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There are limitations to using the symmetric MACC FIR filter. Due to the 1-bit growth from 
the pre-adder shown in Figure 3-5, the data input to the filter must be less than 18 bits to fit 
into one DSP48 slice. If necessary, the pre-adder can be implemented in slices or in another 
DSP48 slice. 

The performance of this fabric-based adder represents the critical path through the filter 
and limits the maximum clock speed. There are extra resources required for the filter to 
support symmetry. Three memory ports are needed along with the pre-adder. The control 
portion increases in resource utilization because the data is read out of one port in a 
forward direction and in reverse on the second port. This technique should only be utilized 
when extra sample rate performance is required.

Dual-Multiplier MACC FIR Filter
Another technique used to improve the data throughput of an MACC FIR filter is to 
increase the number of multipliers used to process the data. This introduces parallelism 
into the DSP design, and can be extrapolated into completely parallel techniques 
supporting the highest of sample rates. 

Figure 3-8 and Figure 3-9 illustrate how a dual-multiplier MACC FIR filter can be 
implemented using two DSP slices. Figure 3-8 shows the accumulation of the coefficients 
of each of the two MACC engines. These partial results must be combined together and 
then rounded to achieve the final result. This process uses an extra cycle and the OPMODE 
switching of the DSP48 slice. This extra cycle is illustrated in Figure 3-9.
X-Ref Target - Figure 3-8

Figure 3-8: Dual-Multiplier MACC FIR Filter
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X-Ref Target - Figure 3-9

Reference Design Files
The reference design files associated with this chapter, ug073_c03.zip, can be found at: 
https://secure.xilinx.com/webreg/clickthrough.do?cid=30157

Conclusion
MACC FIR filters are commonly used in DSP applications. With the introduction of the 
Virtex-4 DSP48 slice, this function can be achieved in a smaller area, while at the same time 
producing higher performance with less power resources. Designers have tremendous 
flexibility in determining the desired implementation as well as the ability to change the 
implementation parameters. 

Each specification and design scenario creates a different set of restrictions for the design. 
Several more techniques are discussed in the next chapters. The ability to "tune" a filter in 
an existing system or to have multiple filter settings is a distinct advantage. The HDL and 
System Generator for DSP reference designs are easily modified to achieve specific 
requirements, such as different coefficients, smaller data and coefficient bit widths, and 
coefficient values.

Figure 3-9: Dual-Multiplier MACC FIR Filter with Extra Cycle
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Chapter 4

Parallel FIR Filters

This chapter describes the implementation of high-performance, parallel, full-precision 
FIR filters using the DSP48 slice in a Virtex®-4 device. Because the Virtex-4 architecture is 
flexible, it is practical to construct custom FIR filters to meet the requirements of a specific 
application. Creating optimized, parallel filters saves resources.

This chapter demonstrates two parallel filter architectures: the Transposed and Systolic 
Parallel FIR filters. The reference design files in VHDL and Verilog permit filter parameter 
changes, including coefficients and the number of taps.

This chapter contains the following sections:

• “Overview”

• “Parallel FIR Filters”

• “Transposed FIR Filter”

• “Systolic FIR Filter”

• “Symmetric Systolic FIR Filter”

• “Rounding”

• “Performance”

• “Conclusion”

Overview
There are many filtering techniques available to signal processing engineers. A common 
filter implementation for high-performance applications is the fully parallel FIR filter. 
Implementing this structure in the Virtex-II architecture uses the embedded multipliers 
and slice based arithmetic logic. The Virtex-4 DSP48 slice introduces higher performance 
multiplication and arithmetic capabilities specifically designed to enhance the use of 
parallel FIR filters in FPGA-based DSP.

Parallel FIR Filters
A wide variety of filter architectures are available to FPGA designers due to the flexible 
nature of FPGAs. The type of architecture chosen is typically determined by the amount of 
processing required in the available number of clock cycles. The two most important 
factors are:

• Sample Rate (Fs)

• Number of Coefficients (N)

In Figure 4-1, as the sample rate and the number of coefficients increase, the architecture 
selected for a desired FIR filter becomes a more parallel structure involving more multiply 
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and add elements. Chapter 3, “MACC FIR Filters” addresses the details of the sequential 
processing FIR filters, including the single and dual MAC FIR filter. This chapter 
investigates the other extreme of the fully parallel FIR filter as required to filter the fastest 
data streams.
X-Ref Target - Figure 4-1

Figure 4-1: Selecting Filter Architectures
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The basic parallel architecture, shown in Figure 4-2, is referred to as the 
Direct Form Type 1.

This structure implements the general FIR filter equation of a summation of products as 
defined in Equation 4-1.

Equation 4-1

In Equation 4-1, a set of N coefficients is multiplied by N respective data samples. The 
results are summed together to form an individual result. The values of the coefficients 
determine the characteristics of the filter (e.g., a low-pass filter).

The history of data is stored in the individual registers chained together across the top of 
the architecture. Each clock cycle yields a new complete result, and all multiplication and 
arithmetic required occurs simultaneously. In sequential FIR filter architectures, the data 
buffer is created using Virtex-4 dedicated block RAMs or distributed RAMs. This 
demonstrates a trend; as algorithms become faster, the memory requirement is reduced. 
However, the memory bandwidth increases dramatically because all N coefficients must 
be processed at the same time.

The performance of the Parallel FIR filter is calculated in Equation 4-2.

Maximum Input Sample Rate = Clock Speed Equation 4-2

The bit growth through the filter is the same for all FIR filters and is explained in the 
section “Bit Growth” in Chapter 3.

X-Ref Target - Figure 4-2

Figure 4-2: Direct Form Type 1 FIR Filter
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Transposed FIR Filter
The DSP48 arithmetic units are designed to be easily and efficiently chained together using 
dedicated routing between slices. The Direct Form Type I uses an adder tree structure. This 
makes it difficult to chain the blocks together. The Transposed FIR filter structure 
(Figure 4-3) is more optimal for use with the DSP48 Slice. 

The input data is broadcast across all the multipliers simultaneously, and the coefficients 
are ordered from right to left with the first coefficient, h0, on the right. These results are fed 
into the pipelined adder chain acting as a data buffer to store previously calculated inner 
products in the adder chain. The rearranged structure yields identical results to the Direct 
Form structure but gains the use of an adder chain. This different structure is easily 
mapped to the DSP48 slice without additional external logic. If more coefficients are 
required, then more DSP48 slices must be added to the chain. 

The configuration of the DSP48 slice for each segment of the Transposed FIR filter is shown 
in Figure 4-4. Apart from the very first segment, all processing elements must be 
configured as shown in Figure 4-4. OPMODE is set to multiply mode with the adder, 
combining the results from the multiplier and from the previous DSP48 slice through the 
dedicated cascade input (PCIN). OPMODE is set to binary 0010101.

X-Ref Target - Figure 4-3

Figure 4-3: Transposed FIR Filter
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X-Ref Target - Figure 4-4

Advantages and Disadvantages
The advantages to using the Transposed FIR filter are:

• Low Latency: The maximum latency never exceeds the pipelining time through the 
slice containing the first coefficient. Typically, this is three clock cycles between the 
data input and the result appearing.

• Efficient Mapping to the DSP48 Slice: Mapping is enabled by the adder chain 
structure of the Transposed FIR filter. This extendable structure supports both large 
and small FIR filters.

• No External Logic: No external FPGA logic is required, enabling the highest possible 
performance to be achieved.

The disadvantage to using the Transposed FIR filter is:

• Limited performance: Performance might be limited by a high fanout input signal if 
there are a large number of taps.

