Lab Workbook Profiling Applications and Creating Accelerators

Profiling Applications and Creating Accelerators

Introduction

Program hot-spots that are compute-intensive may be good candidates for hardware acceleration,
especially when it is possible to stream data between hardware and the CPU and memory and overlap
the computation with the communication. This lab guides you through the process of profiling an
application, analyzing the results, identifying function(s) for hardware implementation, and then profiling
again after targeting function(s) for acceleration.

Objectives

After completing this lab, you will be able to:

e Use TCF profiler to profile a pure software application

o Use TCF profiler to profile a software application that calls functions ported to hardware
e Use manual profiling method by using sds_lib API and counters

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises five primary steps: You will create an SDx project, profile the pure software project,
accelerate one function and profile, profile using sds_lib API, and finally add another function to
accelerators and profile.

General Flow for this Lab

Step 1: Step 2: Step 3: Step 4: Step 5:
Create an Profile the Accelerate Profiling . 'IA?Cli
SDx Project |:> Application |:> sharpen_filter |:> using sds_lib |:> S;C Cee@;;i;rtso
i API
and Profile and Profile
v www.xilinx.com/university Zynqg 3-1
i‘ X”—INXJ Xup@xilinx.com

© copyright 2016 Xilinx

Profiling Applications and Creating Accelerators Lab Workbook

Create an SDx Project Step 1

1-1.

1-1-1.

1-1-2.

1-1-3.

1-1-4.

1-1-5.

1-1-6.

1-2.

1-2-1.

1-2-2.

Launch SDx and create a project, called lab3, using the Empty Application
template and then using the provided source files, targeting the Zed or
Zybo board.

Open SDx, and select c:\xup\SDSoC\labs as the workspace and click OK.

Create a new project called lab3

Click Next to see Choose Hardware Platform window showing various available platforms
Select either zybo or zed (depending on the board you are using) and click Next.

Select Standalone OS as the System Configuration, and click Next.

The Templates page appears, containing source code examples for the selected platform.
Select Empty Application and click Finish.
Note that the lab3 > src folder is empty.

Import the provided source files from the sourcel\lab3\src folder. Create an
Debug configuration and build the project.

Right click on src under lab3 in the Project Explorer tab and select Import...

Click on File System under General category and then click Next.

r"Import [= &1

Select

\
|
Choose import source. H

Select an import source:

type filter text

4 |(= General
[Archive File
= Existing Projects into Workspace
[Preferences

s CfC++

> Install

> Remote Systems

> Run/Debug

> Team

> Tracing

[VA L A A T Y

5 Xilinx

Figure 1. Selecting import source location

Zyng 3-2 www.xilinx.com/university (' XI LINX

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Profiling Applications and Creating Accelerators

1-2-3. For the From Directory, click on the Browse button and browse to c:\xup\SDSoC\source\lab3\src
folder and click OK.

1-2-4. Either select all the files in the right-side window or select src checkbox in the left-side window
and click Finish to import the files into the project.

The files will be copied into the src folder under lab3 folder. This can be verified by expanding the
src folder in the Project Explorer tab and also by using Windows Explorer.

EE Import =0 X
File system '/_‘x7
Import resources from the local file system. -

From directory: IC:\xup\SDSoC\source\IabS\src -

B sIC

<l edge_detect.c =
< edge_detecth

|<| lab_design.h

<l rgb_2_gray.c

< rgb_2_gray.h

1< SDSoC_lab_design_main.c
<l sharpen.c

| sharpen.h -

m

EEEEEEEE

{ Filter Types.. l ’ Select All l I Deselect All l

Into folder: lab3/src Browse...

Figure 2. Selecting path and files to be imported

1-2-5. Select Build Configurations > Set Active > Debug

1-2-6. Right-click on lab3 and select Build Project

This should only may take about one minute as it is a pure software compilation.

Profile the Application Step 2

2-1. Connect the board in the JTAG mode and power it ON. Start the Debug
session. Add the TCF Profiler view and configure it to include the
Aggregate per Function option.

2-1-1. Connect the board in the JTAG mode and power it ON.

2-1-2. Right-click on the lab3 entry in the Project Explorer tab and select Debug As > Launch on
Hardware (SDSoC Debugger)

Run As » |
» 1 Launch on Emulator (SDSoC Debugger)
Teamm v |% 2 Launch on Hardware (SDSoC Debuggen) |
Compare With v | & 3 Trace Application (SDSoC Debugger)

Restore from Local History... (] 4local C/C++ Application

C/C++ Build Settings Debug Configurations...

Figure 3. Executing Debug Application action

v Xilinx.com/universit Zynqg 3-3
£ XILINX e /
© copyright 2016 Xilinx

Profiling Applications and Creating Accelerators

Lab Workbook

A Confirm Perspective Switch window will appear asking you to switch to the Debug perspective.

e

== Confirm Perspective Switch

)

[| Remember my decision

This kind of launch is associated with the Debug perspective.

