert the SD card into the board.

3-3-3. Connect the board, including network cable, and power it ON.

The board will boot. Make a serial connection using the appropriate COM port.

3-3-4. Press the PS-SRST button on the board to reboot and notice Linux booting.

Zyng 4-10 www.xilinx.com/university v
Xup@xilinx.com (A XI I_INX_,,

© copyright 2016 Xilinx

Lab Workbook

Estimating Accelerator Performance and Events Tracing

3-3-5. Once the board boot is complete, set the IP address of the board to 192.168.0.10 by typing the

3-3-6.

3-3-7.

3-3-8.

3-3-9.

3-3-10. Set the Host IP address to 192.168.0.10, the Port field to 1534, and then click OK.

following command at the Linux prompt:
ifconfig

Note if any address is being assigned.

If not assigned then execute the following command to assign to the correct Ethernet adaptor.

oha.3¢
eth@) Link encap:Ethernet HWaddr 00:8A:35:00:01:22
UP BROADCAST RUNNING MULTICAST MTU:1588 Metric:1

packets:5@1 errors:® dropped:@ overruns:@ frame:@
No IP address Bckets:23 errors:0@ dropped:® overruns:® carrier:@
sions:0 txqueuelen:16060

RX bytes:53968 (52.7 KiB) TX bytes:7866 (7.6 KiB)
Interrupt:143 Base address:@xbege

lo Link encap:Llocal Loopback
inet addr:127.0.8.1 Mask:255.0.0.80
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:® dropped:@ overruns:@ frame:0
TX packets:® errors:@ dropped:@ overruns:@ carrier:@
collisions:@ txqueuelen:@
RX bytes:® (8.8 B) TX bytes:0 (8.8 B)

sh-4.3# [ifconfie(eth@)192,168.6.10|

Figure 7. Assigning an IP address

Configure the Ethernet adaptor IP address on the Zynq board to 192.168.0.10
ifconfig eth0 192.168.0.10
Configure the PC Ethernet adaptor IP address to 192.168.0.1

Expand Linux TCF Agent in the Target Connection tab.

) Target Connections &
+ = Hardware Server
4 = Linux TCF Agent
-4 Linux Agent [default]
» = QEMU TcfGdbClient

Figure 8. Configuring the Linux TCF Agent

Double-click on the Linux Agent [default] entry to open the connection form.

iv XI LINX www.xilinx.com/university

Xup@xilinx.com
© copyright 2016 Xilinx

Zyng 4-11

Estimating Accelerator Performance and Events Tracing Lab Workbook

EIE Target Connection Details @

Edit Target Connection

Edit Target Connection

Target Name Linux Agent
Set as default target

N Specify the connection type and properties

Type |Linux TCF Agent

Host |192.168.0.10

Port |1534

4 OK] I Cancel

Figure 9. Making connection for Linux target

3-4. Estimate the accelerator speedup.

3-4-1. In the performance and resource estimate report, click on the Click Here link. Click OK to launch
the Linux TCF agent.

3-4-2. When the execution completes the performance estimate report will be displayed in the SDSoC
report viewer.

Zyng 4-12 www.xilinx.com/university

Xup@xilinx.com i: X”—INXm

© copyright 2016 Xilinx

Lab Workbook Estimating Accelerator Performance and Events Tracing

% labd SDSoC Repor... 4 lzbda E)SDSoCRepor.. 2 4

Performance, speedup and resource estimation report for the

‘lab4a’ project

Note: Performance estimation assumes worst-case latency of HW functions, it also assumes
worst-case data transfer size for arrays (if transfer size cannot be determined at compile
time). If the HW function latency and data transfer size at run-time is smaller than such
assumptions, the performance estimation will be more pessimistic than the actual

performance.

Summary

Performance estimates for 'main’ function
SW-only (Measured cycles)
HW accelerated (Estimated cycles) 16521618228
Estimated speedup 1.66

Details

Performance estimates for ‘sharpen_filter in SDSoC_lab_de ...