Resource Utilization
An N coefficient filter uses N DSP48 slices. A design cannot use symmetry to reduce the 
number of DSP48 slices when using the Transposed FIR filter structure.

Figure 4-4: Transpose Multiply-Add Processing Element
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Systolic FIR Filter
The systolic FIR filter is considered an optimal solution for parallel filter architectures. The 
systolic FIR filter also uses adder chains to fully utilize the DSP48 slice architecture 
(Figure 4-5).

The input data is fed into a cascade of registers acting as a data buffer. Each register 
delivers a sample to a multiplier where it is multiplied by the respective coefficient. In 
contrast to the Transposed FIR filter, the coefficients are aligned from left to right with the 
first coefficients on the left side of the structure. The adder chain stores the gradually 
combined inner products to form the final result. As with the Transposed FIR filter, no 
external logic is required to support the filter and the structure is extendable to support 
any number of coefficients. 

The configuration of the DSP48 slice for each segment of the Systolic FIR filter is shown in 
Figure 4-6. Apart from the very first segment, all processing elements are to be configured 
as shown in Figure 4-6. OPMODE is set to multiply mode with the adder combining the 
results from the multiplier and from the previous DSP48 slice through the dedicated 
cascade input (PCIN). OPMODE is set to binary 0010101. The dedicated cascade input 
(BCIN) and dedicated cascade output (BCOUT) are used to create the necessary input data 
buffer cascade.
X-Ref Target - Figure 4-6

X-Ref Target - Figure 4-5

Figure 4-5: Systolic FIR Filter
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Figure 4-6: Systolic Multiply-Add Processing Element
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Advantages and Disadvantages
The advantages to using the Systolic FIR filter are: 

• Highest Performance: Maximum performance can be achieved with this structure 
because there is no high fanout input signal. Larger filters can be routing-limited if the 
number of coefficients exceeds the number of DSP slices in a column on a device. 

• Efficient Mapping to the DSP48 Slice: Mapping is enabled by the adder chain 
structure of the Systolic FIR Filter. This extendable structure supports large and small 
FIR filters.

• No External Logic: No external FPGA logic is required, enabling the highest possible 
performance.

The disadvantage to using the Systolic FIR filter is: 

• Higher Latency: The latency of the filter is a function of how many coefficients are in 
the filter. The larger the filter, the higher the latency.

Resource Utilization
An N coefficient filter uses N DSP48 slices. 

Symmetric Systolic FIR Filter
In Chapter 3, “MACC FIR Filters,” symmetry was examined, and an implementation was 
illustrated to exploit this symmetric nature of the coefficients. Exploiting symmetry is 
extremely powerful in Parallel FIR filters because it halves the required number of 
multipliers, which is advantageous due to the finite number of DSP48 slices. Equation 4-3 
demonstrates how the data is pre-added before being multiplied by the single coefficient.

(X0 x C0) + (Xn x Cn) … ⎝    (X0 + Xn) x C0     (if C0 = Cn) Equation 4-3

Figure 4-7 shows the implementation of this type of Systolic FIR Filter structure. 
X-Ref Target - Figure 4-7

Figure 4-7: Symmetric Systolic FIR
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In this structure, DSP48 slices have been traded off for device logic. From a performance 
viewpoint, to achieve the full speed of the DSP48 slice, the logic-slice-based18-bit adder 
has to run at the same speed. To achieve this, register duplication can be performed on the 
output from the last tap that feeds all the other multipliers.

To save on logic area, the two register delay in the input buffer time series is implemented 
as an SRL16E and a register output. A further benefit of the symmetric implementation is 
the reduction in latency, due to the adder chain being half the length.

Figure 4-8 shows the configuration of the DSP48 slice for each segment of the Symmetric 
Systolic FIR filter. Apart from the very first segment, all processing elements are to be 
configured as in Figure 4-8. OPMODE is set to multiply mode, with the adder combining 
results from the multiplier and from the previous DSP48 slice via the dedicated cascade 
input (PCIN). OPMODE is set to binary 0010101.
X-Ref Target - Figure 4-8

Resource Utilization
An N symmetric coefficient filter uses N DSP48 slices. The slice count for the pre-adder and 
input buffer time series is a factor of the input bit width (n) and N. The equation for the size 
in slices is:

((n+1) * (N/2)) + (n/2) Equation 4-4

For the example illustrated in Figure 4-7, the size is (17+1) * 8/2 + 17/2 = 81 slices.

Rounding
The number of bits on the output of the filter is much larger than the input and must be 
reduced to a manageable width. The output can be truncated by simply selecting the MSBs 
required from the filter. However, truncation introduces an undesirable DC data shift. Due 
to the nature of two's complement numbers, negative numbers become more negative and 
positive numbers also become more negative. The DC shift can be improved with the use 
of symmetric rounding, where positive numbers are rounded up and negative numbers 
are rounded down. 

The rounding capability in the DSP48 slice maintains performance and minimizes the use 
of the FPGA fabric. This is implemented in the DSP48 slice using the C input port and the 
Carry In port. Rounding is achieved by:

For positive numbers: Binary Data Value + 0.10000… and then truncate

Figure 4-8: Symmetric Systolic Multiply-Add (MADD) Processing Element
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For negative numbers: Binary Data Value + 0.01111... and then truncate

The actual implementation always adds 0.0111… to the data value through the C port 
input as in the negative case, and then it adds the extra carry in required to adjust for 
positive numbers. Table 4-1 illustrates some examples of symmetric rounding.

For both the Transposed and Systolic Parallel FIR filters, the C input is used at the 
beginning of the adder chain to drive the carry value into the accumulated result. The final 
segment uses the MSB of the PCIN as the carry-in value to determine if the accumulated 
product is positive or negative. CARRYINSEL is used to select the appropriate carry-in 
value. If positive, the carry-in value is used, and if negative, the result is kept the same (see 
Figure 4-9).

The one problem with the rounding solution occurs when the final accumulated inner 
product input to the final DSP48 slice is very close to zero. If the value is positive and the 
final inner product makes the result negative (leading to a rounding down), then an 
incorrect result occurs because the rounding function assumes a positive number instead 
of a negative. The last coefficient in typical FIR filters is very small, so this situation rarely 
occurs. However, if absolute certainty is required, an extra DSP48 slice can perform the 
rounding function (see Figure 4-10). A Transposed FIR filter can have exactly the same 
problem as the Systolic FIR filter.

Table 4-1: Symmetric Rounding Examples

Decimal Value Binary Value Add Round Truncate: Finish Rounded Value

2.4375 0010.0111 0010.1111 0010 2

2.5 0010.1000 0011.0000 0011 3

2.5625 0010.1001 0011.0001 0011 3

–2.4375 1101.1001 1110.0000 1110 –2

–2.5 1101.1000 1101.1111 1101 –3

–2.5625 1101.0111 1101.1110 1101 –3

X-Ref Target - Figure 4-9

Figure 4-9: Systolic FIR Filter with Rounding
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X-Ref Target - Figure 4-10

Performance
When examining the performance of a Virtex-4 Parallel FIR filter, a Virtex-II Pro design is 
a valuable reference. Table 4-2 illustrates the ability of the Virtex-4 DSP48 slice to greatly 
reduce logic fabric resources requirements while improving the speed of the design and 
reducing the power utilization of the filter.

