

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 75
UG073 (v2.7) May 15, 2008

Dual-Multiplier MACC FIR Filter
R

There are limitations to using the symmetric MACC FIR filter. Due to the 1-bit growth from
the pre-adder shown in Figure 3-5, the data input to the filter must be less than 18 bits to fit
into one DSP48 slice. If necessary, the pre-adder can be implemented in slices or in another
DSP48 slice.

The performance of this fabric-based adder represents the critical path through the filter
and limits the maximum clock speed. There are extra resources required for the filter to
support symmetry. Three memory ports are needed along with the pre-adder. The control
portion increases in resource utilization because the data is read out of one port in a
forward direction and in reverse on the second port. This technique should only be utilized
when extra sample rate performance is required.

Dual-Multiplier MACC FIR Filter
Another technique used to improve the data throughput of an MACC FIR filter is to
increase the number of multipliers used to process the data. This introduces parallelism
into the DSP design, and can be extrapolated into completely parallel techniques
supporting the highest of sample rates.

Figure 3-8 and Figure 3-9 illustrate how a dual-multiplier MACC FIR filter can be
implemented using two DSP slices. Figure 3-8 shows the accumulation of the coefficients
of each of the two MACC engines. These partial results must be combined together and
then rounded to achieve the final result. This process uses an extra cycle and the OPMODE
switching of the DSP48 slice. This extra cycle is illustrated in Figure 3-9.
X-Ref Target - Figure 3-8

Figure 3-8: Dual-Multiplier MACC FIR Filter

Data Samples
43 x 18

Coefficients
43 x 18Control

Data Addr

WE

Coef Addr

DSP48 Slice18

18

A

B

A

B

P

Dual-Port Block RAM

Data Samples
43 x 18

Coefficients
43 x 18

Dual-Port Block RAM

DSP48 Slice
18

OPMODE = 0100101

OPMODE
Translation

OPMODE = 0100101

UG073_c3_08_083105

76 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 3: MACC FIR Filters
R

X-Ref Target - Figure 3-9

Reference Design Files
The reference design files associated with this chapter, ug073_c03.zip, can be found at:
https://secure.xilinx.com/webreg/clickthrough.do?cid=30157

Conclusion
MACC FIR filters are commonly used in DSP applications. With the introduction of the
Virtex-4 DSP48 slice, this function can be achieved in a smaller area, while at the same time
producing higher performance with less power resources. Designers have tremendous
flexibility in determining the desired implementation as well as the ability to change the
implementation parameters.

Each specification and design scenario creates a different set of restrictions for the design.
Several more techniques are discussed in the next chapters. The ability to "tune" a filter in
an existing system or to have multiple filter settings is a distinct advantage. The HDL and
System Generator for DSP reference designs are easily modified to achieve specific
requirements, such as different coefficients, smaller data and coefficient bit widths, and
coefficient values.

Figure 3-9: Dual-Multiplier MACC FIR Filter with Extra Cycle

Data Samples
43 x 18

Coefficients
43 x 18

Control

Data Addr

WE

Coef Addr

DSP48 Slice
18

18
A

B

A

B

P

Dual-Port Block RAM

Data Samples
43 x 18

Coefficients
43 x 18

Dual-Port Block RAM

DSP48 Slice18

OPMODE = 0100101

OPMODE
Translation

OPMODE = 0011110

UG073_c3_9_083105

Rounding
Constant

Cin

https://secure.xilinx.com/webreg/clickthrough.do?cid=30157
http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 77
UG073 (v2.7) May 15, 2008

R

Chapter 4

Parallel FIR Filters

This chapter describes the implementation of high-performance, parallel, full-precision
FIR filters using the DSP48 slice in a Virtex®-4 device. Because the Virtex-4 architecture is
flexible, it is practical to construct custom FIR filters to meet the requirements of a specific
application. Creating optimized, parallel filters saves resources.

This chapter demonstrates two parallel filter architectures: the Transposed and Systolic
Parallel FIR filters. The reference design files in VHDL and Verilog permit filter parameter
changes, including coefficients and the number of taps.

This chapter contains the following sections:

• “Overview”

• “Parallel FIR Filters”

• “Transposed FIR Filter”

• “Systolic FIR Filter”

• “Symmetric Systolic FIR Filter”

• “Rounding”

• “Performance”

• “Conclusion”

Overview
There are many filtering techniques available to signal processing engineers. A common
filter implementation for high-performance applications is the fully parallel FIR filter.
Implementing this structure in the Virtex-II architecture uses the embedded multipliers
and slice based arithmetic logic. The Virtex-4 DSP48 slice introduces higher performance
multiplication and arithmetic capabilities specifically designed to enhance the use of
parallel FIR filters in FPGA-based DSP.

Parallel FIR Filters
A wide variety of filter architectures are available to FPGA designers due to the flexible
nature of FPGAs. The type of architecture chosen is typically determined by the amount of
processing required in the available number of clock cycles. The two most important
factors are:

• Sample Rate (Fs)

• Number of Coefficients (N)

In Figure 4-1, as the sample rate and the number of coefficients increase, the architecture
selected for a desired FIR filter becomes a more parallel structure involving more multiply

http://www.xilinx.com

78 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 4: Parallel FIR Filters
R

and add elements. Chapter 3, “MACC FIR Filters” addresses the details of the sequential
processing FIR filters, including the single and dual MAC FIR filter. This chapter
investigates the other extreme of the fully parallel FIR filter as required to filter the fastest
data streams.
X-Ref Target - Figure 4-1

Figure 4-1: Selecting Filter Architectures

10

50

500
400
300

200

100

1

Semi-Parallel FIR Filters
(Chapter 5)

Sequential FIR Filters (Chapter 3)

Parallel FIR Filters (Chapter 4)

10
20 50 500200

100 1000

UG073_c4_01_083005

Number of Coefficients (N)
Log Scale

S
am

pl
e

R
at

e
(M

H
z)

Lo
g

S
ca

le

5
1

0.5

5

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 79
UG073 (v2.7) May 15, 2008

Parallel FIR Filters
R

The basic parallel architecture, shown in Figure 4-2, is referred to as the
Direct Form Type 1.

This structure implements the general FIR filter equation of a summation of products as
defined in Equation 4-1.

Equation 4-1

In Equation 4-1, a set of N coefficients is multiplied by N respective data samples. The
results are summed together to form an individual result. The values of the coefficients
determine the characteristics of the filter (e.g., a low-pass filter).

The history of data is stored in the individual registers chained together across the top of
the architecture. Each clock cycle yields a new complete result, and all multiplication and
arithmetic required occurs simultaneously. In sequential FIR filter architectures, the data
buffer is created using Virtex-4 dedicated block RAMs or distributed RAMs. This
demonstrates a trend; as algorithms become faster, the memory requirement is reduced.
However, the memory bandwidth increases dramatically because all N coefficients must
be processed at the same time.

The performance of the Parallel FIR filter is calculated in Equation 4-2.

Maximum Input Sample Rate = Clock Speed Equation 4-2

The bit growth through the filter is the same for all FIR filters and is explained in the
section “Bit Growth” in Chapter 3.

X-Ref Target - Figure 4-2

Figure 4-2: Direct Form Type 1 FIR Filter

h3

18

38

18
h2 h1 h0

UG073_c4_02_083005

yn xn i– hi
i 0=

N 1–

∑=

http://www.xilinx.com

80 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 4: Parallel FIR Filters
R

Transposed FIR Filter
The DSP48 arithmetic units are designed to be easily and efficiently chained together using
dedicated routing between slices. The Direct Form Type I uses an adder tree structure. This
makes it difficult to chain the blocks together. The Transposed FIR filter structure
(Figure 4-3) is more optimal for use with the DSP48 Slice.

The input data is broadcast across all the multipliers simultaneously, and the coefficients
are ordered from right to left with the first coefficient, h0, on the right. These results are fed
into the pipelined adder chain acting as a data buffer to store previously calculated inner
products in the adder chain. The rearranged structure yields identical results to the Direct
Form structure but gains the use of an adder chain. This different structure is easily
mapped to the DSP48 slice without additional external logic. If more coefficients are
required, then more DSP48 slices must be added to the chain.

The configuration of the DSP48 slice for each segment of the Transposed FIR filter is shown
in Figure 4-4. Apart from the very first segment, all processing elements must be
configured as shown in Figure 4-4. OPMODE is set to multiply mode with the adder,
combining the results from the multiplier and from the previous DSP48 slice through the
dedicated cascade input (PCIN). OPMODE is set to binary 0010101.