SW-only (Measured cycles)
HW accelerated (Estimated cycles) 13833950

Estimated speedup 159.63

Resource utilization estimates for HW functions

Resource Used Total % Utilization
DSP 0 220 0
BRAM 1 140 071
LuT 274 53200 052
FF 185 106400 017

(a) Zed
(' XILINX www.xilinx.com/university Zynqg 4-13
- © xup@xilinx.com

© copyright 2016 Xilinx

Estimating Accelerator Performance and Events Tracing Lab Workbook

Performance, speedup and resource estimation report for the ‘lab4a’ project

Mote: Performance estimation assumes worst-case latency of HW functions, it also assumes worst-case data
transfer size for arrays (if transfer size cannot be determined at compile time). If the HW function latency and
data transfer size at run-time is smaller than such assumptions, the performance estimation will be more
pessimistic than the actual performance.

Summary

Performance estimates for 'main’ function

SW-only (Measured cycles) 27495584944

HW accelerated (Estimated cycles) 16529515519

Estimated speedup 1.66
Details

Performance estimates for "sharpen_filter in SD50C_lab_de ...

SW-only (Measured cycles) 2206715578
HW accelerated (Estimated cycles) 13501693
Estimated speedup 163.44

Resource utilization estimates for HW functions

Resource Used Total % Utilization
DSP 0 80 0
BRAM 1 60 1.67
LUT 274 17600 1.56
FF 184 35200 0.52
(b) Zybo

Figure 10. Performance estimation targeting Linux OS

Note that the number of SW-only cycles have increased compared to Figure 4. This is due to the
overhead running in Linux.

Tracing Accelerator Events Activities Step 4

4-1.

Import the provided prebuilt lab4b project from c:\xup\SDSoC\source\lab4.
Analyze the SDx Project Settings content.

4-1-1. Select File > Import and then select General > Existing Projects into Workspace and click
Next.

4-1-2. Select Select archive file and click Browse to navigate to c:\xup\SDSoC\source\lab4

4-1-3. Select lab4b.zip, and click Open.

4-1-4. Click Finish.

4-1-5. Double-click project.sdx under the lab4b folder to view the SDx Project Settings pane.
Note that the Enable event tracing option is checked and the rgb_2_gray function operating at
100 MHz is included in the HW functions pane. The project was created targeting Standalone OS.

Zyng 4-14 www.xilinx.com/university (' XILINX

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Estimating Accelerator Performance and Events Tracing

lab2 # lab3 # labd # lab3a # labda # labs # lab5a # lab4b = =

%« SDx Project Settings Active build configuration:| Debug = |®

General Options

Project name: ab4db Data maotion network clock frequency (MHz):
Project type: SDSoC Generate emulation model |Debug -

Platform: zed B Generate bitstream

Runtime: C/C++ Generate SD card image

[Insert AXI perfarmance monitor

System configuration: Standalone OS (Zyng 7000) E B
Enable event tracing

cpu: A9D [Estimate performance

05 Standalone 05 Root function: main B

HW functions P
Name Clock Frequency (MHz) Path
| rgb_2_gray 100.00 src/rgb_2_gray.c I

Figure 11. Pre-built project with event tracing feature enabled

4-1-6. Uncheck the Generate bitstream and Generate SD card image check boxes as they are already
generated in the imported project.

4-2. Analyze the source code with the tracing code included in the
sharpen_filter stub.

4-2-1. Open SDSoC_lab_design_main.c from the c:\xup\SDSoC\labs\lab4b\Debug_sds\swstubs
directory.

4-2-2. Change the number of times the algorithm loops over is changed from 5 to 1.
This is to reduce the amount of trace data collected and to give a better view of state analysis.

45 #define WHOLE_PROCESS 3

A9 #define LOOPS [/ change to 1 from 5 for trace analysis
58

Figure 12. Loop iteration changed to 1

4-2-3. Notice that the call to the rgb_2_gray is replaced by the call to the stub.