Reference Design File
The reference design files associated with this chapter, ug073_c04.zip, can be found at: 
https://secure.xilinx.com/webreg/clickthrough.do?cid=30158

Figure 4-10: Systolic FIR Filter with Separate Rounding Function
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Table 4-2: Performance Analysis

Filter Type Device Family Size Performance
Power
(Watts)

18 x 18 Parallel
Transposed FIR Filter
(51 Tap Symmetric)

Virtex-II Pro  FPGA 1860 Slices
26 Embedded Multipliers

300-MHz Clock Speed
300 MS/S

TBD

18 x 18 Parallel 
Systolic FIR Filter
(51 Tap Symmetric)

Virtex-II Pro  FPGA 2958 Slices
26 Embedded Multipliers

300-MHz Clock Speed
300 MS/S

TBD

18 x 18 Parallel
Transposed FIR Filter
(51 Tap Symmetric)

Virtex-4 FPGA 0 Slices
51 DSP48 Slices

400-MHz Clock Speed
400 MS/S

TBD

17 x 18 Systolic FIR Filter
(51 Tap Non-Symmetric)

Virtex-4 FPGA 0 Slices
51 DSP48 Slices

450-MHz Clock Speed
450 MS/S

TBD

17 x 18 Systolic FIR Filter
(51 Tap Symmetric)

Virtex-4 FPGA 477 Slices
26 DSP48 Slices

400-MHz Clock Speed
400 MS/S

TBD
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Conclusion
Parallel FIR filters are commonly used in high-performance DSP applications. With the 
introduction of the Virtex-4 DSP48 slice, DSPs can be achieved in a smaller area, thereby 
producing higher performance with less power penalty. 

Designers have tremendous flexibility in determining the desired implementation. They 
also have the ability to change the implementation parameters. The ability to “tune” a filter 
in an existing system or to have multiple filter settings is a distinct advantage. By making 
the necessary coefficient changes in the synthesizable HDL code, the reconfigurable nature 
of the FPGA is fully exploited. The coefficients can be either hardwired to the A input of 
the DSP48 slices or stored in small memories and selected to change the filter 
characteristics. The HDL and System Generator for DSP reference designs are easily 
modified to achieve specific requirements.
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Chapter 5

Semi-Parallel FIR Filters

This chapter describes the implementation of semi-parallel or hardware-folded, full-
precision FIR filters using the Virtex®-4 DSP48 slice. Because the Virtex-4 architecture is 
flexible, constructing FIR filters for specific application requirements is practical. Creating 
optimum filter structures of a semi-parallel nature saves resources and potential clock 
cycles. Therefore, optimum filter structures of a semi-parallel nature can be created 
without draining resources or clock cycles.

This chapter demonstrates two semi-parallel filter architectures: the four-multiplier FIR 
filter using distributed RAM and the three-multiplier FIR filter using block RAM. These 
filters illustrate how resources are saved by using available clock cycles and hardware-
folding techniques. Reference design files are available for system generator in DSP, 
VHDL, and Verilog. The reference designs permit filter parameter changes including 
coefficients and the number of taps.

This chapter contains the following sections:

• “Overview”

• “Semi-Parallel FIR Filter Structure”

• “Four-Multiplier, Distributed-RAM-Based, Semi-Parallel FIR Filter”

• “Three-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter”

• “Other Semi-Parallel FIR Filter Structures”

• “Conclusion”

Overview
A large array of filtering techniques are available to signal processing engineers. A 
common filter implementation to exploit available clock cycles, while still achieving 
moderate to high sample rates, is the semi-parallel (also known as folded-hardware) FIR 
filter. In the past, this structure used the Virtex-II embedded multipliers and slice-based 
arithmetic logic. However, the Virtex-4 DSP48 slice introduces higher performance 
multiplication and arithmetic capabilities to enhance the use of semi-parallel FIR filters in 
FPGA-based DSP designs.

Semi-Parallel FIR Filter Structure
A wide variety of filter architectures are available to FPGA designers due to the flexible 
nature of FPGAs. The type of architecture is typically determined by the amount of 
processing required in the number of available clock cycles. The two most important 
factors are:

• Sample Rate (Fs)
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• Number of Coefficients (N)

As illustrated in Figure 5-1, as the sample rate increases and the number of coefficients 
increase, the architecture selected for a desired FIR filter becomes a more parallel structure 
involving more multiply-add elements. Chapter 3, “MACC FIR Filters” addresses the 
details of sequential processing FIR filters including the single and dual MACC FIR Filter. 
Chapter 4, “Parallel FIR Filters” investigates the polar extreme of the fully-parallel FIR 
filter required for the highest sample rate filters. This chapter examines the common 
scenario requiring multiple processing elements working over numerous clock cycles to 
achieve the result. These techniques are often referred to as semi-parallel and are used to 
maximize efficiency of the filter (see Figure 5-1). 

The semi-parallel FIR structure implements the general FIR filter equation of a summation 
of products defined as shown in Equation 5-1.

Equation 5-1

X-Ref Target - Figure 5-1

Figure 5-1: Selecting Filter Architectures 
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Here a set of N coefficients is multiplied by N respective time series data samples, and the 
results are summed together to form an individual result. The values of the coefficients 
determine the characteristics of the filter (for example, a low-pass filter).

Along with achievable clock speed and the number of coefficients (N), the number of 
multipliers (M) is also a factor in calculating semi-parallel FIR filter performance. The 
following equation demonstrates that the more multipliers used, the greater the achievable 
performance of the filter.

Maximum Input Sample Rate = (Clock speed/Number of Coefficients) x Number of Multipliers

The Maximum Input Sample Rate equation is rearranged to determine how many 
multipliers to use for a particular semi-parallel architecture:

Number of Multipliers = (Maximum Input Sample rate x Number of Coefficients)/Clock speed

The number of clock cycles between each result of the FIR filter is determined by the 
following equation:

Number of Clock Cycles per Result = Number of Coefficients / Number of Multipliers

The bit growth on the output of the filter is the same for all FIR filters and is explained in 
“Bit Growth” in Chapter 3. The large, 48-bit internal precision of the DSP48 slice means 
that little concern needs to be paid to the internal bit growth of the filter.

Four-Multiplier, Distributed-RAM-Based, Semi-Parallel FIR Filter
After the required number of multipliers is determined, there is an extendable architecture 
using the DSP48 slice as the basis of the filter. This section assumes the specifications in 
Table 5-1 and describes the filter implementation and its functions.

Table 5-1: Four-Multiplier, Semi-Parallel FIR Filter Specifications

Sampling Rate 112.5 MS/S

Number of Coefficients 16

Assumed Clock Speed 450 MHz

Input Data Width 18 Bits

Output Data Width 18 Bits

Number of Multipliers 4

Number of Clock Cycles Between Each Result 4
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Figure 5-2 illustrates the main structure for the four-multiplier, semi-parallel FIR filter.

The DSP48 slice arithmetic units are designed to be chained together easily and efficiently 
due to dedicated routing between slices. Figure 5-2 shows how the four DSP48 slice 
multiply-add elements are cascaded together to form the main part of the filter structure. 
Figure 5-3 provides a detailed view of the main multiply-add elements. The two pipeline 
registers are used on the B input to compensate for the register on the output of the 
coefficient memory.

An extra DSP48 slice is required on the end to perform the accumulation of the partial 
results, thus creating the final result. A new result is created every four cycles. Every four 
cycles, the accumulation must be reset to the first partial value of the next result. As in the 
MACC FIR Filter, this reset (or load) is achieved by changing the OPMODE value of the 
DSP48 slice for a single cycle. OPMODE is changed from binary 0010010 to binary 

X-Ref Target - Figure 5-2

Figure 5-2: Four-Multiplier, Semi-Parallel FIR Filter in Accumulation Mode
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Figure 5-3: Detailed Diagram of a Single Multiply-Add Element
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0010000 (just a single bit change). At the same time, the capture register is also enabled, 
and the final result is stored on the output (see Figure 5-4).