Do you want to open this perspective now?

This Debug perspective is designed to support application debugging. It incorporates
views for displaying the debug stack, variables and breakpoint management.

Yes

Mo

h

Figure 4. Perspective Swi

2-1-3. Click Yes to open the debu

tch dialog window

g perspective.

The debug perspective will open showing various views: threads, variables,
SDSoC_lab_design_main.c source program, Outline tab showing various objects created in the
source program, and the console.

Notice that the program is suspended at the main() entry on line 68.

—_— - s
=" Debug - lab3/sre/SDSoC_lab_design_main.c - Xilink S0x fe=bi=] &
| File Edit Source Refactor MNavigate Search Project Run Xilink Tools Window Help |
l" - b W M2a R DRPBESTH~0®™ 9~ i Ew Quick Access | B |« SDx {H)ehui |
1 Debug = Tt 7 = 0 sevariables 5 % Breakpoints 1 Registers @ XSCT Cons. B QEMU Cons.. = Modules = f
+ % System Debugger using Debug_lab3.elf on Local (Local) (= E
| - % APU Name Type Valy *
4 ¢® ARM Cortex-A% MPCore #0 (Breakpoint main) = angc int e |=
| = 000100568 man(k S050C_lab_design_main.c, line 68 * argv char ** @x0E
= 0x00101<78 _start() o int 185¢
| =. * array_c unt32 t* BB -
& ARM Cortex-A9 MPCare #1 (Suspended)] ¥
| B w7020 X
| Ml
{ & SD5oC_lab_design_maine & B Outline & SR e % L
= U stdioh =
nfigures data structures, run frame processing U stdlibh l
. o sds libh
g s — o lab_designh =
« 63 int main(int arpc, char® arpv[]) { - b gesigni 1
a4 // local variahles g 2 grayh |
int i o sharpenh
o edge_detecth
7 /f set up memary structures for moving frames of data & sw_sds_counter_total : unsign
68 uint32_t *array ¢ = (uint32 t*) sds_alloc(FRAME_HETGHT * FRAME WIDTH * sizeof(uintiz t)); ® sw_sds counter_num_calls : unsigned int
50 uint® t *array g 1 = (uint8 t*) sds_alloc(FRAME HETGHT * FRAME WIDTH * sizeof(uint8 t)); & 5w s counter : unsign
uint t *array g 2 = (uint8 t*) sds_alloc(FRAME HETGHT * FRAME WIDTH * sizeof(uint8 t)); & on e clk
uintd_t *array_g_3 = (uint8_t*) sds_alloc(FRAME_HETGHT * FRAME_WIDTH * sizeof(uints_t)); st clkstard |
& ow_sds_clk_stop() |
& 11 L2 # 5w ava cou oveles) =
© console = MmB-mir- o 0 Memory = o |
TCF Debuq Virtual Terminal - ARM Cortex-A8 MPCore #1 - | EEE s |
= Monilors |
|
|

Figure 5. The Debug pers

pective

2-1-4. Select Window > Show View > Other and then expand the Debug folder.

Zyng 3-4

www.xilinx.com/university
Xup@xilinx.com
© copyright 2016 Xilinx

& XILINX.

Lab Workbook Profiling Applications and Creating Accelerators

2-1-5. Select TCF Profiler and click OK.

The TCF Profiler tab will open in the same window where Outline view was open.

2-1-6. Inthe TCF Profiler view, click the start button.
8= Qutline | & TCF Profiler 52 = 0
Figure 6. Opening the TCF Profiler configuration

The Profiler Configuration window will open.

2-1-7. Leave Aggregate per function selected, and select the Enable stack tracing option and click OK.
The Aggregate per function option will group the same function calls collected together.

The Enable stack tracking option implements thread stack back tracing - essentially a summary of
how the program execution gets to where it is when sampled. This allows the determination of
parent/child relationships between functions.

The Max stack frames count field sets the number of frames to count backwards. This option is
useful only if the Enable stack tracing is enabled.

The View update interval (msec) field indicates at what interval the profile data will be updated in
the TCF Profiler window.

2 Profiler Configuration &J

v| Aggregate per function
v | Enable stack tracing

Max stack frames count: 8

View update interval (msec): 4000

OK] | Cancel

b

Figure 7. Selecting the options
2-1-8. Click OK.
2-2. Run the application and analyze the data.
2-2-1. Click on the Resume button ('-'E') on the tool buttons bar or Press F8 to start the execution.

2-2-2. Note the number of collected samples, when finished execution (for Zed), may vary depending on
your PC’s performance and connection speed with the board. For Zybo, press Pause button after
collecting about 3200 samples.

v Xilinx.com/universit Zynqg 3-5
£ XILINX e /
© copyright 2016 Xilinx

Profiling Applications and Creating Accelerators

Lab Workbook

B Qutline | @ TCF Profiler &2

Profiler running. 2545 samples

Figure 8. The TCF Profiler view showing the collected number of samples

2-2-3. Click on the Maximize view button (5= Outline | & TCF Profiler

=

Note that it shows three sections. The top-section shows various calls made after the execution
started. The first function called is _start. In the Called From sub-window, nothing is listed as it
the root function. In the Child Calls window, it shows main as the function being called from

_start.