]

#ifdef TIME_RGB2GRAY
sw_sds_clk_start(RGB2GRAY);
#endif

| _p@_rgb_2 gray 1 noasync(array_c, ar*r*ay_g_l);l
#ifdef |LME_RGBZGRAY
sw_sds_clk _stop(RGB2GRAY);

=

[N s N o RV I Y
b

wn

Figure 13. Hardware function call

4-2-4. Double-click on the rgb_2_gray.c entry under the Debug/_sds/swstubs directory and notice the
actual call is updated.

v www.xilinx.com/university Zyng 4-15
i‘ XI LINX” Xup@xilinx.com

© copyright 2016 Xilinx

Estimating Accelerator Performance and Events Tracing Lab Workbook

A1~ void _p@_rgb_2_gray_1_noasync(uint32_t color[2073608], uint8_t gray[2073600])

42 {

43 switch_to_next_partition(@);

44 int start_seq[1];

45 start_seq[@] = 8;

46 cf request handle t p®@ swinst rgb 2 gray 1 cmd;

a7 sds_trace(4000, EVENT_START); //ID:40800 Name:_p® rgb_2 gray_1 noasync-cmdSend

48 cf_send_i(&(_p@ swinst_rgb_2 gray 1l.cmd_rgb_2 gray), start_seq, 1 * sizeof(int), & p@ swinst_rgb_2 gray_1_cmd
49 sds_trace(4000, EVENT_STOP); //ID:4000 Name:_p®_rgb_2 gray_1_noasync-cmdSend

50 cf_set_trace_wait_tag(_p® swinst_rgb 2 pgray_1 cmd, 3999); //ID:3999 Name:_p® rgb_2 gray_1 noasync-cmdlait
51 cf_wait(p® swinst rgb 2 gray 1 cmd);

52

53 sds_trace(3998,EVENT_START); //ID:3998 Mame:_p® rgb 2 gray_1 noasync:color-send

54 cf_send_i(&(_p@® swinst_rgb_2 gray_1.color), color, 8294400, & pd request_a);

55 sds_trace(3998,EVENT_STOP); //ID:3998 Name:_p® rgb 2 gray_1 noasync:color-send

56 cf_set_trace_wait_tag(pP request @, 3997);//ID:3997 Mame: p® rgb 2 gray 1 noasync:color-wait

57

58 sds_trace(3996,EVENT_START); //ID:3996 Mame:_p® rgb_2 gray 1 noasync:gray-receive

59 cf_receive_i(&(_p®_swinst_rgb_2_gray 1.gray), egray, 2073600, & pd rgb 2 gray_1 noasync_num_gray, & p@ request
68 sds_trace(3996,EVENT_STOP); //ID:3996 Name:_p8_rgb_2 gray_1 noasync:gray-receive

61 cf_set_trace_wait_tag(_p@® request_1, 3995);//ID:3995 Name: p@® rgb_2 gray 1 noasync:gray-wait

62

63 cf_wait(_p® request_8);

64 cf_wait(_p®_request_1);

65 }

Figure 14. The rgb_2_gray function having sds_trace function calls

The stub function initializes the hardware accelerator, initiates any required data transfers for the
function arguments, and then synchronizes hardware and software by waiting at an appropriate
point in the program for the accelerator and all associated data transfers to complete.

Event tracing provides visibility into each phase of the hardware function execution, including the
software setup for the accelerators and data transfers, as well as the hardware execution of the
accelerators and data transfers.

The above code is instrumented for trace. Each command that starts the accelerator, starts a
transfer, or waits for a transfer to complete is instrumented (sds_trace(xxxx, EVENT_START |
EVENT_STOP);).

4-3. Run the application and collect the trace data.
4-3-1. Connect and power ON the board.
4-3-2. Right-click on the lab4b project and select Run As > Trace Application (SDSoC Debugger).
This will download the bitstream, then the application and finally run the application.
Notice in the SDx Log tab that the trace data is exported to the
c:\xup\SDSoC\labs\lab4b\Debug_sds\trace directory.
(2 Problems & Console [Properties E SDx Terminal E
P6:56:24 INFO : Launch script is exported to file "C:\xup\5DSoC\labs\.sdk\launch_scripts)
P6:56:25 INFO : Trace data is exported to file 'C:/xup/SDSoC/labs/labdb/Debug/ sds/trace’
P6:56:25 INFO : Trace data is exported to file 'C:/xup/SDSoC/labs/labdb/Debug/ sds/trace’
P6:56:25 INFO : Trace data is exported to file 'C:/xup/SDSoC/labs/labdb/Debug/ sds/trace’
®6:56:25 INFO : Trace data is exported to file 'C:/xup/SDSoC/labs/labdb/Debug/ sds/trace’
06:56:25 INFO : Trace data is exported to file 'C:/xup/SDSoC/labs/labdb/Debug/ sds/trace’
@6:56:26 INFO : Trace data is exported to file 'C:/xup/SDSoC/labs/labdb/Debug/ sds/trace’
@6:56:26 INFO : Trace data is exported to file 'C:/xup/SDSoC/labs/labdb/Debug/ sds/trace’
@6:56:26 INFO : Trace data is exported to file 'C:/xup/SDSo(C/labs/labdb/Debug/_sds/trace’
AL .CC .7 TN 2 Twomea dada 3~ st ad da LT A T e facnam FICMWC A {1 Al e T Al AL Mabhoo~d ~de fTdhmnma?
Figure 15. Exporting trace data
Zyng 4-16 www.xilinx.com/university i' XILINX