Control logic is required to make this dynamic change occur. The specifics are detailed in 
“Control Logic and Address Sequencing,” page 94.

Data Memory Buffers
This example uses eight memories. Four SRL16Es are used as data buffers. Each SRL16E 
holds the four samples needed for the result. They are written to once every four cycles 
(the input data rate is 4x slower than the internal rate), and the shifting characteristic of the 
SRL16E is exploited to pass old samples along the time series buffer. The extra register on 
the output of each data buffer is required to match the data buffer pipeline with the extra 
delay caused by the adder chain. The extra register should not cost extra resources because 
it is already present in the slice containing the SRL16E (see Figure 5-5).

As long as the depth does not exceed 16, the resources required for each of these input 
memory buffers is determined by the bit width of the input data (n). Therefore, n/2 SliceM 
is required for each memory buffer, leading to nine slices per buffer in this filter example. 
For depths up to 32, resources are a little more than doubled because two SRL16Es are 
needed, as well as an extra output multiplexer. For more information on SliceM, refer to the 
CLB section in the Virtex-4 User Guide.

X-Ref Target - Figure 5-4

Figure 5-4: Four-Multiplier, Semi-Parallel FIR Filter at the Start of a New Result Cycle
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Figure 5-5: Single Bit of One Input Memory Buffer
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Coefficient Memory
The coefficients are divided up into four groups of four. This arrangement is determined 
by dividing the total number of coefficients by the number of multipliers used in the 
implementation. In this example, if the total number of coefficients is 16, and the number of 
multipliers is four, four coefficients per memory are needed. 

Filters with a total number of coefficients that are integer-divisible by the required number 
of multipliers are very desirable. System designers should take this into account when 
designing their filters to get the optimal filter specification for the implementation used. 
Otherwise, the coefficients have to be padded with zeros to achieve a number of 
coefficients that are integer-divisible by the number of multipliers. 

The coefficients are simply split into groups according to their order. The first four in the 
first memory, the second four in the second memory, and so on (see Figure 5-6).
X-Ref Target - Figure 5-6

The adder chain architecture of the DSP48 slice means that each Multiply-Add cascade 
multiplication must be delayed by a single cycle so that the results synchronize 
appropriately when added together. This delay is achieved by addressing of the memories 
and is explained in “Control Logic and Address Sequencing.”

Distributed RAM (refer to Chapter 1, “XtremeDSP Design Considerations,” for detailed 
information) is used for the coefficient memories. Distributed RAM is smaller and 
abundant and allows efficient use of the larger block RAMs, especially given their scarcity. 
The larger block RAM is used when the number of coefficients per memory starts to 
increase to the point where the cost in slice resources becomes significant (for example, 
greater than 64). 

The total cost of the current example is 36 slices. The coefficient width is 18 bits, and 
distributed RAMs cost n/2 slices (that is, nine slices per memory and four memories). For 
larger distributed RAMs (larger than 16 elements), the size begins to increase as Write 
Enable (WE) control logic and an output multiplexer is needed. The distributed memory 
v7.0 in the CORE Generator™ system can be easily used to create the little distributed 
RAMs and get accurate size estimates.

Control Logic and Address Sequencing
The Control Logic and Address Sequencing is the most important and complicated aspect 
of semi-parallel FIR filters and is crucial to the operation of the filter. The control logic is 
discussed in two separate sections:

• Memory Addressing

• Clock Enable Sequencing

Figure 5-6: Coefficient Memory Arrangement
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Memory addressing must provide the necessary delay for each multiply-add element 
mentioned in “Coefficient Memory,” page 94, caused by the adder chain. This is not the 
case when using an adder tree; the DSP48 slice is most efficiently used in adder chains.

Figure 5-7 illustrates the control logic required to create the necessary memory addressing. 
The counter creates the fundamental zero through three count. A register in the control 
path then delays the coefficient memory and data buffer address by one cycle. Each 
successive delay is used to address both the coefficient memory and the data buffer of their 
respective multiply-add elements, e.g., a single delay for the second multiply-add element, 
two delays for the third multiply-add element, etc. This is extensible control logic for M 
number of multipliers.
X-Ref Target - Figure 5-7

Figure 5-7 also shows clock enable sequencing. A relational operator is required to 
determine when the count limited counter resets its count. This signal is High for one clock 
cycle every four cycles to represent the input and output data rates. The Clock Enable 
signal is delayed by a single register just like the coefficient address, and each delayed 
version of the signal is tied to the respective section of the filter. Refer to Figure 5-2 to see 

Figure 5-7: Control Logic for the Four-Multiplier, Semi-Parallel FIR Filter
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the signal connections to the element. Figure 5-8 illustrates the control logic waveforms 
changing over time. 

Resource Utilization
Table 5-2 shows the resources used by a 16-tap, four-multiplier, distributed-RAM-based, 
semi-parallel FIR filter.

X-Ref Target - Figure 5-8

Figure 5-8: Control Waveforms for Semi-Parallel FIR Filters
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Table 5-2: Resource Utilization

Elements Slices DSP48 Slices

Multiply-Add 5

Input Data Buffers 36

Coefficient Memories 36

Capture Register 20

Main Control Counter 2
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Three-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter
This section investigates a different filter structure, the three-multiplier, block-RAM-based, 
semi-parallel FIR filter (see Figure 5-9).
X-Ref Target - Figure 5-9

The decision to use this implementation is based on the filter specification. The filter 
specifications are described in Table 5-3.

The structure is similar to the four-multiplier filter studied earlier. In this instance, the 
lower sample rate of the filter specification and the larger number of taps indicates that only 
three multipliers are required, each servicing 100 coefficients, leading to a new result 
yielded every 100 clock cycles.

Each memory buffer is required to hold 100 coefficients and also 100 input data history 
values. The dedicated Virtex-4 block RAM can be used in dual-port mode with a cyclic 
data buffer established in the first half of the memory to serve the shifting input data series.

Relational Operator 1

Multiply-Add Element Control 9 (3 per extra element)

Total 104 5

Table 5-2: Resource Utilization (Continued)

Elements Slices DSP48 Slices

Figure 5-9: Three-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter
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Table 5-3: Three-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter 
Specifications

Parameter Value

Sampling Rate 4.5 MS/S

Number of Coefficients 300

Assumed Clock Speed 450 MHz

Input Data Width 18 bits

Output Data Width 18 bits

Number of Mulipliers 3

Number of Clock Cycles Between Each Result 100
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Chapter 3, “MACC FIR Filters,” describes using these memories to store the input data 
series, the coefficients, and the control logic required to make the cyclic RAM buffer 
operate. The rest of the control logic and data flow is identical to the first filter investigated 
except that only three multipliers are serviced; therefore, the control logic can be scaled 
back by one element. Also note that the WE signals are the inversion of their respective CE 
pair.

Table 5-4 shows the resource utilization for the 300-tap, three-multiplier, semi-parallel FIR 
filter.

Other Semi-Parallel FIR Filter Structures
DSP functions can be implemented in different ways. There is never one solution fitting all 
requirements for all specifications. For example, should distributed or block RAM be used 
for data storage? Should a systolic or a transposed implementation be used for a given 
filter? The goal is to achieve maximum performance and low resource utilization. This 
section describes the different single-rate FIR filter implementations using the Virtex-4 
architecture and discusses the advantages and disadvantages of their structures. 