X-Ref Target - Figure 4-3

Figure 4-3: Transposed FIR Filter

h3

B
18

0

h2

B

h1

B

h0

B

P

DSP48 Slice
OPMODE = 0000101

DSP48 Slice
OPMODE = 0010101

DSP48 Slice
OPMODE = 0010101

DSP48 Slice
OPMODE = 0010101

UG073_c4_03_083105

20

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 81
UG073 (v2.7) May 15, 2008

Transposed FIR Filter
R

X-Ref Target - Figure 4-4

Advantages and Disadvantages
The advantages to using the Transposed FIR filter are:

• Low Latency: The maximum latency never exceeds the pipelining time through the
slice containing the first coefficient. Typically, this is three clock cycles between the
data input and the result appearing.

• Efficient Mapping to the DSP48 Slice: Mapping is enabled by the adder chain
structure of the Transposed FIR filter. This extendable structure supports both large
and small FIR filters.

• No External Logic: No external FPGA logic is required, enabling the highest possible
performance to be achieved.

The disadvantage to using the Transposed FIR filter is:

• Limited performance: Performance might be limited by a high fanout input signal if
there are a large number of taps.

Resource Utilization
An N coefficient filter uses N DSP48 slices. A design cannot use symmetry to reduce the
number of DSP48 slices when using the Transposed FIR filter structure.

Figure 4-4: Transpose Multiply-Add Processing Element

UG073_c4_04_083105

DSP48 Slice
OPMODE = 0010101

A

B

PCOUTPCIN

http://www.xilinx.com

82 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 4: Parallel FIR Filters
R

Systolic FIR Filter
The systolic FIR filter is considered an optimal solution for parallel filter architectures. The
systolic FIR filter also uses adder chains to fully utilize the DSP48 slice architecture
(Figure 4-5).

The input data is fed into a cascade of registers acting as a data buffer. Each register
delivers a sample to a multiplier where it is multiplied by the respective coefficient. In
contrast to the Transposed FIR filter, the coefficients are aligned from left to right with the
first coefficients on the left side of the structure. The adder chain stores the gradually
combined inner products to form the final result. As with the Transposed FIR filter, no
external logic is required to support the filter and the structure is extendable to support
any number of coefficients.

The configuration of the DSP48 slice for each segment of the Systolic FIR filter is shown in
Figure 4-6. Apart from the very first segment, all processing elements are to be configured
as shown in Figure 4-6. OPMODE is set to multiply mode with the adder combining the
results from the multiplier and from the previous DSP48 slice through the dedicated
cascade input (PCIN). OPMODE is set to binary 0010101. The dedicated cascade input
(BCIN) and dedicated cascade output (BCOUT) are used to create the necessary input data
buffer cascade.
X-Ref Target - Figure 4-6

X-Ref Target - Figure 4-5

Figure 4-5: Systolic FIR Filter

h0

B

18

0

h1 h2 h3

P

DSP48 Slice
OPMODE = 0000101

DSP48 Slice
OPMODE = 0010101

DSP48 Slice
OPMODE = 0010101

DSP48 Slice
OPMODE = 0010101

UG073_c4_05_083105

18

20

Figure 4-6: Systolic Multiply-Add Processing Element

ug073_c4_06_083105

DSP48 Slice
OPMODE = 0010101

A

PCOUTPCIN

BCOUTBCIN

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 83
UG073 (v2.7) May 15, 2008

Symmetric Systolic FIR Filter
R

Advantages and Disadvantages
The advantages to using the Systolic FIR filter are:

• Highest Performance: Maximum performance can be achieved with this structure
because there is no high fanout input signal. Larger filters can be routing-limited if the
number of coefficients exceeds the number of DSP slices in a column on a device.

• Efficient Mapping to the DSP48 Slice: Mapping is enabled by the adder chain
structure of the Systolic FIR Filter. This extendable structure supports large and small
FIR filters.

• No External Logic: No external FPGA logic is required, enabling the highest possible
performance.

The disadvantage to using the Systolic FIR filter is:

• Higher Latency: The latency of the filter is a function of how many coefficients are in
the filter. The larger the filter, the higher the latency.

Resource Utilization
An N coefficient filter uses N DSP48 slices.

Symmetric Systolic FIR Filter
In Chapter 3, “MACC FIR Filters,” symmetry was examined, and an implementation was
illustrated to exploit this symmetric nature of the coefficients. Exploiting symmetry is
extremely powerful in Parallel FIR filters because it halves the required number of
multipliers, which is advantageous due to the finite number of DSP48 slices. Equation 4-3
demonstrates how the data is pre-added before being multiplied by the single coefficient.

(X0 x C0) + (Xn x Cn) … ⎝ (X0 + Xn) x C0 (if C0 = Cn) Equation 4-3

Figure 4-7 shows the implementation of this type of Systolic FIR Filter structure.
X-Ref Target - Figure 4-7

Figure 4-7: Symmetric Systolic FIR

h0

B B B B

17

0

h1 h2 h3

P

DSP48 Slice
OPMODE = 0000101

DSP48 Slice
OPMODE = 0010101

DSP48 Slice
OPMODE = 0010101

DSP48 Slice
OPMODE = 0010101

UG073_c4_07_083105

38

http://www.xilinx.com

84 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 4: Parallel FIR Filters
R

In this structure, DSP48 slices have been traded off for device logic. From a performance
viewpoint, to achieve the full speed of the DSP48 slice, the logic-slice-based18-bit adder
has to run at the same speed. To achieve this, register duplication can be performed on the
output from the last tap that feeds all the other multipliers.

To save on logic area, the two register delay in the input buffer time series is implemented
as an SRL16E and a register output. A further benefit of the symmetric implementation is
the reduction in latency, due to the adder chain being half the length.

Figure 4-8 shows the configuration of the DSP48 slice for each segment of the Symmetric
Systolic FIR filter. Apart from the very first segment, all processing elements are to be
configured as in Figure 4-8. OPMODE is set to multiply mode, with the adder combining
results from the multiplier and from the previous DSP48 slice via the dedicated cascade
input (PCIN). OPMODE is set to binary 0010101.
X-Ref Target - Figure 4-8

Resource Utilization
An N symmetric coefficient filter uses N DSP48 slices. The slice count for the pre-adder and
input buffer time series is a factor of the input bit width (n) and N. The equation for the size
in slices is:

((n+1) * (N/2)) + (n/2) Equation 4-4

For the example illustrated in Figure 4-7, the size is (17+1) * 8/2 + 17/2 = 81 slices.

Rounding
The number of bits on the output of the filter is much larger than the input and must be
reduced to a manageable width. The output can be truncated by simply selecting the MSBs
required from the filter. However, truncation introduces an undesirable DC data shift. Due
to the nature of two's complement numbers, negative numbers become more negative and
positive numbers also become more negative. The DC shift can be improved with the use
of symmetric rounding, where positive numbers are rounded up and negative numbers
are rounded down.

The rounding capability in the DSP48 slice maintains performance and minimizes the use
of the FPGA fabric. This is implemented in the DSP48 slice using the C input port and the
Carry In port. Rounding is achieved by:

For positive numbers: Binary Data Value + 0.10000… and then truncate

Figure 4-8: Symmetric Systolic Multiply-Add (MADD) Processing Element

UG073_c4_08_083105

DSP48 Slice
OPMODE = 0010101

A

B

PCOUTPCIN

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 85
UG073 (v2.7) May 15, 2008

Rounding
R

For negative numbers: Binary Data Value + 0.01111... and then truncate

The actual implementation always adds 0.0111… to the data value through the C port
input as in the negative case, and then it adds the extra carry in required to adjust for
positive numbers. Table 4-1 illustrates some examples of symmetric rounding.

For both the Transposed and Systolic Parallel FIR filters, the C input is used at the
beginning of the adder chain to drive the carry value into the accumulated result. The final
segment uses the MSB of the PCIN as the carry-in value to determine if the accumulated
product is positive or negative. CARRYINSEL is used to select the appropriate carry-in
value. If positive, the carry-in value is used, and if negative, the result is kept the same (see
Figure 4-9).

The one problem with the rounding solution occurs when the final accumulated inner
product input to the final DSP48 slice is very close to zero. If the value is positive and the
final inner product makes the result negative (leading to a rounding down), then an
incorrect result occurs because the rounding function assumes a positive number instead
of a negative. The last coefficient in typical FIR filters is very small, so this situation rarely
occurs. However, if absolute certainty is required, an extra DSP48 slice can perform the
rounding function (see Figure 4-10). A Transposed FIR filter can have exactly the same
problem as the Systolic FIR filter.