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Estimating Accelerator Performance and Events Tracing

When the trace data export is completed, the tool will create a trace folder named lab4b_Traces
in the Project Explorer tab.

4-4. View the AXI State to analyze the application flow.
4-4-1. Expand the lab4b_Traces project folder in the Project Explorer tab.

4-4-2. Expand all the folders under the Traces[1] folder.

» 5 lab4b
4 |l |lab4b_Traces
% Experiments [0]
4 (Traces [1]
4 == SDSoC_AXI Trace Jan-01_06-56
4 @ AXI Event Analysis
1 AXI State View
4 & Tmf Statistics Analysis
E Statistics

Figure 16. Trace Project Folder

4-4-3. Click on the Home button in the AXI State View tab.
This will show the entire trace history. You will notice

44 Target Connections #% Debug O Memory [AXI State View (SDSoC_AXI_Trace_Jan-01_09-22) & i= |"Z::v B ® e =
2 4 6

B5D50C_AXI_Trace_Jan-01_09-22
App Runtime |
_p0_rgb_2_gray_1_noasync-cmdSend
_p0_rgb_2_gray_1_noasync-cmdWait
_p0_rgb 2 gray 1 noasync:color-send
_p0_rgb_2_gray_1_noasync.gray-receive
_p0_rgb_2_gray_1_noasynccolor-wait
_p0_rgb_2_gray_1_noasync:gray-wait
rgb_2_gray_1 n
rgb_2_gray_l:color H
rgb_2_gray_l:gray I

Figure 17. Trace Visualization Highlighting the Different Types of Events — Stub Code
Comparison

4-4-4. Hover the cursor above one of the events.

Each trace point in the user application is given a unique name and axis, or swimlane, on
the timeline.

Each trace event has a few different attributes, such as name, type, start time, stop time,
and duration.

v www.xilinx.com/university Zynq 4-17
(‘ XI LINX” Xup@xilinx.com

© copyright 2016 Xilinx

Estimating Accelerator Performance and Events Tracing Lab Workbook

H SDSoC_AXI_Trace_Jan-01_09-22 | |
App Runtime e
_p0_rgb_2_gray_1_noasync-cmdSend
_p0_rgb_2_gray_1_noasync-cmdWait
_p0_rgb_2_gray 1 noasync.color-send
_p0_rgb_2_gray_1_noasync.gray-receive | |
_p0_rgb_2_gray_1_noasync.color-wait - -*

_p0_rgb_2_gray_1_noasync.gray-wait
rgb_2 gray 1 i1 H Name | _p0_rgb_2_gray_1_noasync:color-wait
rgb_2_gray_l:color H Type | Software
rgb_2_gray_ligray V'l startTime | 0.085516899
. Stop Time | 0.109094294
Duration | 0.023577395
T A O lecion 1724% i

Figure 18. Detailed Information Available for Each Event
4-4-5. Click on the previous/next event button = aEElT & & a) to see the start. Zoom out
appropriately to see initial events.

48 Target Connections 17 Debug 0 Memory E AXI S? =)

0.085 500 n 0.085510 0.085 520 0.085 530

B SDSoC_AX]_Trace_lan-01_09-22
App Runtime
_p0_rgb_2_gray_1_noasync-cmdSend
_p0_rgb_2_gray_1_noasync-cmdWait
_p0_rgb_2_gray_1_noasync:color-send
_p0_rgb_2_gray_1_noasync:gray-receive
_p0_rgb_2_gray_1_noasync:color-wait
_p0_rgb_2_gray_1_noasync:gray-wait
rgb_2 gray_1
rgb_2_gray_l:color
rgb_2_gray_l:gray

&mw‘\y‘l

Figure 19. Various events which setup and start accelerator

Note the time axis is in seconds. The first orange event (software) is the command being sent to
the accelerator. The green bar indicates the accelerator being used.