B Qutline @ TCF Profiler 2

Profiler running. 2545 samples

Address % Exc... E}a[‘ncl... Function File Line
. 00101c14 .000 | _start
001005e4 .000 main SDSoC_lab_design_main.c 63
00100c00 |]5.38 sobel_filter edge_detect.c 76
00100210 .[} sobel_operator edge_detect.c 34
00101370 |4.8? sharpen_filter sharpen.c 63
0010125c 53.5 sharpen_operator sharpen.c 34
001010c8 @6.2 window_getval edge_detect.c 200
00100fc0 ﬂ?.66 window_shift_right edge_detect.c 177
00101838 ﬂ?.ll window_getval sharpen.c 188
00101730 ﬂ6.6[} window_shift_right sharpen.c 165
0010111c 275 rgb_2_gray rab_2_gray.c 6
00101604 2.27 linebuffer_shift_up sharpen.c 131
00101070 224 window_insert edge_detect.c 192
00100e94 192 linebuffer_shift_up edge_detect.c 143
001017e0 1.72 window_insert sharpen.c 180
00100f2¢ 157 linebuffer_getval edge_detect.c 155
0010169c .904 linebuffer_getval sharpen.c 143
001016f0 472 linebuffer_insert_bottom sharpen.c 155
00100780 393 linebuffer_insert_bottom edge_detect.c 167
0010078c 275 dummyfill SDSoC_lab_design_main.c 134
00101d9c .000 _libc_fini_array fini.c 25
00115538 .039 _exit
Called From
Child Calls
0010054 main SDSoC_lab_design_main.c 63
00101d9¢ 039 __libc_fini_array fini.c 25
(a) Zed

Zyng 3-6 www.xilinx.com/university i' XILINX

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook

Profiling Applications and Creating Accelerators

E= Qutline & TCF Profiler &

Profiler running. 3265 samples

Address % Exc.. %Incl.. Function File Line
'00101c14 000 [HOOP™™ start

001005e4 .000 100 main SDSoC_lab_design_main.c 63
00100c00 H5.32 52.9 sobel_filter edge_detect.c 76
00101370 HS.G[} E sharpen_filter sharpen.c 63
00100a10 .6 351 sobel_operator edge_detect.c 34
0010125¢ B4.6 25.4 sharpen_operator sharpen.c 34
001010c8 B4.5 34.5 window_getval edge_detect.c 200
00101838 [}3.79]3.79 window_getval sharpen.c 188
00101730 [Fi.lﬂr }3.14 window_shift_right sharpen.c 165
00100fc0 [F.ﬂlg }6.49 window_shift_right edge_detect.c 177
0010111c 315 3.15 rgb_2_gray rgb_2_gray.c 6

00101604 2.81 281 linebuffer_shift_up sharpen.c 131
00101070 217 217 window_insert edge_detect.c 192
00100e94 211 211 linebuffer_shift_up edge_detect.c 143
001017e0 1.77 177 window_insert sharpen.c 180
0010169¢c 1.50 1.50 linebuffer_getval sharpen.c 143
00100f2¢ 119 119 linebuffer_getval edge_detect.c 155
00100f80 .398 398 linebuffer_insert_bottom edge_detect.c 167
001016f0 .368 368 linebuffer_insert_bottom sharpen.c 155
0010078c .306 306 durmmyfill SDSoC_lab_design_main.c 134
Called From

Child Calls

001005e4 main SDSoC_lab_design_main.c 63
(b) Zybo

Figure 9. The TCF Profiler result

Address is the location of the function in memory that will match what is shown in the

Disassembly view.

% Exclusive is the percentage of samples encountered by the profiler for that function only
(excluding samples of any child functions). This can also be seen as exclusive percentage for that

particular function.

% Inclusive is the percentage of samples of a function, including samples collected during
execution of any child functions.

Function is the name of the function being sampled.

File is the name of the file containing the function.

Line indicates the line number where the function is found in the source file.

& XILINX.

www.xilinx.com/university
Xup@xilinx.com
© copyright 2016 Xilinx

Zynq 3-7

Profiling Applications and Creating Accelerators

Lab Workbook

funaf) funa{)
start finish
|
funA funB funC funB funA
»

Execution Time

Figure 10. Understanding exclusive vs inclusive execution time

Exclusive: The amount of execution time spent in funA alone. Referencing the diagram below,
the exclusive time for funA is represented by the combined execution time of the funA blocks only.