Table 4-1: Symmetric Rounding Examples

Decimal Value Binary Value Add Round Truncate: Finish Rounded Value

2.4375 0010.0111 0010.1111 0010 2

2.5 0010.1000 0011.0000 0011 3

2.5625 0010.1001 0011.0001 0011 3

–2.4375 1101.1001 1110.0000 1110 –2

–2.5 1101.1000 1101.1111 1101 –3

–2.5625 1101.0111 1101.1110 1101 –3

X-Ref Target - Figure 4-9

Figure 4-9: Systolic FIR Filter with Rounding

h0

B
18

0.49999 C

h1 h2 h3

P

DSP48 Slice
OPMODE = 0'b0110101

DSP48 Slice
OPMODE = 0'b0010101

DSP48 Slice
OPMODE = 0'b0010101

DSP48 Slice
OPMODE = 0'b0010101

Carryinsel = 01
UG073_c4_09_083105

18

18

http://www.xilinx.com

86 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 4: Parallel FIR Filters
R

X-Ref Target - Figure 4-10

Performance
When examining the performance of a Virtex-4 Parallel FIR filter, a Virtex-II Pro design is
a valuable reference. Table 4-2 illustrates the ability of the Virtex-4 DSP48 slice to greatly
reduce logic fabric resources requirements while improving the speed of the design and
reducing the power utilization of the filter.

Reference Design File
The reference design files associated with this chapter, ug073_c04.zip, can be found at:
https://secure.xilinx.com/webreg/clickthrough.do?cid=30158

Figure 4-10: Systolic FIR Filter with Separate Rounding Function

h0

B
18

0C

h1 h2 h3

C
0.4999

P

DSP48 Slice
OPMODE = 0'b0000101

DSP48 Slice
OPMODE = 0'b0010101

DSP48 Slice
OPMODE = 0'b0010101

DSP48 Slice
OPMODE = 0'b0010101

DSP48 Slice
OPMODE = 0'b0011100

Carryinsel = 01

UG073_c4_10_083105

18

18

Table 4-2: Performance Analysis

Filter Type Device Family Size Performance
Power
(Watts)

18 x 18 Parallel
Transposed FIR Filter
(51 Tap Symmetric)

Virtex-II Pro FPGA 1860 Slices
26 Embedded Multipliers

300-MHz Clock Speed
300 MS/S

TBD

18 x 18 Parallel
Systolic FIR Filter
(51 Tap Symmetric)

Virtex-II Pro FPGA 2958 Slices
26 Embedded Multipliers

300-MHz Clock Speed
300 MS/S

TBD

18 x 18 Parallel
Transposed FIR Filter
(51 Tap Symmetric)

Virtex-4 FPGA 0 Slices
51 DSP48 Slices

400-MHz Clock Speed
400 MS/S

TBD

17 x 18 Systolic FIR Filter
(51 Tap Non-Symmetric)

Virtex-4 FPGA 0 Slices
51 DSP48 Slices

450-MHz Clock Speed
450 MS/S

TBD

17 x 18 Systolic FIR Filter
(51 Tap Symmetric)

Virtex-4 FPGA 477 Slices
26 DSP48 Slices

400-MHz Clock Speed
400 MS/S

TBD

https://secure.xilinx.com/webreg/clickthrough.do?cid=30158
http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 87
UG073 (v2.7) May 15, 2008

Conclusion
R

Conclusion
Parallel FIR filters are commonly used in high-performance DSP applications. With the
introduction of the Virtex-4 DSP48 slice, DSPs can be achieved in a smaller area, thereby
producing higher performance with less power penalty.

Designers have tremendous flexibility in determining the desired implementation. They
also have the ability to change the implementation parameters. The ability to “tune” a filter
in an existing system or to have multiple filter settings is a distinct advantage. By making
the necessary coefficient changes in the synthesizable HDL code, the reconfigurable nature
of the FPGA is fully exploited. The coefficients can be either hardwired to the A input of
the DSP48 slices or stored in small memories and selected to change the filter
characteristics. The HDL and System Generator for DSP reference designs are easily
modified to achieve specific requirements.

http://www.xilinx.com

88 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 4: Parallel FIR Filters
R

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 89
UG073 (v2.7) May 15, 2008

R

Chapter 5

Semi-Parallel FIR Filters

This chapter describes the implementation of semi-parallel or hardware-folded, full-
precision FIR filters using the Virtex®-4 DSP48 slice. Because the Virtex-4 architecture is
flexible, constructing FIR filters for specific application requirements is practical. Creating
optimum filter structures of a semi-parallel nature saves resources and potential clock
cycles. Therefore, optimum filter structures of a semi-parallel nature can be created
without draining resources or clock cycles.

This chapter demonstrates two semi-parallel filter architectures: the four-multiplier FIR
filter using distributed RAM and the three-multiplier FIR filter using block RAM. These
filters illustrate how resources are saved by using available clock cycles and hardware-
folding techniques. Reference design files are available for system generator in DSP,
VHDL, and Verilog. The reference designs permit filter parameter changes including
coefficients and the number of taps.

This chapter contains the following sections:

• “Overview”

• “Semi-Parallel FIR Filter Structure”

• “Four-Multiplier, Distributed-RAM-Based, Semi-Parallel FIR Filter”

• “Three-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter”

• “Other Semi-Parallel FIR Filter Structures”

• “Conclusion”

Overview
A large array of filtering techniques are available to signal processing engineers. A
common filter implementation to exploit available clock cycles, while still achieving
moderate to high sample rates, is the semi-parallel (also known as folded-hardware) FIR
filter. In the past, this structure used the Virtex-II embedded multipliers and slice-based
arithmetic logic. However, the Virtex-4 DSP48 slice introduces higher performance
multiplication and arithmetic capabilities to enhance the use of semi-parallel FIR filters in
FPGA-based DSP designs.

Semi-Parallel FIR Filter Structure
A wide variety of filter architectures are available to FPGA designers due to the flexible
nature of FPGAs. The type of architecture is typically determined by the amount of
processing required in the number of available clock cycles. The two most important
factors are:

• Sample Rate (Fs)

http://www.xilinx.com

90 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 5: Semi-Parallel FIR Filters
R

• Number of Coefficients (N)

As illustrated in Figure 5-1, as the sample rate increases and the number of coefficients
increase, the architecture selected for a desired FIR filter becomes a more parallel structure
involving more multiply-add elements. Chapter 3, “MACC FIR Filters” addresses the
details of sequential processing FIR filters including the single and dual MACC FIR Filter.
Chapter 4, “Parallel FIR Filters” investigates the polar extreme of the fully-parallel FIR
filter required for the highest sample rate filters. This chapter examines the common
scenario requiring multiple processing elements working over numerous clock cycles to
achieve the result. These techniques are often referred to as semi-parallel and are used to
maximize efficiency of the filter (see Figure 5-1).

The semi-parallel FIR structure implements the general FIR filter equation of a summation
of products defined as shown in Equation 5-1.

Equation 5-1

X-Ref Target - Figure 5-1

Figure 5-1: Selecting Filter Architectures

10

50

500
400
300

200

100

1

Semi-Parallel FIR Filters
(Chapter 5)

Sequential FIR Filters (Chapter 3)

Parallel FIR Filters (Chapter 4)

10
20 50 500200

100 1000

UG073_c5_01_082404

Number of Coefficients (N)
Log Scale

S
am

pl
e

R
at

e
(M

H
z)

Lo
g

S
ca

le

5
1

0.5

5

yn xn i– hi

i 0=

N 1–

∑=

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 91
UG073 (v2.7) May 15, 2008

Four-Multiplier, Distributed-RAM-Based, Semi-Parallel FIR Filter
R

Here a set of N coefficients is multiplied by N respective time series data samples, and the
results are summed together to form an individual result. The values of the coefficients
determine the characteristics of the filter (for example, a low-pass filter).

Along with achievable clock speed and the number of coefficients (N), the number of
multipliers (M) is also a factor in calculating semi-parallel FIR filter performance. The
following equation demonstrates that the more multipliers used, the greater the achievable
performance of the filter.

Maximum Input Sample Rate = (Clock speed/Number of Coefficients) x Number of Multipliers

The Maximum Input Sample Rate equation is rearranged to determine how many
multipliers to use for a particular semi-parallel architecture:

Number of Multipliers = (Maximum Input Sample rate x Number of Coefficients)/Clock speed

The number of clock cycles between each result of the FIR filter is determined by the
following equation:

Number of Clock Cycles per Result = Number of Coefficients / Number of Multipliers

The bit growth on the output of the filter is the same for all FIR filters and is explained in
“Bit Growth” in Chapter 3. The large, 48-bit internal precision of the DSP48 slice means
that little concern needs to be paid to the internal bit growth of the filter.