Table 5-4: Resource Utilization

Elements Slices DSP48 Slices Block RAMs

Multiply-Add 4

Input Data Buffers and 
Coefficient Memories

3

Capture Register 20

Main Control Counter 5

Relational Operator 1

Multiply-Add Element Control 12 (6 per extra 
element)

Total 38 4 3
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Semi-Parallel, Transposed, Four-Multiplier FIR Filter
This structure is very different to the main architecture discussed in this chapter (see 
Figure 5-10).

Only one data storage buffer is required, typically a block RAM. The data buffer output is 
also broadcast to all DSP48 slices. Each DSP48 slice works in accumulator mode until the 
last cycle of the calculation, when OPMODE changes to form an adder chain, and then 
passes the results to the next DSP48 slice. Actually, four different results are being 
calculated at one instance in time, and the completed combined result is output from the 
last DSP48 slice. The other DSP48 slices are each calculating their respective portion of 
subsequent output results.

X-Ref Target - Figure 5-10

Figure 5-10: Semi-Parallel, Transposed FIR Filter
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Figure 5-11 shows the filter structure every time the DSP48 slice OPMODE is changed, 
occurring once every result cycle.

Advantages and Disadvantages
The advantages to using the Semi-Parallel, Transposed FIR filter are:

• Lower resource utilization: One less DSP48 slice is required, and only a single input 
memory buffer is used.

• Low latency: The transpose nature of the filter implementation is lower than the 
Systolic approach. The latency is equal to the size of one coefficient bank.

X-Ref Target - Figure 5-11

Figure 5-11: Semi-Parallel, Transposed FIR Filter (Combination of the Results)
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The disadvantages to using the Semi-Parallel, Transposed FIR filter are:

• Lower performance: The broadcast nature of the data buffer output can limit 
performance of the filter.

• Control logic: This logic is more difficult to understand, but is still of a compact 
nature.

Rounding
The number of bits on the output of the filter is much larger than the input and must be 
reduced to a manageable width. The output can be truncated by simply selecting the MSBs 
required from the filter. However, truncation introduces an undesirable DC shift on the 
data set.

Due to the nature of two’s complement numbers, negative numbers become more 
negative, and positive numbers also become more negative. The DC shift can be improved 
with the use of symmetric rounding, where positive numbers are rounded up and negative 
numbers are rounded down. The rounding capability built into the DSP48 slice maintains 
performance and minimizes the use of FPGA fabric. This is ingrained in the DSP48 slice via 
the C input port and also the Carry-In port. Rounding is achieved in the following manner:

For positive numbers: Binary Data Value + 0.10000… and then truncate

For negative numbers: Binary Data Value + 0.01111... and then truncate

The actual implementation always adds 0.0111… to the data value using the C port input 
as in the negative case, and then it adds the extra carry in required to adjust for positive 
numbers. Table 5-5 illustrates some examples of symmetric rounding.

In the instance of the semi-parallel FIR filter, an extra DSP48 slice is required to perform the 
rounding functionality. It cannot be ingrained into the final accumulator because the 
rounding cannot be done on the final result. If the C input is used and the accumulator is 
put into three-input add mode, then rounding is performed on the partial result. The 
moremultipliers in the filter, the worse the rounding performance because even fewer 
inner products are included in the result. An extra DSP48 slice is required to perform the 
rounding. 

Due to the finite nature of the DSP48 slices, it is recommended that the symmetric rounder 
be implemented in the fabric outside of the slices. The function is small and does not have 
to run at a high frequency because the results are running at the much slower input data 
rate.

Table 5-5: Symmetric Rounding Examples

Decimal Value Binary Value Add Round Truncate: Finish Rounded Value

2.4375 0010.0111 0010.1111 0010 2

2.5 0010.1000 0011.0000 0011 3

2.5625 0010.1001 0011.0001 0011 3

-2.4375 1101.1001 1110.0000 1110 -2

-2.5 1101.1000 1101.1111 1101 -3

-2.5625 1101.0111 1101.1110 1101 -3
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Performance
Compared to legacy devices, Virtex-4 devices improve the speed of the design, shrink the 
area, and reduce power drawn by the filter. All designs assume 18-bit data and 18-bit 
coefficient widths. Table 5-6 through Table 5-8 compare the specifications of three filters.

Reference Design Files
The reference design files associated with this chapter, ug073_c05.zip, can be found at: 
https://secure.xilinx.com/webreg/clickthrough.do?cid=30159

Table 5-6: 4-Multiplier, Memory-Based, Semi-Parallel FIR Filter Specifications 
(16-Tap Symmetric)

Parameter Specification

Size 94 slices, 5 DSP48 slices

Performance 458-MHz clock speed, 114.5 MS/S

Power TBD Watt

Table 5-7: 3-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter Specifications 
(300-Tap Symmetric)

Parameter Specification

Size 38 slices, 4 DSP48 slices, 4 block RAMs

Performance 450-MHz clock speed, 4.5 MS/S

Power TBD Watt

Table 5-8: 4-Multiplier, Block-RAM-Based, Semi-Parallel Transposed FIR Filter 
Specifications (400-Tap Symmetric)

Parameter Specification

Size 46 slices, 4 DSP48 slices, 2 block RAMs

Performance 450-MHz clock speed, 4.5 MS/S

Power TBD Watt

https://secure.xilinx.com/webreg/clickthrough.do?cid=30159
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Conclusion
Semi-parallel FIR filters are probably the most frequently used filter techniques in Virtex-4 
high-performance DSP applications. Figure 5-12 shows the necessary implementation 
decisions and provides guidelines for choosing the required structure based on the filter 
specifications.
X-Ref Target - Figure 5-12

The major lines indicate the guideline thresholds between given implementation 
techniques. For instance, the shift to using block RAM is desirable when the number of 
taps needed to be stored in a given memory exceeds 32. This correlates to two SRL16Es for 
the data buffers. If more than two SRL16Es are used in a data buffer, it will be difficult to 
reach the high clock rate indicated in Chapter 3, “MACC FIR Filters,” Chapter 4, “Parallel 
FIR Filters,” and this chapter. However, this is only a guideline. A great deal depends upon 
how many slices or block RAMs are remaining in the device, the power requirements, and 
the available clock frequencies. A given filter implementation is subjective because a 
different set of restrictions is provided by every application and design.

Figure 5-12: Selecting the Correct Filter Architecture for Semi-Parallel FIR Filters
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In general, the guidelines provided in the past three chapters should enable designers to 
make sensible and efficient decisions when designing filters. These chapters also complete 
the foundations required for filter construction in Virtex-4 devices so that more complex, 
multi-channel and interpolation or decimation multirate filters can be constructed. The 
supplied referenced designs further aid in understanding and utilizing these filters.
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Chapter 6

Multichannel FIR Filters

This chapter illustrates the use of the advanced Virtex®-4 DSP features when 
implementing a widely used DSP function known as multichannel FIR filtering. 
Multichannel filters are used to filter multiple input sample streams in a variety of 
applications, including communications and multimedia.

The main advantage of using a multichannel filter is leveraging very fast math elements 
across multiple input streams (i.e., channels) with much lower sample rates. This 
technique increases silicon efficiency by a factor almost equal to the number of channels.

The Virtex-4 DSP48 slice is one of the new and highly innovative diffused elements that 
form the basis of the Application Specific Modular BLock (ASMBL™) architecture. This 
modular architecture enables Xilinx to rapidly and cost-effectively build FPGA platforms 
by combining different elements, such as logic, memory, processors, I/O, and of course, 
DSP functionality targeting specific applications such as wireless or video DSP.

The Virtex-4 DSP48 slice contains the basic elements of classic FIR filters: a multiplier 
followed by an adder, delay or pipeline registers, plus the ability to cascade an input 
stream (B bus) and an output stream (P bus) without exiting to a general slice logic.