Inclusive: The amount of execution time spent in funA and all of its sub-function calls. From the
diagram, this is the exclusive time of funA combined with the hatched area during which time
funB and funC are executing

,-/ 1 main
\ 100%
R ERRERRERRRRRRRRRRRRRERRR ARERRRRERRERRRRRRRRRRRR AR RN R AR
v v v
T
,-/ > sharpen_filter sobel_filter
\ 40.9% inclusive 54.9% intlusive
-:-:-:-:-:-:-:-:-:-:1;-:-:-:-:-:-:-:-:-:-1-'1'-1-.']:‘|*:|;t1:|
o 02 g ! sobel_filter
' 3 93 lés% sobel_operator e6.53%
\ = 35.08 inclusive
it 21.2% enclusie
+ [linebuffer_insert_bottom
/-" o el 695%
indows_getval
\ 4 i ngf: Ve window_insert
' e1.95%

inclusive =" (i_child)+e_ own

i_child: the inclusive % of a child function
e_own: the exclusive % of this function
when the exclusive % = inclusive %

linebuffer_shift_up
el.93
linebuffer_getval
el.56%
window_shift_right
el 16%

then the function is leaf node (does not call any
other functions)

Figure 11. Various functions execution times (humbers may vary)

2-2-4. Note that _start and main functions are 100% under the %inclusive column as all other functions
are called from main. They are essentially 0% under the %exclusive column as a negligible time
spent in those functions.

2-2-5. Looking under the %inclusive column, notice that the CPU spent about 37.5% (Zed) or 43.6%
(Zybo) of its time executing the sharpen_filter function and its sub-functions.

2-2-6. Click on the sharpen_filter entry to see that the source code window shows up.

You can view the source code and see that it processes some data and calls several functions.

Zyng 3-8 www.xilinx.com/university i' XILINX

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Profiling Applications and Creating Accelerators

2-2-7. Switch back to the TCF Profile result window and observe that the sharpen_filter function calls
sharpen_operator, window_shift_right, linebuffer_shift_up, window_insert , linebuffer_getval, and
linebuffer_insert_bottom functions.

The same Child Calls window shows how much time the CPU spent in each of those functions.

2= Qutline & TCF Profiler

Profiler running. 2545 samples

Address % Exc.. %Incl.. Function File Line
00101c14 000 [T00™™™ _start

001005e4 000 988" main SDSoC_lab_design_main.c 63
00100c00 538 [594] sobel filter edge_detect.c 76
00100210 ﬂlﬁ) M sobel_operator edge_detect.c 34
|00101370 4.87 E sharpen_filter sharpen.c 63
0010125¢ _13.5 @.6 sharpen_operator sharpen.c 34
001010c8 ﬂGZ g 2 window_getval edge_detect.c 200
QOLOQE0LIP™ L uindamesinant, o o Sge IGUL g g g puilid?

Child Calls

0010125c¢ @6 sharpen_operator sharpen.c 34
00101730 _}S.ﬁO window_shift_right sharpen.c 165
00101604 227 linebuffer_shift_up sharpen.c 131
0010170 172 window_insert sharpen.c 180
0010169c 904 linebuffer_getval sharpen.c 143
001016f0 472 linebuffer_insert_bottom sharpen.c 155
(a) Zed

2= Qutline & TCF Profiler =2 @
Profiler running. 3265 samples

Address % Exc.. %Incl.. Function File Line
0010114 000 [OO™™ start

001005e4 000 [O0™ main SDSoC_lab_design_main.c 63
00100c00 ﬂ5.32 @, sobel_filter edge_detect.c 76
(00101370 560 M8% sharpen_filter sharpen.c 63 |
00100210 @‘6 1 sobel_operator edge_detect.c 34
0010125¢ ﬁ4.6 @.4 sharpen_operator sharpen.c

1-

0030 e Rk NGO Pt i o Prlgacietgen _ g o %J

Child Calls
0010125¢ @‘4 sharpen_operator sharpen.c 34
00101730 @.14 window_shift_right sharpen.c 165
00101604 281 linebuffer_shift_up sharpen.c 131
001017e0 1.77 window_insert sharpen.c 180
0010169¢ 150 linebuffer_getval sharpen.c 143
001016f0 368 linebuffer_insert_bottom sharpen.c 155
(b) Zybo

Figure 12. Child Calls from sharpen_filter function

(‘ XI LINX www.xilinx.c_qm/university Zynq 3-9

xup@xilinx.com
© copyright 2016 Xilinx

Profiling Applications and Creating Accelerators Lab Workbook

2-2-8.

2-2-9.

Looking at the results sorted in the %inclusive column, we can see that sharpen_filter may be a
good candidate for the hardware acceleration. The function and sub-functions should be carefully
considered to determine suitability for acceleration. Typical candidates for acceleration are
functions that can process a stream of data, or can be implemented in parallel, without excessive
resource utilization.

Click on the %Exclusive column to sort the results.

You can see that the CPU spends a large proportion of the total time in the sharpen_operator
function. This may be a good candidate for acceleration.