Four-Multiplier, Distributed-RAM-Based, Semi-Parallel FIR Filter
After the required number of multipliers is determined, there is an extendable architecture
using the DSP48 slice as the basis of the filter. This section assumes the specifications in
Table 5-1 and describes the filter implementation and its functions.

Table 5-1: Four-Multiplier, Semi-Parallel FIR Filter Specifications

Sampling Rate 112.5 MS/S

Number of Coefficients 16

Assumed Clock Speed 450 MHz

Input Data Width 18 Bits

Output Data Width 18 Bits

Number of Multipliers 4

Number of Clock Cycles Between Each Result 4

http://www.xilinx.com

92 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 5: Semi-Parallel FIR Filters
R

Figure 5-2 illustrates the main structure for the four-multiplier, semi-parallel FIR filter.

The DSP48 slice arithmetic units are designed to be chained together easily and efficiently
due to dedicated routing between slices. Figure 5-2 shows how the four DSP48 slice
multiply-add elements are cascaded together to form the main part of the filter structure.
Figure 5-3 provides a detailed view of the main multiply-add elements. The two pipeline
registers are used on the B input to compensate for the register on the output of the
coefficient memory.

An extra DSP48 slice is required on the end to perform the accumulation of the partial
results, thus creating the final result. A new result is created every four cycles. Every four
cycles, the accumulation must be reset to the first partial value of the next result. As in the
MACC FIR Filter, this reset (or load) is achieved by changing the OPMODE value of the
DSP48 slice for a single cycle. OPMODE is changed from binary 0010010 to binary

X-Ref Target - Figure 5-2

Figure 5-2: Four-Multiplier, Semi-Parallel FIR Filter in Accumulation Mode

UG073_c5_02_083105

DSP48 Slice
OPMODE = 0110101

18

Coefficients
4 x 18

Coefficients
4 x 18

Coefficients
4 x 18

Coefficients
4 x 18

0

B

DSP48 Slice
OPMODE = 0010101

18

B

DSP48 Slice
OPMODE = 0010101

18

B

DSP48 Slice
OPMODE = 0010101

18

B

DSP48 Slice
OPMODE = 0010010

SRL16E SRL16E SRL16E SRL16E

18

WE WE1 WE2 WE3

40

WE4P
PCIN

X-Ref Target - Figure 5-3

Figure 5-3: Detailed Diagram of a Single Multiply-Add Element

UG073_c5_03_083105

DSP48 Slice
OPMODE = 0010101

A

B

PCIN PCOUT

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 93
UG073 (v2.7) May 15, 2008

Four-Multiplier, Distributed-RAM-Based, Semi-Parallel FIR Filter
R

0010000 (just a single bit change). At the same time, the capture register is also enabled,
and the final result is stored on the output (see Figure 5-4).

Control logic is required to make this dynamic change occur. The specifics are detailed in
“Control Logic and Address Sequencing,” page 94.

Data Memory Buffers
This example uses eight memories. Four SRL16Es are used as data buffers. Each SRL16E
holds the four samples needed for the result. They are written to once every four cycles
(the input data rate is 4x slower than the internal rate), and the shifting characteristic of the
SRL16E is exploited to pass old samples along the time series buffer. The extra register on
the output of each data buffer is required to match the data buffer pipeline with the extra
delay caused by the adder chain. The extra register should not cost extra resources because
it is already present in the slice containing the SRL16E (see Figure 5-5).

As long as the depth does not exceed 16, the resources required for each of these input
memory buffers is determined by the bit width of the input data (n). Therefore, n/2 SliceM
is required for each memory buffer, leading to nine slices per buffer in this filter example.
For depths up to 32, resources are a little more than doubled because two SRL16Es are
needed, as well as an extra output multiplexer. For more information on SliceM, refer to the
CLB section in the Virtex-4 User Guide.

X-Ref Target - Figure 5-4

Figure 5-4: Four-Multiplier, Semi-Parallel FIR Filter at the Start of a New Result Cycle

UG073_c5_04_083105

DSP48 Slice
OPMODE = 0110101

18

Coefficients
4 x 18

Coefficients
4 x 18

Coefficients
4 x 18

Coefficients
4 x 18

0

B

DSP48 Slice
OPMODE = 0010101

18

B

DSP48 Slice
OPMODE = 0010101

18

B

DSP48 Slice
OPMODE = 0010101

18

B

DSP48 Slice
OPMODE = 0010010

SRL16E SRL16E SRL16E SRL16E

18

WE WE1 WE2 WE3

40

WE4P

PCIN

0

X-Ref Target - Figure 5-5

Figure 5-5: Single Bit of One Input Memory Buffer

UG073_c5_05_081805

1/2 SliceM

Register
SRL16E

DOUT

ADDR[3:0]

WE
DIN

http://www.xilinx.com

94 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 5: Semi-Parallel FIR Filters
R

Coefficient Memory
The coefficients are divided up into four groups of four. This arrangement is determined
by dividing the total number of coefficients by the number of multipliers used in the
implementation. In this example, if the total number of coefficients is 16, and the number of
multipliers is four, four coefficients per memory are needed.

Filters with a total number of coefficients that are integer-divisible by the required number
of multipliers are very desirable. System designers should take this into account when
designing their filters to get the optimal filter specification for the implementation used.
Otherwise, the coefficients have to be padded with zeros to achieve a number of
coefficients that are integer-divisible by the number of multipliers.

The coefficients are simply split into groups according to their order. The first four in the
first memory, the second four in the second memory, and so on (see Figure 5-6).
X-Ref Target - Figure 5-6

The adder chain architecture of the DSP48 slice means that each Multiply-Add cascade
multiplication must be delayed by a single cycle so that the results synchronize
appropriately when added together. This delay is achieved by addressing of the memories
and is explained in “Control Logic and Address Sequencing.”

Distributed RAM (refer to Chapter 1, “XtremeDSP Design Considerations,” for detailed
information) is used for the coefficient memories. Distributed RAM is smaller and
abundant and allows efficient use of the larger block RAMs, especially given their scarcity.
The larger block RAM is used when the number of coefficients per memory starts to
increase to the point where the cost in slice resources becomes significant (for example,
greater than 64).

The total cost of the current example is 36 slices. The coefficient width is 18 bits, and
distributed RAMs cost n/2 slices (that is, nine slices per memory and four memories). For
larger distributed RAMs (larger than 16 elements), the size begins to increase as Write
Enable (WE) control logic and an output multiplexer is needed. The distributed memory
v7.0 in the CORE Generator™ system can be easily used to create the little distributed
RAMs and get accurate size estimates.

Control Logic and Address Sequencing
The Control Logic and Address Sequencing is the most important and complicated aspect
of semi-parallel FIR filters and is crucial to the operation of the filter. The control logic is
discussed in two separate sections:

• Memory Addressing

• Clock Enable Sequencing

Figure 5-6: Coefficient Memory Arrangement

UG073_c5_06_060804

Coefficients Driving
First DSP48 Slice

Coefficients Driving
Second DSP48 Slice

Coefficients Driving
Third DSP48 Slice

Coefficients Driving
Fourth DSP48 Slice

h0

h1
h2
h3

h4
h5

h6
h7

h8
h9

h10
h11

h12

h13

h14
h15

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 95
UG073 (v2.7) May 15, 2008

Four-Multiplier, Distributed-RAM-Based, Semi-Parallel FIR Filter
R

Memory addressing must provide the necessary delay for each multiply-add element
mentioned in “Coefficient Memory,” page 94, caused by the adder chain. This is not the
case when using an adder tree; the DSP48 slice is most efficiently used in adder chains.