The resulting DSP designs can have optional pipelining that permits aggregate 
multichannel sample rates of up to 500 million samples per second, while minimizing 
power consumption and external slice logic. In the implementation described in this 
chapter, multichannel filtering can be looked at as time-multiplexed, single-channel filters. 

In a typical multichannel filtering scenario, multiple input channels are filtered using a 
separate digital filter for each channel. Due to the high performance of the DSP48 block 
within the Virtex-4 device, a single digital filter can be used to filter all eight input channels 
by clocking the single filter with an 8x clock. This implementation uses 1/8th of the total 
FPGA resource compared to implementing each channel separately.

This chapter contains the following sections:

• “Multichannel FIR Implementation Overview”

• “Combining Separate Input Streams into an Interleaved Stream”

• “Conclusion”

Multichannel FIR Implementation Overview

Top Level
The implementation of a six-channel, eight-tap FIR filter using DSP48 elements is depicted 
in Figure 6-1. The design elements used in the implementation include the following:
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• Six-to-one multiplexer that is implemented in slice logic as described in “Combining 
Separate Input Streams into an Interleaved Stream,” page 107

• Coefficient ROMs using SRL16Es connected in “head-to-tail” fashion

• Input sample “delay-by-seven” SRL16Es to hold the interleaved streams

• DSP48 slices for multiplication and additions
X-Ref Target - Figure 6-1

All datapaths and coefficient paths for this example are 8 bits wide. The coefficient ROMs 
and input sample delay elements are designed using SRL16Es. The SRL16E is a very 
compact and efficient memory element, running at the very high 6x clock rate. For 
adaptive filtering, where coefficients can be different depending upon their input signals, 
coefficient RAMs can be used to update the coefficient values.

The DSP48 slices and interconnects also run at the 6x clock rate, providing unparalleled 
performance for multiplication and additions in today’s FPGAs.

DSP48 Tile
The multichannel filter block is a cascade implementation of the DSP48 tile. Each tile is 
implemented as shown in Figure 6-2. An SRL16E is used to shift the input from the six 
channels. The product cascade path between two DSP48 slices within the tile can be used 

Figure 6-1: Block Diagram of a 6-Channel, 8-Tap FIR Filter
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to bring the product output from one tap into the cascading input of the next tap for the 
final addition.

Combining Separate Input Streams into an Interleaved Stream
As shown in Figure 6-3, six separate video input sample streams must be combined into 
one interleaved sample stream for this multichannel FIR filter example. Conceptually, a 
high-speed, six-to-one multiplexer feeds a seven-deep SRL16E shift register to accomplish 
this task. The SRL16E depth is the number of channels plus one.
X-Ref Target - Figure 6-3

For each clock tick, the counter selects a different input stream (in order), and then it 
supplies this value to the SRL16E shift register. After six clock ticks, the six input samples 
for a given time period are loaded sequentially, or interleaved into a single stream.

A six-to-one multiplexer must be designed carefully, as it is constructed with slice logic 
that must run at the 6x clock rate. At 446 MHz, good design practices dictate point-to-point 
connections, a maximum of one Look-Up Table (LUT) between flip-flops, and RLOC 
techniques.

To reduce the high fanouts on the selected lines of the multiplexer, the conceptual 
multiplexer in Figure 6-3 is implemented as shown in Figure 6-4. This circuit is repeated 
for all eight bits of the input sample width.

X-Ref Target - Figure 6-2

Figure 6-2: DSP48 Tile Cascading Diagram
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X-Ref Target - Figure 6-4

Coefficient RAM
The six coefficient sets are stored in the SRL16 memories. If the same coefficient set is used 
for all channels, then only a single set is stored in the SRL16. If the different channels use 
different coefficients, then six sets of SRL16s are used for each tap. (Six RAMs can be used 
instead, one for each channel.)

Each RAM is 8 bits wide and six deep, corresponding to the six taps. The optional Load 
input is used to change or load a new coefficient set. Six clock cycles are needed to load all 
six RAMs. Input C1 is used to load the eight locations of RAM1 that are used for Channel1. 
C8 is used to load the eight locations of RAM8 that are used for Channel8. At the eighth 
clock, all eight locations of the eight RAMs are loaded; the filter then becomes an adaptive 
filter. The speed of the overall filter is reduced when the coefficients are stored in the RAM.

Control Logic
The control logic is used to ensure proper functioning of the different blocks. If the 
coefficient RAM block is used, the control logic ensures that the load signal is High for six 
clocks. Different tap-enabled signals are used to make sure that RAM values are read into 
the DSP48 correctly. For instance, clock1 reads in the first location from RAM1, but the first 
location of RAM2 is read only at the clock number equal to shift register length. The design 
assumes a clock is running at 6x of the input signals. The DCM can also be used to multiply 
the clock if the only available clock is running at the input channel frequency.

The final output is enabled by the control logic after the initial latency.

Figure 6-4: High-Speed 8-to-1 Multiplexer Used in the Filter
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Implementation Results
The initial latency of the design is equal to the [(number of channels + 1) * number of taps] 
plus three pipe stages within the DSP48. After placement and routing, the design uses 216 
slices and eight DSP48 blocks. The design has a speed of 454 MHz.

Reference Design Files
The reference design files associated with this chapter, ug073_c06.zip, can be found at: 
https://secure.xilinx.com/webreg/clickthrough.do?cid=30161

Conclusion
The available arithmetic functions within the DSP48 block, combined with fine granularity 
and high speed, makes the Virtex-4 FPGA an ideal device to implement high-speed, 
multichannel filter functions. The design shows the efficient implementation of a 
six-channel, eight-tap filter. Due to the high-performance capability within the DSP48 
block, a single channel, eight-tap filter can be used to implement the six-channel, eight-tap 
filter, reducing the area utilization by 1/6th.

https://secure.xilinx.com/webreg/clickthrough.do?cid=30161
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Chapter 7

Multirate Filters Using the DSP48

Multirate filtering is used to change the rate or frequency of sampling of an input signal to 
an arbitrary rate or frequency at the output. Multirate filtering is widely used in video 
applications for interpolation or decimation of video data.

The DSP48 slice is ideally suited to implement multirate sampling because of its high 
speed and filter-like structure. The cascaded data input and output paths, pipeline 
registers, high precision two’s complement multiplier followed by an adder/subtracter 
and accumulation capability provide needed elements for multirate filtering.

This chapter contains the following sections:

• “Introduction”

• “Interpolation Using the DSP48 Slice”

• “Decimation Using the DSP48 Slice”

Introduction
Digital video applications require an enormous amount of bandwidth. Storing a short clip 
of video can often lead to hard-disk space limitations, and transmitting a short clip of video 
can lead to transmission media bandwidth limitations. In some of these applications, 
multirate filtering is used to reduce the sample rate and the number of pixels needed to 
represent the image. This process is called decimation. Applications for decimation include 
4:4:4 to 4:2:2 conversion and High-Definition TV (HDTV) to Standard-Definition TV 
(SDTV) conversion.

Other applications, such as medical imaging, require the user to represent the image in as 
much detail as possible, similar to zooming on a picture. Here, filtering is used to increase 
the sampling rate so that the image is represented by a larger number of pixels than are 
normally used. This process is called interpolation. Applications for interpolation include 
SDTV to HDTV signal conversion.

Another use of the multirate DSP technique is to increase computational efficiency. 
Changing from a single-rate filter to a multirate filter can reduce the number of multiply 
and accumulate operations needed to implement a particular algorithm. Here, decimation 
is first used to lower the system rate. Then the particular algorithm is implemented on this 
lower rate signal, and the algorithm output is interpolated to bring the sample rate back to 
the original rate.