2-2-10. Click on the Disconnect button (¥¥) to terminate the session.

Accelerate sharpen_filter and Profile Step 3

3-1.

Add sharpen_filter function for hardware acceleration. Change SDSCC
compiler setting to define TIME_SHARPEN symbol. Build the project and
analyze the data motion network.

3-1-1. Switch back to the SDx perspective.

Make sure that the Project Overview tab for the lab is displayed.

3-1-2. Click on the “+” (* [ty) sign in the Hardware Functions area to open up the list of functions
which are in the source files.

3-1-3. Select sharpen_filter function and click OK.

3-1-4. Double-click the SDSoC_lab_design_main.c under lab3 > src.

3-1-5. Note several conditional compilation statements around lines 83 to 103. When a symbol is
defined, and the condition is true, these statements will allow the corresponding function(s) to be
timed.

3-1-6. Right click on lab3 in the Project Explorer window and select C/C++ Build Settings.

3-1-7. Select Symbols under SDSCC Compiler and click “+" button to define a symbol.

3-1-8. Enter TIME_SHARPEN in the field and click OK.

3-1-9. Click OK again.

Zyng 3-10 www.xilinx.com/university (' XILINX

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook

Profiling Applications and Creating Accelerators

| & Tool Settings |l Devicesl

Build Steps

Build Artifactl & Binary Parser| * |

ar

4 8 SDSCC Com

|@ Symbols
A8 rninne

Diler

Defined symbols (-D)

-

3-2-1.

3-2-2.

3-2-3.

3-2-4.

«* Enter Value

ot

Defined symbols (-D)

I TIME_SHARPEN I

OK

Cancel

Figure 13. Defining symbol for conditional compilation

Build the project and analyze the data motion network.

Right-click the top-level folder for the project and click on Clean Project in the menu.

Right-click the top-level folder for the project and click on Build Project in the menu.

This may take about 20 minutes.

When build process is done, select the lab3 tab so you can access Data Motion link.

Click on the Data Motion report link and analyze the result.

Data Motion Network
Accelerator |Argument | IP Port | Direction | Declared Size(bytes) | Pragmas Connection
sharpen_filter 1 |input input r |IN 2073600%1 ps7 S AXI ACP:AXIDMA SIMPLE
oufput output r|OUT 2073600%1 ps7_8S AXI ACP:AXIDMA SIMPLE
Accelerator Callsites
. Transfer Size Paged or Datamover Setup Time Transfer Time
Accelerator Callsite TP Port (bytes) Contiguous (CPU cycles) (CPU cycles)
sharpen_filter 1|SDSoC_lab_design main.c:93:3 |input r |2073600 contiguous 1015 2434592
output_r|2073600 contiguous 1015 2434592
(a) Zed
Data Motion Network
Accelerator | Argument | IP Port |Direction | Declared Size(bytes) | Pragmas Connection
sharpen_filter_1 |input input_r |IN 2073600%1 ps7_S_AXI ACP:AXIDMA_SIMPLE
output output_r | OUT 2073600%1 ps7_S_AXI ACP:AXIDMA_SIMPLE
Accelerator Callsites
. Transfer Size Paged or Datamover Setup Time | Transfer Time
Accelerator Callsite IP Port (bytes) Contiguous (CPU cycles) (CPU cycles)
sharpen filter 1|SDSoC lab design main.c:93:3 | input r |2073600 contiguous 1015 3457121
output r|2073600 contiguous 1015 3457121
(b) Zybo
Figure 14. Data Motion network
i' XI LI NX www.xilinx.com/university Zyng 3-11
- ®

Xup@xilinx.com
© copyright 2016 Xilinx

Profiling Applications and Creating Accelerators Lab Workbook

3-3. Open Vivado IPI design.

3-3-1. Open Vivado by selecting Start > All Programs > Xilinx Design Tools > SDx 2016.3 > Vivado
Design Suite > Vivado 2016.3

3-3-2. Open the design by browsing to c:\xup\SDSoC\labs\lab3\Debug_sds\pO\ipi and selecting either
the zybo.xpr or zed.xpr.

3-3-3. Click on Open Block Design in the Flow Navigator pane. The block design will open. Note
various system blocks which connect to the Cortex-A9 processor (identified by ZYNQ in the
diagram).

ll

3-3-4. Click on the show interface connections only (=) button followed by click on the regenerate
layout (@) button.

3-3-5. Follow through both input and output data paths of the sharpen_filter_1 instance and observe that
they are connected to the S_AXI_ACP port of PS7.

@d_ic_ps?_M_AXL GPO
 Ea——
Ol moo_axt |}
s, M|D§5m1 207

|-" [RPatavr I

ad_ic_ps7_S_AXIACP

ps?