Figure 5-7 illustrates the control logic required to create the necessary memory addressing.
The counter creates the fundamental zero through three count. A register in the control
path then delays the coefficient memory and data buffer address by one cycle. Each
successive delay is used to address both the coefficient memory and the data buffer of their
respective multiply-add elements, e.g., a single delay for the second multiply-add element,
two delays for the third multiply-add element, etc. This is extensible control logic for M
number of multipliers.
X-Ref Target - Figure 5-7

Figure 5-7 also shows clock enable sequencing. A relational operator is required to
determine when the count limited counter resets its count. This signal is High for one clock
cycle every four cycles to represent the input and output data rates. The Clock Enable
signal is delayed by a single register just like the coefficient address, and each delayed
version of the signal is tied to the respective section of the filter. Refer to Figure 5-2 to see

Figure 5-7: Control Logic for the Four-Multiplier, Semi-Parallel FIR Filter

UG073_c5_07_081805

addr

Coefficient
Memory 0

and
Data Buffer 0

Address

Coefficient
Memory 1

and
Data Buffer 1

Address

Coefficient
Memory 2

and
Data Buffer 2

Address

Coefficient
Memory 3

and
Data Buffer 3

Address

Counter
0 -> N/M - 1

N/M - 2

WE WE1 WE2 WE3 WE4

z-5

http://www.xilinx.com

96 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 5: Semi-Parallel FIR Filters
R

the signal connections to the element. Figure 5-8 illustrates the control logic waveforms
changing over time.

Resource Utilization
Table 5-2 shows the resources used by a 16-tap, four-multiplier, distributed-RAM-based,
semi-parallel FIR filter.

X-Ref Target - Figure 5-8

Figure 5-8: Control Waveforms for Semi-Parallel FIR Filters

Clock

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5)Input Data

y(n-1)0 y(n) y(n-2)Output Data

0 01 2 3 3 3 3 322 221 00 1 10 1
Address for First DSP48

Slice MADD Element

Control WE

0 213 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
Address for Second DSP48

Slice MADD Element

Control WE1

32 10 2 3 0 1 2 23 0 1 13 0 2 3 0 1 2 3
Address for Third DSP48

Slice Design Element

Control WE2

21 03 1 2 3 0 1 12 3 0 02 3 1 2 3 0 1 2
Address for Fourth DSP48

Slice Design Element

Control WE3

UG073_c5_08_081805

Table 5-2: Resource Utilization

Elements Slices DSP48 Slices

Multiply-Add 5

Input Data Buffers 36

Coefficient Memories 36

Capture Register 20

Main Control Counter 2

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 97
UG073 (v2.7) May 15, 2008

Three-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter
R

Three-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter
This section investigates a different filter structure, the three-multiplier, block-RAM-based,
semi-parallel FIR filter (see Figure 5-9).
X-Ref Target - Figure 5-9

The decision to use this implementation is based on the filter specification. The filter
specifications are described in Table 5-3.

The structure is similar to the four-multiplier filter studied earlier. In this instance, the
lower sample rate of the filter specification and the larger number of taps indicates that only
three multipliers are required, each servicing 100 coefficients, leading to a new result
yielded every 100 clock cycles.

Each memory buffer is required to hold 100 coefficients and also 100 input data history
values. The dedicated Virtex-4 block RAM can be used in dual-port mode with a cyclic
data buffer established in the first half of the memory to serve the shifting input data series.

Relational Operator 1

Multiply-Add Element Control 9 (3 per extra element)

Total 104 5

Table 5-2: Resource Utilization (Continued)

Elements Slices DSP48 Slices

Figure 5-9: Three-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter

UG073_c5_09_083105
DSP48 Slice

OPMODE = 0’b0110101 (a x B +C)

18

0

B18
Cyclic Data

Buffer
100 x 18

Coefficients
100 x 18

Cyclic Data
Buffer

100 x 18

Coefficients
100 x 18

Cyclic Data
Buffer

100 x 18

Coefficients
100 x 18

DSP48 Slice
OPMODE = 0010101

18

B

DSP48 Slice
OPMODE = 0010101

18

B

DSP48 Slice
OPMODE = 0010010

44P

WE3

PCIN

WE WE1 WE2

Table 5-3: Three-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter
Specifications

Parameter Value

Sampling Rate 4.5 MS/S

Number of Coefficients 300

Assumed Clock Speed 450 MHz

Input Data Width 18 bits

Output Data Width 18 bits

Number of Mulipliers 3

Number of Clock Cycles Between Each Result 100

http://www.xilinx.com

98 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 5: Semi-Parallel FIR Filters
R

Chapter 3, “MACC FIR Filters,” describes using these memories to store the input data
series, the coefficients, and the control logic required to make the cyclic RAM buffer
operate. The rest of the control logic and data flow is identical to the first filter investigated
except that only three multipliers are serviced; therefore, the control logic can be scaled
back by one element. Also note that the WE signals are the inversion of their respective CE
pair.

Table 5-4 shows the resource utilization for the 300-tap, three-multiplier, semi-parallel FIR
filter.

Other Semi-Parallel FIR Filter Structures
DSP functions can be implemented in different ways. There is never one solution fitting all
requirements for all specifications. For example, should distributed or block RAM be used
for data storage? Should a systolic or a transposed implementation be used for a given
filter? The goal is to achieve maximum performance and low resource utilization. This
section describes the different single-rate FIR filter implementations using the Virtex-4
architecture and discusses the advantages and disadvantages of their structures.

Table 5-4: Resource Utilization

Elements Slices DSP48 Slices Block RAMs

Multiply-Add 4

Input Data Buffers and
Coefficient Memories

3

Capture Register 20

Main Control Counter 5

Relational Operator 1

Multiply-Add Element Control 12 (6 per extra
element)

Total 38 4 3

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 99
UG073 (v2.7) May 15, 2008

Other Semi-Parallel FIR Filter Structures
R

Semi-Parallel, Transposed, Four-Multiplier FIR Filter
This structure is very different to the main architecture discussed in this chapter (see
Figure 5-10).

Only one data storage buffer is required, typically a block RAM. The data buffer output is
also broadcast to all DSP48 slices. Each DSP48 slice works in accumulator mode until the
last cycle of the calculation, when OPMODE changes to form an adder chain, and then
passes the results to the next DSP48 slice. Actually, four different results are being
calculated at one instance in time, and the completed combined result is output from the
last DSP48 slice. The other DSP48 slices are each calculating their respective portion of
subsequent output results.

X-Ref Target - Figure 5-10

Figure 5-10: Semi-Parallel, Transposed FIR Filter

18

UG073_c5_10_090105

Coefficients
100 x 36

Cyclic Data
Buffer

400 x 18

18

A

B

DSP48 Slice
OPMODE = 0100101

44

CE

18

A

B

DSP48 Slice
OPMODE = 0100101

18

A

B

DSP48 Slice
OPMODE = 0100101

18

A

B

DSP48 Slice
OPMODE = 0’b0011100 (C+PCIN)

Coefficients
100 x 36

36

36

http://www.xilinx.com

100 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 5: Semi-Parallel FIR Filters
R

Figure 5-11 shows the filter structure every time the DSP48 slice OPMODE is changed,
occurring once every result cycle.

Advantages and Disadvantages
The advantages to using the Semi-Parallel, Transposed FIR filter are:

• Lower resource utilization: One less DSP48 slice is required, and only a single input
memory buffer is used.

• Low latency: The transpose nature of the filter implementation is lower than the
Systolic approach. The latency is equal to the size of one coefficient bank.

X-Ref Target - Figure 5-11

Figure 5-11: Semi-Parallel, Transposed FIR Filter (Combination of the Results)

18

UG073_c5_11_090105

Coefficients
100 x 36

18

A

B

DSP48 Slice
OPMODE = 0010101

43

CE

18

A

B

DSP48 Slice
OPMODE = 0010101

18

A

B

DSP48 Slice
OPMODE = 0010101

18

A

B

DSP48 Slice
OPMODE = 0010101

Coefficients
100 x 36

36

36

Cycle Data
Buffer

400 x 18

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 101
UG073 (v2.7) May 15, 2008

Other Semi-Parallel FIR Filter Structures
R

The disadvantages to using the Semi-Parallel, Transposed FIR filter are:

• Lower performance: The broadcast nature of the data buffer output can limit
performance of the filter.

• Control logic: This logic is more difficult to understand, but is still of a compact
nature.

Rounding
The number of bits on the output of the filter is much larger than the input and must be
reduced to a manageable width. The output can be truncated by simply selecting the MSBs
required from the filter. However, truncation introduces an undesirable DC shift on the
data set.

Due to the nature of two’s complement numbers, negative numbers become more
negative, and positive numbers also become more negative. The DC shift can be improved
with the use of symmetric rounding, where positive numbers are rounded up and negative
numbers are rounded down. The rounding capability built into the DSP48 slice maintains
performance and minimizes the use of FPGA fabric. This is ingrained in the DSP48 slice via
the C input port and also the Carry-In port. Rounding is achieved in the following manner:

For positive numbers: Binary Data Value + 0.10000… and then truncate

For negative numbers: Binary Data Value + 0.01111... and then truncate

The actual implementation always adds 0.0111… to the data value using the C port input
as in the negative case, and then it adds the extra carry in required to adjust for positive
numbers. Table 5-5 illustrates some examples of symmetric rounding.