The second event is the wait for the dma to respond. The third, fourth and the fifth (software)
events deal with the dma associated with input and output.

The first blue event (rgb_2_gray_1:color) indicates the actual data being transferred whereas the
second blue event is when the output (rgb_2_gray_1:gray) has started. The time difference
between the start of the input and start of the output would be the latency.

4-4-6. Click somewhere on the second blue event and then click on the next event button (=). Zoom
out to see the desired view.

Zynq 4-18 www.xilinx.com/university
xup@xilinx.com i: XILINX“
© copyright 2016 Xilinx

Lab Workbook Estimating Accelerator Performance and Events Tracing

0.106 280 0.106 285 0.106 290

_p0_rgb_2_gray_1_noasync-cmdSend
_p0_rgb_2_gray_1_noasync-cmdWait
_p0_rgb_2_gray_1_noasync:color-send
_p0_rgb_2_gray_1_noasync.gray-receive
_p0_rgb_2_gray_1_noasync:color-wait
_p0_rgb_2_gray_1_noasync.gray-wait

%
rgb_2_gray_1 [i===08

4
B SDSoC_AXI_Trace_lan-01_09-22
App Runtime i{

rgb_2_gray_l:color
rgb_2_gray_l:gray

Figure 20. Tail end of the hardware accelerator events
As can be seen, the blue input (rgb_2_ gray_1:color) finishes first.

The second blue (rgb_2_gray_1:gray) finishes next just after the green accelerator.

4-4-7. Click on the *:color-wait orange bar and then click the next event button to see the tail end
activities. Zoom as necessary.

0.109 090 » 0109095

B SDSoC_AXI_Trace_Jan-01_09-22
App Runtime
_p0_rgb_2_gray_1_noasync-cmdSend

_p0_rgb_2_gray_1_noasync-cmdWait ’

_p0_rgb_2_gray_1_noasync:color-send
_p0_rgb_2_gray_l1_noasync.gray-receive ‘_
_p0_rgb_2_gray_1_noasync:color-wait e ——
_p0_rgb_2_gray_1_noasync.gray-wait i
rgb_2_gray_1

rgb_2_gray_l:color ?

rgb_2_gray_l:gray
Figure 21: Tail end of the transaction

The orange output (_p0_rgb_2-gray_1_noasync:color-wait) finishes followed by (_p0_rgb_2-
gray_1_noasync:gray-wait) indicating the completion of the execution.

4-5. Analyze the built hardware using Vivado.

4-5-1. Start Vivado by selecting Start > All Programs > Xilinx Design Tools > SDx 2016.3 > Vivado
Design Suite > Vivado 2016.3

4-5-2. Click the Open Project link, open the design by browsing to
c:\xup\SDSoC\labs\lab4b\Debug_sds\pO\ipi and selecting either the zybo.xpr or zed.xpr.

4-5-3. Click on Open Block Design in the Flow Navigator pane. The block design will open. Note
various system blocks which connect to the Cortex-A9 processor (identified by ZYNQ in the
diagram).

(' XI LINX www.xilinx.com/university Zynq 4-19

xup@xilinx.com
© copyright 2016 Xilinx

Estimating Accelerator Performance and Events Tracing Lab Workbook

yoor
Do 1o

Figure 22. Block diagram with tracing hardware

4-5-4. Close Vivado without saving the block diagram.
4-5-5. Close SDx by selecting File > Exit

4-5-6. Turn OFF the power to the board.

Conclusion

In this lab, you performed speedup estimation of an application running under Standalone OS and Linux
OS, after targeting desired function for acceleration. Performance estimation does not require the full
bitstream generation and it gives speedup estimate by looking at the performance report generated by
HLS for each function targeted in hardware. Event tracing provides insight into how various events are
taking place and the relative time spent in data movement and data processing.

Zyng 4-20 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2016 Xilinx