9 PTP_ETHERNET 0. |||

+ :
;;[:.m pa 570 a s o oor: | DDR
= [] M00_ANT |~ 5_A_CP ZYNQ FIXED 102+ || FIXED IO
il 51 e
b [srata) wsamo_0. .||

5! A Interconnedt. M GO [

TN Processing Systen

Figure 15. Built design

Notice that two data movers are used; one for input and another for output data. They both
connectto S_AXI_ACP of PS7 through the axi_ic_ps7_S_AXIl_ACP instance. The two data
movers and the sharpen_filter_1 if instance can be configured by their S_AXI_LITE interfaces
which are connected to the ps7 via the axi_ic_ps7_M_AXI_GPO instance.

3-3-6. Close Vivado by selecting File > Exit. Do not save the block design.

3-4. Connect the board and power it ON. Start the Debug session. Add the TCF
Profiler view and configure it to include the Aggregate per Function option.

3-4-1. Connect the board and power it ON.

3-4-2. Right-click on the lab3 entry in the Project Explorer tab and select Debug As > Launch on
Hardware (SDSoC Debugger)

3-4-3. Click Yes to open the debug perspective, if prompted.
Notice that the program is suspended at the main() entry on line 75 (instead of 68 in Figure 5).

If you scroll up into the main() function window, you will notice code is added on lines 63 to 69
which declares _p0_sharpen_filter_1 noasync function prototype.

Zyng 3-12 www.xilinx.com/university v
Xup@xilinx.com (A XI LINXm

© copyright 2016 Xilinx

Lab Workbook Profiling Applications and Creating Accelerators

#ifdef _ cplusplus

extern "C" {

#endif

void _p@_sharpen_filter_1_noasync(uint8 t input[2073600], uint8 t output[20873600]);
#ifdef cplusplus

H
#endif

L T o o o o L R 0
W~ & W

Figure 16. Function prototype for the accelerated function

3-4-4. Add TCF Profiler view as before, and configure the TCF Profiler view to include the Aggregate
per function option.

3-5. Run the application and analyze the data.
3-5-1. Press the Start button of the TCF Profiler.

3-5-2. Change the update interval setting to 1000 (for Zed only) since we want to collect samples at finer
resolution.

2 Profiler Configuration &J

Aggregate per function
Enable stack tracing

Max stack frames count: 8|

View update interval (msec): 1000

OK] l Cancel ‘

b

Figure 17. Setting update interval to 1 second (1000 msec)

3-5-3. Click on the Resume button (Green box) on the tool buttons bar to start the execution.

3-5-4. Wait for the execution to complete.

Note that the number of collected samples may vary depending on your PC’s performance and
connection speed with the board.

& TCF Profiler 2 5= Outline & TCF Profiler 2
Profiler running. 2375 samples Profiler running. 3050 samples
(@) Zed (b) Zybo

Figure 18. The TCF Profiler view showing the collected number of samples

3-5-5. Click on the Maximize view button.

v Xilinx.com/universit Zyng 3-13
£ XILINX e /
© copyright 2016 Xilinx

Profiling Applications and Creating Accelerators Lab Workbook
g= Outline @ TCF Profiler 2
Profiler running. 2375 samples
Address % Exc.. %Incl.. Function File Line
100101c20 .000 1998 start
00101528 .000 99.8 main SDSoC_lab_design_main.c 70
00100ecc 10.4 958 | sobel_filter | edge_detect.c 76
00100cdc |36)5 @ sobel_operator edge_detect.c 34
00101394 |24.9 31.9 window_getval edge_detect.c 200
0010128c 12.5 12.5 window_shift_right edge_detect.c 177
00101160 [4.04 4,04 linebuffer_shift_up edge_detect.c 143
0010133c |3.78 3.78 window_insert edge_detect.c 192
001013e8 [3.62 3.62 rgb_2_gray rgb_2_gray.c 6
001011f8 2.52 2.52 linebuffer_getval edge_detect.c 155
0010124¢ 101 1.01 linebuffer_insert_bottom edge_detect.c 167
001017ac .337 337 dummyfill SDSoC_lab_design_main.c 141
0010eals .000 168 cf_wait
00116bd8 .168 168 axi_dma_simple_wait
(a) Zed
8= Outline & TCF Profiler =2
Profiler running. 3050 samples
Address % Exc.. %Incl.. Function File Line
:00101c20 000 (999 _start
00101528 .000 998 main SDSoC_lab_design_main.c 70
00100ecc @.34 946 sobel filter edge_detect.c 76
00100cdc 1 618 sobel_operator edge_detect.c 34
00101394 .6 31.6 window_getval edge_detect.c 200
0010128c ﬂ2.9 12.9 window_shift_right edge_detect.c 177
0010138 [501 [S0L rgb 2 gray rgb_2 gray.c 6
00101160 |3.83 3.83 linebuffer_shift_up edge_detect.c 143
0010133c |3.54 3.54 window_insert edge_detect.c 192
001011f8 2.32 232 linebuffer_getval edge_detect.c 155
0010124c 820 820 linebuffer_insert_bottom edge_detect.c 167
001017ac 230 230 durmmiyfill SDSoC_lab_design_main.c 141
0010ea08 .000 098 cf wait
00116bds .098 098 axi_dma_simple_wait

(b) Zybo

Figure 19. The TCF Profiler result

Note that _start and main functions are 100% under the %inclusive column as all other functions
are called from main. Now the CPU spent most of its time executing the sobel_filter function and
its sub-functions. You don't see _p0_sharpen_filter_1 call (the hardware accelerator) since very
little time is spent in that function.