The process of using interpolation and decimation to resize an image is called scaling. 
Scaling of a video image involves a two-dimensional array. Two 1-D samples can be 
applied in series to achieve a 2-D sampling change. In the example shown in Figure 7-1, an 
interpolator and a decimator are used together to achieve the desired final image scaling.
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X-Ref Target - Figure 7-1

Nyquist Theorem
The Nyquist theorem states that when an analog waveform is digitized, samples must be 
recorded at greater than twice the highest frequency component in the waveform. Stated 
differently, to reconstruct (interpolate) a signal from a sequence of samples, enough 
samples must be recorded to capture the peaks and troughs of the original waveform.

When a waveform is sampled at less than twice its highest frequency component, the 
reconstructed waveform effectively only contributes noise. This phenomenon called 
"aliasing" (the high frequencies are under an alias) is the reason that the best digital audio is 
sampled at 44,000 Hz – twice the average upper limit of human hearing.

Interpolation and Decimation
Interpolation or upsampling is the process of representing a signal with more samples. 
Decimation or downsampling is the process of representing a signal with less samples. 

Conceptually, interpolation is implemented by inserting zeros between samples as shown 
in Figure 7-2. To get a 1: L interpolator, L-1 zeros are inserted between every sample. A 
filter is used to replace the zero values with the appropriate non-zero values.
X-Ref Target - Figure 7-2

The equation for a 1:L interpolator is given in Equation 7-1. In a 1:L interpolator, the output 
data rate is L times the input data rate. L is also called the interpolation factor.

Figure 7-1: Image Rescaling Using Interpolation Followed By Decimation

Interpolator
Upscaling by

a Factor L

Low-Pass,
Anti-Aliasing,

Imaging
Filter

Input x[n] Output y[n]
= L/M * x[n]

UG073_c7_01_091605

Decimator
Downscaling by

a Factor M

Figure 7-2: Input Signal vs. 1:2 Interpolated Signal

Input Signal 1:2 Interpolated Signal

UG073_c7_02_063004

http://www.xilinx.com


XtremeDSP for Virtex-4 FPGAs www.xilinx.com 113
UG073 (v2.7) May 15, 2008

Introduction
R

Equation 7-1

Where n = 0, ±L, ±2L, and so forth.

Interpolation can be done in multiple stages. For example, to achieve interpolation by a 
factor of 15, two interpolation stages can be used, where the first stage interpolates by a 
factor of three and the second stage interpolates by a factor of five. The computational and 
memory requirements of interpolation are both reduced by multistage interpolation.

Decimation is implemented by keeping every Mth sample and throwing away the samples 
in between, as shown in Figure 7-3. If a signal is defined by n samples, to achieve M:1 
decimation, you throw away M-1 samples after every sample that you keep. In an M:1 
interpolator, the output data rate is 1/M times the input data rate, and M is the decimation 
factor.
X-Ref Target - Figure 7-3

The equation for an M:1 interpolator is shown in Equation 7-2.

Equation 7-2

Where M is a positive integer.

When samples are thrown away, the resulting sampling rate can fall less than twice the 
frequency of the input signal. Then the output signal is taken at a rate below the Nyquist 
rate and is not a true representation of the original input signal. Nyquist criterion should 
be observed on the output signal after decimation.

Spectral Imaging
Spectral imaging is the appearance of copies of the original spectrum for the signal within 
the system bandwidth. Usually, a signal has spectral images that are repeated at multiples 
of the sampling frequency (Fs). The system bandwidth is equal to Fs or Fs/2 on either side 

Figure 7-3: Input Signal vs. 2:1 Decimated Input Signal
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(see Figure 7-4). The first image is centered at Fs (or –Fs), which is outside the bandwidth of 
Fs/2. Therefore, all the images are outside the signal bandwidth.
X-Ref Target - Figure 7-4

When the sampling rate of the system is increased by an interpolation factor of L (where L 
is an integer greater than 1), the system bandwidth is increased by LFs or LFs/2 on either 
side. In this case (see Figure 7-5), the first image that is centered at Fs falls within the 
system bandwidth. These spectral images that fall within the system bandwidth should be 
eliminated using a low-pass filter after interpolation.

Aliasing
Aliasing can be described as the appearance of a higher frequency signal (B) that has the 
same sample values as the original signal (A) at the sampled points, as shown in 
Figure 7-6. An anti-aliasing filter is used before decimation to avoid aliasing. The sample 
values for the sinusoid signal A with the frequency ω0, and the values for sinusoid signal 
B with the frequency ω0 + 2 * 2π/Ts are the same at the different sampling points. The 
resultant sampled waveform for both the signals are identical, and the two signals are 
indistinguishable. Here, one signal is said to be an alias of the other. Aliasing of signal A 
can appear when another signal of frequency ω0 + k2π/Ts is present.

Figure 7-4: System Bandwidth

X-Ref Target - Figure 7-5

Figure 7-5: Interpolation Effect on System Bandwidth
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X-Ref Target - Figure 7-6

When the sample rate is reduced by decimation, there can be an aliasing frequency created 
that was not present in the original higher frequency signal. As a result of this aliasing, an 
image can look blurred. In this case, a low-pass, anti-aliasing filter is used before 
decimation. This low-pass filter eliminates all frequencies above the signal frequency to 
avoid aliasing.

Another way to look at aliasing is that a critically sampled signal, when downsampled, 
does not maintain the Nyquist rate and, therefore, is not a true representation of the 
original signal. The original signal is passed through a low-pass filter so that only those 
frequencies that still hold the Nyquist criterion are present at the new downsampled rate.

Interpolation Using the DSP48 Slice
The section describes the implementation of a 1:4 interpolator using the DSP48 slice. In a 
1:4 interpolator, three zeros are inserted between every sample at the input. Consider a 
stream of samples T(n-4) to T(n) to T(n+4) in the input signal. The output for this stream is 
shown in Figure 7-7.
X-Ref Target - Figure 7-7

The zero values are converted into the appropriate non-zero values by the interpolation 
filter in the DSP48 block. The number of taps chosen is usually a multiple of the 
interpolation factor. The number of taps used in the interpolator in this example is 16. Each 
of the four output samples uses four taps or four different input samples to get the 
corresponding output sample. If 12 taps are used, only three input samples are used to 
calculate each of the four output samples.

Block Diagram
Figure 7-8 is a block diagram of a 1:4 interpolator. This design uses a 16-tap filter with an 
interpolation factor of 4.

Figure 7-6: Aliasing Between Two Frequencies
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X-Ref Target - Figure 7-8

The inputs are multiplied by the 16 coefficients and summed to produce the output. 
Table 7-1 shows that an output is taken every clock. The output is the sum of the 16 
coefficients, (h0) to (h15), multiplied by the corresponding input signals. Of the 16 samples 
that contribute toward y0, 12 have an input sample value of zero. Multiplying with zero 
does not contribute towards the final output y0 but uses resources and clock cycles. To 
eliminate this waste, the 1:4 16-tap interpolator is implemented using four polyphase 
filters. The four multiplications needed for each output are done in parallel using the four 
polyphase filters. The total number of multipliers used is reduced from 16 to 4.