In the instance of the semi-parallel FIR filter, an extra DSP48 slice is required to perform the
rounding functionality. It cannot be ingrained into the final accumulator because the
rounding cannot be done on the final result. If the C input is used and the accumulator is
put into three-input add mode, then rounding is performed on the partial result. The
moremultipliers in the filter, the worse the rounding performance because even fewer
inner products are included in the result. An extra DSP48 slice is required to perform the
rounding.

Due to the finite nature of the DSP48 slices, it is recommended that the symmetric rounder
be implemented in the fabric outside of the slices. The function is small and does not have
to run at a high frequency because the results are running at the much slower input data
rate.

Table 5-5: Symmetric Rounding Examples

Decimal Value Binary Value Add Round Truncate: Finish Rounded Value

2.4375 0010.0111 0010.1111 0010 2

2.5 0010.1000 0011.0000 0011 3

2.5625 0010.1001 0011.0001 0011 3

-2.4375 1101.1001 1110.0000 1110 -2

-2.5 1101.1000 1101.1111 1101 -3

-2.5625 1101.0111 1101.1110 1101 -3

http://www.xilinx.com

102 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 5: Semi-Parallel FIR Filters
R

Performance
Compared to legacy devices, Virtex-4 devices improve the speed of the design, shrink the
area, and reduce power drawn by the filter. All designs assume 18-bit data and 18-bit
coefficient widths. Table 5-6 through Table 5-8 compare the specifications of three filters.

Reference Design Files
The reference design files associated with this chapter, ug073_c05.zip, can be found at:
https://secure.xilinx.com/webreg/clickthrough.do?cid=30159

Table 5-6: 4-Multiplier, Memory-Based, Semi-Parallel FIR Filter Specifications
(16-Tap Symmetric)

Parameter Specification

Size 94 slices, 5 DSP48 slices

Performance 458-MHz clock speed, 114.5 MS/S

Power TBD Watt

Table 5-7: 3-Multiplier, Block-RAM-Based, Semi-Parallel FIR Filter Specifications
(300-Tap Symmetric)

Parameter Specification

Size 38 slices, 4 DSP48 slices, 4 block RAMs

Performance 450-MHz clock speed, 4.5 MS/S

Power TBD Watt

Table 5-8: 4-Multiplier, Block-RAM-Based, Semi-Parallel Transposed FIR Filter
Specifications (400-Tap Symmetric)

Parameter Specification

Size 46 slices, 4 DSP48 slices, 2 block RAMs

Performance 450-MHz clock speed, 4.5 MS/S

Power TBD Watt

https://secure.xilinx.com/webreg/clickthrough.do?cid=30159
http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 103
UG073 (v2.7) May 15, 2008

Conclusion
R

Conclusion
Semi-parallel FIR filters are probably the most frequently used filter techniques in Virtex-4
high-performance DSP applications. Figure 5-12 shows the necessary implementation
decisions and provides guidelines for choosing the required structure based on the filter
specifications.
X-Ref Target - Figure 5-12

The major lines indicate the guideline thresholds between given implementation
techniques. For instance, the shift to using block RAM is desirable when the number of
taps needed to be stored in a given memory exceeds 32. This correlates to two SRL16Es for
the data buffers. If more than two SRL16Es are used in a data buffer, it will be difficult to
reach the high clock rate indicated in Chapter 3, “MACC FIR Filters,” Chapter 4, “Parallel
FIR Filters,” and this chapter. However, this is only a guideline. A great deal depends upon
how many slices or block RAMs are remaining in the device, the power requirements, and
the available clock frequencies. A given filter implementation is subjective because a
different set of restrictions is provided by every application and design.

Figure 5-12: Selecting the Correct Filter Architecture for Semi-Parallel FIR Filters

Semi-Parallel
Distributed
Memory FIR

Increasing
Number of
Multipliers

Semi-Parallel
Block RAM FIR

Systolic FIR (Symmetric & Non-Symmetric)

Block RAMDistributed Memory Normal Control
MACC FIR

Number of Coefficients (N)
Log Scale

S
am

pl
e

R
at

e
(M

H
z)

Lo
g

S
ca

le

Embedded
Control

MACC FIR

Distributed
Memory

MACC FIR

Transposed FIR
Symmetric
MACC FIR

UG072_c5_12_090105

10-Multiplier
Semi-Parallel

FIR

1000
500505 20 200

200

500
400
300

50

5

100101

1

0.5

10

100

http://www.xilinx.com

104 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 5: Semi-Parallel FIR Filters
R

In general, the guidelines provided in the past three chapters should enable designers to
make sensible and efficient decisions when designing filters. These chapters also complete
the foundations required for filter construction in Virtex-4 devices so that more complex,
multi-channel and interpolation or decimation multirate filters can be constructed. The
supplied referenced designs further aid in understanding and utilizing these filters.

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 105
UG073 (v2.7) May 15, 2008

R

Chapter 6

Multichannel FIR Filters

This chapter illustrates the use of the advanced Virtex®-4 DSP features when
implementing a widely used DSP function known as multichannel FIR filtering.
Multichannel filters are used to filter multiple input sample streams in a variety of
applications, including communications and multimedia.

The main advantage of using a multichannel filter is leveraging very fast math elements
across multiple input streams (i.e., channels) with much lower sample rates. This
technique increases silicon efficiency by a factor almost equal to the number of channels.

The Virtex-4 DSP48 slice is one of the new and highly innovative diffused elements that
form the basis of the Application Specific Modular BLock (ASMBL™) architecture. This
modular architecture enables Xilinx to rapidly and cost-effectively build FPGA platforms
by combining different elements, such as logic, memory, processors, I/O, and of course,
DSP functionality targeting specific applications such as wireless or video DSP.

The Virtex-4 DSP48 slice contains the basic elements of classic FIR filters: a multiplier
followed by an adder, delay or pipeline registers, plus the ability to cascade an input
stream (B bus) and an output stream (P bus) without exiting to a general slice logic.

The resulting DSP designs can have optional pipelining that permits aggregate
multichannel sample rates of up to 500 million samples per second, while minimizing
power consumption and external slice logic. In the implementation described in this
chapter, multichannel filtering can be looked at as time-multiplexed, single-channel filters.

In a typical multichannel filtering scenario, multiple input channels are filtered using a
separate digital filter for each channel. Due to the high performance of the DSP48 block
within the Virtex-4 device, a single digital filter can be used to filter all eight input channels
by clocking the single filter with an 8x clock. This implementation uses 1/8th of the total
FPGA resource compared to implementing each channel separately.

This chapter contains the following sections:

• “Multichannel FIR Implementation Overview”

• “Combining Separate Input Streams into an Interleaved Stream”

• “Conclusion”

Multichannel FIR Implementation Overview

Top Level
The implementation of a six-channel, eight-tap FIR filter using DSP48 elements is depicted
in Figure 6-1. The design elements used in the implementation include the following:

http://www.xilinx.com

106 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 6: Multichannel FIR Filters
R

• Six-to-one multiplexer that is implemented in slice logic as described in “Combining
Separate Input Streams into an Interleaved Stream,” page 107

• Coefficient ROMs using SRL16Es connected in “head-to-tail” fashion

• Input sample “delay-by-seven” SRL16Es to hold the interleaved streams

• DSP48 slices for multiplication and additions
X-Ref Target - Figure 6-1

All datapaths and coefficient paths for this example are 8 bits wide. The coefficient ROMs
and input sample delay elements are designed using SRL16Es. The SRL16E is a very
compact and efficient memory element, running at the very high 6x clock rate. For
adaptive filtering, where coefficients can be different depending upon their input signals,
coefficient RAMs can be used to update the coefficient values.

The DSP48 slices and interconnects also run at the 6x clock rate, providing unparalleled
performance for multiplication and additions in today’s FPGAs.

DSP48 Tile
The multichannel filter block is a cascade implementation of the DSP48 tile. Each tile is
implemented as shown in Figure 6-2. An SRL16E is used to shift the input from the six
channels. The product cascade path between two DSP48 slices within the tile can be used

Figure 6-1: Block Diagram of a 6-Channel, 8-Tap FIR Filter

UG073_c6_01_090105

XXX X

xo(n)

x1(n)

x2(n)

x3(n)

x4(n)

x5(n)

Z-7Z-7 Z-7

 SRL16
Coefficient ROM

SRL16
Coefficient ROM

SRL16
Coefficient ROM

SRL16
Coefficient ROM

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 107
UG073 (v2.7) May 15, 2008

Combining Separate Input Streams into an Interleaved Stream
R

to bring the product output from one tap into the cascading input of the next tap for the
final addition.