3-5-6.

Click on the Disconnect button (¢¥) to terminate the execution.

Zynqg 3-14

www.xilinx.com/university

Xup@xilinx.com
© copyright 2016 Xilinx

& XILINX.

Lab Workbook Profiling Applications and Creating Accelerators

Profiling Using sds_lib API Step 4

4-1.

4-1-1.

4-1-2.

4-1-3.

4-1-4.

Re-launch the application in the Debug perspective. Start the terminal
session and run the application to the end.

In the Debug view, right-click on the disconnected entry and select Relaunch.

%5 Debug &2 R TE " ® |
#- System Debugger Local Host lab3.elf (Local: Disconnected) |
Copy Stack 1

Find... c

g{w_ﬂ;‘m-‘ ‘“{’:""#ﬂ;':':}“’ e Priva Bk R

&ﬂﬂ gt SMPOV . o

%% Remove All Terminated

@, Relaunch

%, Edit System Debugger Local Host lab3.elf...
%, Edit Source Lookup...
¥, Terminate and Remove

Terminate/Disconnect A
Figure 20. Re-launching the debugger
Click on the SDK Terminal window and make a connection with an appropriate COM port OR use

any other terminal emulator program like TeraTerm, Putty, HyperTerminal. Choose 115200 as the
baud rate.

Click on the Resume button.

You will see dots being displayed as the execution is continuing. You will also see progress is
made in the TCF Profiler view.

Wait for about one minute to complete the execution and the result is displayed in the Terminal
window.

Running frame operations...

ﬁuerage 8W cycles for all of the image functions: 16257563474
auerage 8W cycles for sharpen: 13849149

(a) Zed

unning frame operations...

-uerage EW cycles for all of the image functions: 162553494688
verage 5W cycles for sharpen: 13583816

(b) Zybo
Figure 21. The sharpen function profiling

i' XI LINX www.xilinx.com/university Zyng 3-15

Xup@xilinx.com
© copyright 2016 Xilinx

Profiling Applications and Creating Accelerators Lab Workbook

4-1-5. Click on the Disconnect button (&).
Add sobel filter to Accelerators and Profile Step 5
5-1. Add sobel_filter function for hardware acceleration. Change SDSCC
compiler setting to define TIME_EDGE_DETECT symbol. Build the project.
Since this will take time to build, you will import lab3a project from the
source\llab3 folder and then profile the application. The precompiled project
has both the sharpen_filter and sobel_filter already added for hardware
with the compiler setting added.
5-1-1. Switch back to the SDx perspective.
5-1-2. Select File > Import
5-1-3. Double-click on Import Existing Projects into Workspace.
5-1-4. In the Import Projects window, click on the Select archive file option, then click the Browse button
and then browse to c:\xup\SDSoC\source\lab3, select lab3a.zip and click Open.
Make sure that lab3a is checked in the Projects window.
5 1mport l | =] |&]
Import Projects E
Select a directory to search for existing Eclipse projects. -
() Select root directary. - Browse...
@) Select archive file: Chxup\SDSoC\source\lab3\lab3a.zip A l Browse... ‘
Projects:
| | [Z]1ab3a (ab3a) Select Al
Figure 22. Importing an existing project in the workspace
5-1-5. Click Finish.
The project will be imported and the sobel_filter and sharpen_filter function entries will be
displayed in the HW Functions window.
5-1-6. Double-click on the project.sdx under lab3a to access the SDx Project Settings.
5-1-7. Uncheck the Generate Bit Stream and Generate SD Card Image options.
Zyng 3-16 www.xilinx.com/university i' XILINX