As shown in Table 7-1, output y0 is obtained when the input x(1) pipe stage is matched 
with the coefficient h0. The next three clock cycles give the outputs y1 to y3 that correspond 
to the input x(1) matching coefficients h1 to h3 in time. These outputs can be written as 
follows:

y0 = x(n)h0 + x(n - 1)h4 + x(n - 2)h8 + x(n - 3)h12

y1 = x(n)h1 + x(n - 1)h5 + x(n - 2)h9 + x(n - 3)h13

y2 = x(n)h2 + x(n - 1)h6 + x(n - 2)h10 + x(n - 3)h14

Figure 7-8: 16-Tap 1:4 Interpolation Filter
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y3 = x(n)h3 + x(n - 1)h7 + x(n - 2)h11 + x(n - 3)h15

During the clock when x(1) matches the coefficient h4, a new input is matched with 
coefficient h0. After an initial latency, one output sample is obtained at every clock.

The four terms in the equation for y0 are calculated in four consecutive clock cycles. At 
each clock, the previous term is added to the current term being calculated. This gives a 
total of five clocks of latency to get the first output y0. The coefficients are arranged such 
that after the first four clock cycles, all four coefficients (h0 to h3) are multiplied by input 
x(n). That is, input x(n) is held at the first DSP48 slice for four clock cycles before it is 
shifted to the next DSP48 slice.

The other three DSP slices each use these four clock cycles to multiply their corresponding 
input samples by the four incoming coefficients. After four clocks, a new input value 
x(n+1) is read in at the first DSP48 slice, and the other three DSP slices shift in the input 
sample from the previous DSP slice.

The control logic ensures that each DSP slice shifts in new data every four clocks in a 
staggered manner. Each DSP slice retains an input value for four clocks. The clock enable 
inputs on the B cascade registers for each slice are used to shift in a new value every four 
clocks. The control logic is also used to clock in the four coefficients in a cyclic order.

Decimation Using the DSP48 Slice
This section describes the implementation of a 4:1 decimator using the DSP48 slice. In a 4:1 
decimator, every fourth input sample value is retained, and the three sample values in 
between are ignored. Consider a stream of samples T(n-4) to T(n) to T(n+4) in the input 
signal. The output for this stream is shown in Figure 7-9.

Table 7-1: Interpolator Input Signal and Corresponding Coefficients

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15

clk1 x1 0 0 0 x2 0 0 0 x3 0 0 0 x4 0 0 0

2 x1 0 0 0 x2 0 0 0 x3 0 0 0 x4 0 0

3 x1 0 0 0 x2 0 0 0 x3 0 0 0 x4 0

4 x1 0 0 0 x2 0 0 0 x3 0 0 0 x4

5 x1 0 0 0 x2 0 0 0 x3 0 0 0

6 x1 0 0 0 x2 0 0 0 x3 0 0

7 x1 0 0 0 x2 0 0 0 x3 0

8 x1 0 0 0 x2 0 0 0 x3

9 x1 0 0 0 x2 0 0 0
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X-Ref Target - Figure 7-9

Block Diagram
Table 7-2 shows the input stream shifting through the taps in a 4:1 decimator and the time 
at which outputs are valid. An output is taken at every fourth clock. The output is the sum 
of the 16 coefficients multiplied by the corresponding input signals.

Looking at the input x1 in Table 7-2, outputs are valid whenever x1 is multiplied with 
coefficients h0, h4, h8, h12, and h16. Though x1 gets multiplied by the remaining coefficients, 
the outputs at those clocks are ignored. Implementing these multiplies in hardware is a 
waste of resources. In the polyphase decimation filter, input and coefficients are arranged 
such that an input is only multiplied with a valid coefficient, that is, the coefficient when 

Figure 7-9: Original vs. Decimated Input Stream
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Table 7-2: Decimator Input Signal and Corresponding Coefficients

out1 out2 out3 out4

↑ ↑ ↑ ↑

coefficient h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15

inputs

clock1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

clock2 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

clock3 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

clock4 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

clock5 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

clock6 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

clock7 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

clock8 x1 x2 x3 x4 x5 x6 x7 x8 x9

clock9 x1 x2 x3 x4 x5 x6 x7 x8
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the output is valid. For the first M+1 inputs, the coefficients used to multiply each input is 
as shown in Figure 7-10.

The input signals to each polyphase filter are delayed by (M+1) clocks from the previous 
filter. Shift registers are used to achieve this delay, as shown in Figure 7-11. The coefficient 
inputs to each of the filters are arranged such that each filter rotates through four different 
coefficients. 

X-Ref Target - Figure 7-10

Figure 7-10: Input and Corresponding Coefficients for a 4:1 Decimator
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X-Ref Target - Figure 7-11

Figure 7-11: 16-tap 4:1 Decimation Filter
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The decimator creates one output value for every four input values. The design uses a 
16-tap filter to do the interpolation. Four parallel polyphase filters are used to implement 
the 16 taps of the filter. The output value is a weighted function of the 16 input values.

After an initial latency, a four-tap filter output is obtained at the fourth polyphase filter. 
This output is added in a final accumulation block. The accumulation block is in 
accumulation mode for four clock cycles after the initial latency. Each clock cycle gives a 
four-tap result, and at the end of the fourth clock, the accumulation block has a 16-tap 
result. After this, the accumulation block goes into an addition mode where the feedback 
path receives an input of 0.

The 4-bit barrel shifter is used to enable the accumulation block into an “add mode” every 
fourth clock cycle.

Implementation Results
A 1:4 interpolator can be implemented in four DSP slices at an output frequency of over 
450 MHz. This design uses four DSP48 slices in the Virtex®-4 device. The interpolator can 
also be implemented using one DSP48 slice if a higher clock latency or slower clock is 
sufficient.

The decimator can be implemented in four DSP slices at an output frequency of over 
450 MHz. The design uses five DSP48 slices in the Virtex-4 device. The decimator can also 
be created in a single DSP48 slice if a higher clock latency or slower clock is sufficient.

The implementation results for the interpolator and decimator are shown in Table 7-3.

Reference Design Files
The reference design files associated with this chapter, ug073_c07.zip, can be found at: 
https://secure.xilinx.com/webreg/clickthrough.do?cid=30162

PolyIntrpFilter.zip and PolyDecFilter.zip, included in the reference design 
files, provide examples of portable, parameterized, design, and simulation VHDL files that 
infer DSP48 slices when creating Polyphase Interpolating/Decimating FIR filters in 
Virtex-4 devices. The number of filter taps, interpolation/decimation factors, and data bit 
widths are parameterizable. Synplify 8.1 was used to synthesize this portable, RTL VHDL 
code with generics for parameterization.

Table 7-3: Implementation Results for Interpolator and Decimator

Speed in MHz Utilization
Power in mW using 

XPower

1:4, 16 Tap 
Interpolator

XC4VLX15 -11 sf363 450 (2.2 ns) 61 slices, 4 DSP48 205

XC2VP2 -7 fg456 110.49 (7 ns) 339 slices, 12 mults 590

XC2V250 -6 fg456 99.49 (8 ns) 339 slices, 12 mults 449

4:1, 16 Tap Decimator XC4VLX15 -11 sf363 450 (2.2 ns) 228 slices, 5 DSP48 136

XC2VP2 -7 fg456 116.84 (7 ns) 467 slices, 12 mults 682

XC2V250 -6 fg456 98.2 (8 ns) 466 slices, 12 mults 454

https://secure.xilinx.com/webreg/clickthrough.do?cid=30162
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Conclusion
R

Conclusion
The multirate filtering technique is extensively used in DSP functions. A common 
application of multirate filtering is in video scaling. The availability of cascaded path, shift 
registers, multiplier, and accumulator in the DSP blocks of Virtex-4 devices, combined with 
the high performance, helps in implementing multirate functions very effectively.

Note: Xilinx ISE 6.3i was used to implement these designs.
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