Combining Separate Input Streams into an Interleaved Stream
As shown in Figure 6-3, six separate video input sample streams must be combined into
one interleaved sample stream for this multichannel FIR filter example. Conceptually, a
high-speed, six-to-one multiplexer feeds a seven-deep SRL16E shift register to accomplish
this task. The SRL16E depth is the number of channels plus one.
X-Ref Target - Figure 6-3

For each clock tick, the counter selects a different input stream (in order), and then it
supplies this value to the SRL16E shift register. After six clock ticks, the six input samples
for a given time period are loaded sequentially, or interleaved into a single stream.

A six-to-one multiplexer must be designed carefully, as it is constructed with slice logic
that must run at the 6x clock rate. At 446 MHz, good design practices dictate point-to-point
connections, a maximum of one Look-Up Table (LUT) between flip-flops, and RLOC
techniques.

To reduce the high fanouts on the selected lines of the multiplexer, the conceptual
multiplexer in Figure 6-3 is implemented as shown in Figure 6-4. This circuit is repeated
for all eight bits of the input sample width.

X-Ref Target - Figure 6-2

Figure 6-2: DSP48 Tile Cascading Diagram

UG073_c6_02_090105

XC1

8 Bits

SRL16
 Taps

Input:
6 Channels

Add

SRL16
 Taps

C2 X

Figure 6-3: Converting Eight Input Streams to One Interleaved Input Stream

ug073_c6_03_060904

Shift Register

18

3

Counter

X5(n-1) X4(n-1) X3(n-1) X2(n-1) X1(n-1) X0(n-1)X6(n-1)

http://www.xilinx.com

108 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 6: Multichannel FIR Filters
R

X-Ref Target - Figure 6-4

Coefficient RAM
The six coefficient sets are stored in the SRL16 memories. If the same coefficient set is used
for all channels, then only a single set is stored in the SRL16. If the different channels use
different coefficients, then six sets of SRL16s are used for each tap. (Six RAMs can be used
instead, one for each channel.)

Each RAM is 8 bits wide and six deep, corresponding to the six taps. The optional Load
input is used to change or load a new coefficient set. Six clock cycles are needed to load all
six RAMs. Input C1 is used to load the eight locations of RAM1 that are used for Channel1.
C8 is used to load the eight locations of RAM8 that are used for Channel8. At the eighth
clock, all eight locations of the eight RAMs are loaded; the filter then becomes an adaptive
filter. The speed of the overall filter is reduced when the coefficients are stored in the RAM.

Control Logic
The control logic is used to ensure proper functioning of the different blocks. If the
coefficient RAM block is used, the control logic ensures that the load signal is High for six
clocks. Different tap-enabled signals are used to make sure that RAM values are read into
the DSP48 correctly. For instance, clock1 reads in the first location from RAM1, but the first
location of RAM2 is read only at the clock number equal to shift register length. The design
assumes a clock is running at 6x of the input signals. The DCM can also be used to multiply
the clock if the only available clock is running at the input channel frequency.

The final output is enabled by the control logic after the initial latency.

Figure 6-4: High-Speed 8-to-1 Multiplexer Used in the Filter

UG073_c6_04_090105

100000

Shift Register

'0'

'1''1'

X0(n)

X1(n) LUT

LUT

X2(n)

X3(n) LUT

X4(n)

X5(n) LUT

LUT

LUT

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 109
UG073 (v2.7) May 15, 2008

Reference Design Files
R

Implementation Results
The initial latency of the design is equal to the [(number of channels + 1) * number of taps]
plus three pipe stages within the DSP48. After placement and routing, the design uses 216
slices and eight DSP48 blocks. The design has a speed of 454 MHz.

Reference Design Files
The reference design files associated with this chapter, ug073_c06.zip, can be found at:
https://secure.xilinx.com/webreg/clickthrough.do?cid=30161

Conclusion
The available arithmetic functions within the DSP48 block, combined with fine granularity
and high speed, makes the Virtex-4 FPGA an ideal device to implement high-speed,
multichannel filter functions. The design shows the efficient implementation of a
six-channel, eight-tap filter. Due to the high-performance capability within the DSP48
block, a single channel, eight-tap filter can be used to implement the six-channel, eight-tap
filter, reducing the area utilization by 1/6th.

https://secure.xilinx.com/webreg/clickthrough.do?cid=30161
http://www.xilinx.com

110 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 6: Multichannel FIR Filters
R

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 111
UG073 (v2.7) May 15, 2008

R

Chapter 7

Multirate Filters Using the DSP48

Multirate filtering is used to change the rate or frequency of sampling of an input signal to
an arbitrary rate or frequency at the output. Multirate filtering is widely used in video
applications for interpolation or decimation of video data.

The DSP48 slice is ideally suited to implement multirate sampling because of its high
speed and filter-like structure. The cascaded data input and output paths, pipeline
registers, high precision two’s complement multiplier followed by an adder/subtracter
and accumulation capability provide needed elements for multirate filtering.

This chapter contains the following sections:

• “Introduction”

• “Interpolation Using the DSP48 Slice”

• “Decimation Using the DSP48 Slice”

Introduction
Digital video applications require an enormous amount of bandwidth. Storing a short clip
of video can often lead to hard-disk space limitations, and transmitting a short clip of video
can lead to transmission media bandwidth limitations. In some of these applications,
multirate filtering is used to reduce the sample rate and the number of pixels needed to
represent the image. This process is called decimation. Applications for decimation include
4:4:4 to 4:2:2 conversion and High-Definition TV (HDTV) to Standard-Definition TV
(SDTV) conversion.

Other applications, such as medical imaging, require the user to represent the image in as
much detail as possible, similar to zooming on a picture. Here, filtering is used to increase
the sampling rate so that the image is represented by a larger number of pixels than are
normally used. This process is called interpolation. Applications for interpolation include
SDTV to HDTV signal conversion.

Another use of the multirate DSP technique is to increase computational efficiency.
Changing from a single-rate filter to a multirate filter can reduce the number of multiply
and accumulate operations needed to implement a particular algorithm. Here, decimation
is first used to lower the system rate. Then the particular algorithm is implemented on this
lower rate signal, and the algorithm output is interpolated to bring the sample rate back to
the original rate.

The process of using interpolation and decimation to resize an image is called scaling.
Scaling of a video image involves a two-dimensional array. Two 1-D samples can be
applied in series to achieve a 2-D sampling change. In the example shown in Figure 7-1, an
interpolator and a decimator are used together to achieve the desired final image scaling.

http://www.xilinx.com

112 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 7: Multirate Filters Using the DSP48
R

X-Ref Target - Figure 7-1

Nyquist Theorem
The Nyquist theorem states that when an analog waveform is digitized, samples must be
recorded at greater than twice the highest frequency component in the waveform. Stated
differently, to reconstruct (interpolate) a signal from a sequence of samples, enough
samples must be recorded to capture the peaks and troughs of the original waveform.

When a waveform is sampled at less than twice its highest frequency component, the
reconstructed waveform effectively only contributes noise. This phenomenon called
"aliasing" (the high frequencies are under an alias) is the reason that the best digital audio is
sampled at 44,000 Hz – twice the average upper limit of human hearing.

Interpolation and Decimation
Interpolation or upsampling is the process of representing a signal with more samples.
Decimation or downsampling is the process of representing a signal with less samples.

Conceptually, interpolation is implemented by inserting zeros between samples as shown
in Figure 7-2. To get a 1: L interpolator, L-1 zeros are inserted between every sample. A
filter is used to replace the zero values with the appropriate non-zero values.
X-Ref Target - Figure 7-2

The equation for a 1:L interpolator is given in Equation 7-1. In a 1:L interpolator, the output
data rate is L times the input data rate. L is also called the interpolation factor.

Figure 7-1: Image Rescaling Using Interpolation Followed By Decimation

Interpolator
Upscaling by

a Factor L

Low-Pass,
Anti-Aliasing,

Imaging
Filter

Input x[n] Output y[n]
= L/M * x[n]

UG073_c7_01_091605

Decimator
Downscaling by

a Factor M

Figure 7-2: Input Signal vs. 1:2 Interpolated Signal

Input Signal 1:2 Interpolated Signal

UG073_c7_02_063004

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 113
UG073 (v2.7) May 15, 2008

Introduction
R

Equation 7-1

Where n = 0, ±L, ±2L, and so forth.