Xup@xilinx.com
© copyright 2016 Xilinx

Lab Workbook Profiling Applications and Creating Accelerators

5-1-8. Right Click on the lab3a project folder, select Debug As, and Launch on Hardware
5-1-9. Click Yes to switch to the debug perspective if prompted.
5-1-10. Select Window > Show View > Other and then expand the Debug folder. Select TCF Profiler
and click OK.
5-1-11. In the TCF Profiler view, click the start button, enable the Aggregate per function option and
Enable stack tracing. Click OK.
5-2. Start serial communication. Profile the complete application and observe
the improvements.
5-2-1. Connect a terminal as before. (Terminal Tab, TeraTerm, PuTTY, HyperTerminal etc.)
5-2-2. Click on the Resume button.
5-2-3. You will see dots being displayed as the execution progresses. You will also see progress is
made in the TCF Profiler view.
The execution should complete in under a minute and the result is displayed in the Terminal
window.
Running frame operations...
th TCF Praofiler ling
ﬁuerage SW cycles for all of the image functions: 3687726488
Average SW cycles for sharpen: 5176
Average SW cycles for edge_detect: 25188562
(a) Zed
Kunning frame operations...
\ith TCFE Profiler Runn ng
ﬁuerage 8W cycles for all of the image functions: 3143725812
Average SW cycles for sharpen: L442
Average SYW cycles for edge_detect: 18288618
(b) Zybo
Figure 23. The sharpen and sobel filter functions profiling
5-2-4. Switch to the TCF Profiler tab and see the results.
Note that now CPU spends time in rgb_2_grap function. The _p0_sobel_filter_0 takes very little
time and you don't see the _p0_sharpen_filter_0 entry does not appear at all since it's execution
time is so short that the profiler does not see it.
3 www.xilinx.com/universit Zynq 3-17
& XILINX. / ynd

Xup@xilinx.com
© copyright 2016 Xilinx

Profiling Applications and Creating Accelerators Lab Workbook

B= Qutline & TCF Profiler &2

Profiler running. 147 samples

Address % Exc.. %Incl.. Function File Line
:00101d50 000 |959 | start

0010157¢ .000 EEp main SDSoC_lab_design_main.c 77
0010143c 938 | rgb 2 gray rgb_2_gray.c 6

0010eb48 000 340 cf wait
00116470 [340 [340 axi_dma_simple_wait

001018dc 2.04 2.04 dummyfill SDSoC_lab_design_main.c 148
00101fc4 000 681 printf printf.c 51
00102340 .000 681 _viprintf_r vfprintf.c 668
0010c2e4 .000 .b81 _sprint_r wiprintf.c 418
00107748 .000 681 _ sfvwrite_r fuwrite.c 60
00106dbs .000 680 _ sflush_r fflush.c 82
0010dee4 .000 680 _write_r writer.c 54

00115b04 .000 680 _write
001165dc .680 b80 XUartPs_SendByte

(a) Zed

8= QOutline & TCF Profiler &2

Profiler running. 135 samples

Address % Exc... %fncl... Function File Line
100101d50 000 70 start

0010157c .000 97.0 main SDSoC_lab_design_main.c 77
0010143c [866" | [866""| rgb_2_gray rgb_2_gray.c 6

001018dc [103 [03 dummyfil SDSoC_lab_design_main.c 148

0010eb48 .000 2.22 cf wait
00116470 1.48 222 axi_dma_simple_wait

00101fc4 .000 741 printf printf.c 51
00102340 .000 741 _vfprintf_r viprintf.c 668
0010c2e4 .000 J41 _sprint_r viprintf.c 418
00107748 .000 741 _ sfvwrite r fuwrite.c 60
00106db8d .000 741 _ sflush_r fflush.c 82
0010deed4 .000 741 _write_r writer.c 54

00115b04 .000 J41 _write
0010fce0 741 J41 xInkUioRead32
001165dc 741 J41 XUartPs_SendByte

(b) Zybo
Figure 24. Profiled data

5-2-5. Click on the Disconnect button (¥¥) to terminate the execution.

5-3. Profile the application without running the profiler and compare the result.

5-3-1. In the Debug view, right-click on the disconnected entry and select Relaunch

Zyng 3-18 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© copyright 2016 Xilinx

Lab Workbook

Profiling Applications and Creating Accelerators

5-3-2. This time do not click on the start button of the TCF Profiler.
5-3-3. Click on the Resume button.
5-3-4. You will see dots being displayed quickly as the execution is continuing.
5-3-5. Notice the terminal output.
Running frame operations...
thout TCF Profiler running
ﬁuerage 8W cycles for all of the image functions: 753397784
Average SW cycles for sharpen: 3347
Average SW cycles for edge_detect: 13858586
(a) Zed
Running frame operations...
thout TCF Profiler Running
ﬁuerage W cycles for all of the image functions: 751709714
Average SW cycles for sharpen: 3537
Average 8W cycles for edge_detect: 13512787
(b) Zybo
Figure 25. The terminal window output
Compared to output with the profiler running, the execution takes significantly fewer cycles.
5-3-6. Click on the Disconnect button (¢7) to terminate the execution.
5-3-7. Close SDx by selecting File > Exit
5-3-8. Turn OFF the power to the board.
Conclusion

In this lab, you profiled a pure software application which consist of three major functions. You saw the
amount of time those three functions took to execute. Then you ported one of the most time-consuming
function into hardware and profiled again. You then ported second most time-consuming function into
hardware and profiled again and observed the performance improvement. You used the TCF profiler and
sds_lib API to collect the data.

& XILINX.

www.xilinx.com/university
Xup@xilinx.com
© copyright 2016 Xilinx

Zynqg 3-19