Interpolation can be done in multiple stages. For example, to achieve interpolation by a
factor of 15, two interpolation stages can be used, where the first stage interpolates by a
factor of three and the second stage interpolates by a factor of five. The computational and
memory requirements of interpolation are both reduced by multistage interpolation.

Decimation is implemented by keeping every Mth sample and throwing away the samples
in between, as shown in Figure 7-3. If a signal is defined by n samples, to achieve M:1
decimation, you throw away M-1 samples after every sample that you keep. In an M:1
interpolator, the output data rate is 1/M times the input data rate, and M is the decimation
factor.
X-Ref Target - Figure 7-3

The equation for an M:1 interpolator is shown in Equation 7-2.

Equation 7-2

Where M is a positive integer.

When samples are thrown away, the resulting sampling rate can fall less than twice the
frequency of the input signal. Then the output signal is taken at a rate below the Nyquist
rate and is not a true representation of the original input signal. Nyquist criterion should
be observed on the output signal after decimation.

Spectral Imaging
Spectral imaging is the appearance of copies of the original spectrum for the signal within
the system bandwidth. Usually, a signal has spectral images that are repeated at multiples
of the sampling frequency (Fs). The system bandwidth is equal to Fs or Fs/2 on either side

Figure 7-3: Input Signal vs. 2:1 Decimated Input Signal

yout n[] x n L⁄[]= h n kL–[] x• k[]

k α–=

α

∑=

Input Signal 2:1 Decimated Signal

UG073_c7_03_063004

yout x nM[]= h k[] x• nM k–[]

k α–=

α

∑=

http://www.xilinx.com

114 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 7: Multirate Filters Using the DSP48
R

(see Figure 7-4). The first image is centered at Fs (or –Fs), which is outside the bandwidth of
Fs/2. Therefore, all the images are outside the signal bandwidth.
X-Ref Target - Figure 7-4

When the sampling rate of the system is increased by an interpolation factor of L (where L
is an integer greater than 1), the system bandwidth is increased by LFs or LFs/2 on either
side. In this case (see Figure 7-5), the first image that is centered at Fs falls within the
system bandwidth. These spectral images that fall within the system bandwidth should be
eliminated using a low-pass filter after interpolation.

Aliasing
Aliasing can be described as the appearance of a higher frequency signal (B) that has the
same sample values as the original signal (A) at the sampled points, as shown in
Figure 7-6. An anti-aliasing filter is used before decimation to avoid aliasing. The sample
values for the sinusoid signal A with the frequency ω0, and the values for sinusoid signal
B with the frequency ω0 + 2 * 2π/Ts are the same at the different sampling points. The
resultant sampled waveform for both the signals are identical, and the two signals are
indistinguishable. Here, one signal is said to be an alias of the other. Aliasing of signal A
can appear when another signal of frequency ω0 + k2π/Ts is present.

Figure 7-4: System Bandwidth

X-Ref Target - Figure 7-5

Figure 7-5: Interpolation Effect on System Bandwidth

-2FS –FS FS 2FS

FS/2–FS/2

System
Bandwidth

UG073_c7_04_072605

-2FS -FS FS 2FS

Image

2FS/2-2FS/2

System
Bandwidth

Interpolation Factor L = 2 UG073_c7_05_072605

Image

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 115
UG073 (v2.7) May 15, 2008

Interpolation Using the DSP48 Slice
R

X-Ref Target - Figure 7-6

When the sample rate is reduced by decimation, there can be an aliasing frequency created
that was not present in the original higher frequency signal. As a result of this aliasing, an
image can look blurred. In this case, a low-pass, anti-aliasing filter is used before
decimation. This low-pass filter eliminates all frequencies above the signal frequency to
avoid aliasing.

Another way to look at aliasing is that a critically sampled signal, when downsampled,
does not maintain the Nyquist rate and, therefore, is not a true representation of the
original signal. The original signal is passed through a low-pass filter so that only those
frequencies that still hold the Nyquist criterion are present at the new downsampled rate.

Interpolation Using the DSP48 Slice
The section describes the implementation of a 1:4 interpolator using the DSP48 slice. In a
1:4 interpolator, three zeros are inserted between every sample at the input. Consider a
stream of samples T(n-4) to T(n) to T(n+4) in the input signal. The output for this stream is
shown in Figure 7-7.
X-Ref Target - Figure 7-7

The zero values are converted into the appropriate non-zero values by the interpolation
filter in the DSP48 block. The number of taps chosen is usually a multiple of the
interpolation factor. The number of taps used in the interpolator in this example is 16. Each
of the four output samples uses four taps or four different input samples to get the
corresponding output sample. If 12 taps are used, only three input samples are used to
calculate each of the four output samples.

Block Diagram
Figure 7-8 is a block diagram of a 1:4 interpolator. This design uses a 16-tap filter with an
interpolation factor of 4.

Figure 7-6: Aliasing Between Two Frequencies

Signal BSignal A

UG073_c7_06_072605

Figure 7-7: Original vs. Interpolated Input Streams

T+4 T+3 T+2 T+1 T T-1 T-2 T-3 T-4

Interpolated Input Stream

T+4 T+3 T+2 T+1 T T-1 T-2 T-3 T-4

Input Stream

UG073_c7_07_063004

http://www.xilinx.com

116 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 7: Multirate Filters Using the DSP48
R

X-Ref Target - Figure 7-8

The inputs are multiplied by the 16 coefficients and summed to produce the output.
Table 7-1 shows that an output is taken every clock. The output is the sum of the 16
coefficients, (h0) to (h15), multiplied by the corresponding input signals. Of the 16 samples
that contribute toward y0, 12 have an input sample value of zero. Multiplying with zero
does not contribute towards the final output y0 but uses resources and clock cycles. To
eliminate this waste, the 1:4 16-tap interpolator is implemented using four polyphase
filters. The four multiplications needed for each output are done in parallel using the four
polyphase filters. The total number of multipliers used is reduced from 16 to 4.

As shown in Table 7-1, output y0 is obtained when the input x(1) pipe stage is matched
with the coefficient h0. The next three clock cycles give the outputs y1 to y3 that correspond
to the input x(1) matching coefficients h1 to h3 in time. These outputs can be written as
follows:

y0 = x(n)h0 + x(n - 1)h4 + x(n - 2)h8 + x(n - 3)h12

y1 = x(n)h1 + x(n - 1)h5 + x(n - 2)h9 + x(n - 3)h13

y2 = x(n)h2 + x(n - 1)h6 + x(n - 2)h10 + x(n - 3)h14

Figure 7-8: 16-Tap 1:4 Interpolation Filter

x(n)

Z-1 Z-1

0

SRL16
Coefficient ROM

h(3)
h(2)
h(1)
h(0)

Z-2

Z-1

Z-1

X

+

SRL16
Coefficient ROM

h(7)
h(6)
h(5)
h(4)

Z-2

Z-1

Z-1

X

+

Z-1

SRL16
Coefficient ROM

h(11)
h(10)
h(9)
h(8)

Z-2

Z-1

Z-1

X

+

Z-1

SRL16
Coefficient ROM

h(15)
h(14)
h(13)
h(12)

Z-2

Z-1

Z-1

X

+

UG073_c7_08_091605

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 117
UG073 (v2.7) May 15, 2008

Decimation Using the DSP48 Slice
R

y3 = x(n)h3 + x(n - 1)h7 + x(n - 2)h11 + x(n - 3)h15

During the clock when x(1) matches the coefficient h4, a new input is matched with
coefficient h0. After an initial latency, one output sample is obtained at every clock.

The four terms in the equation for y0 are calculated in four consecutive clock cycles. At
each clock, the previous term is added to the current term being calculated. This gives a
total of five clocks of latency to get the first output y0. The coefficients are arranged such
that after the first four clock cycles, all four coefficients (h0 to h3) are multiplied by input
x(n). That is, input x(n) is held at the first DSP48 slice for four clock cycles before it is
shifted to the next DSP48 slice.

The other three DSP slices each use these four clock cycles to multiply their corresponding
input samples by the four incoming coefficients. After four clocks, a new input value
x(n+1) is read in at the first DSP48 slice, and the other three DSP slices shift in the input
sample from the previous DSP slice.

The control logic ensures that each DSP slice shifts in new data every four clocks in a
staggered manner. Each DSP slice retains an input value for four clocks. The clock enable
inputs on the B cascade registers for each slice are used to shift in a new value every four
clocks. The control logic is also used to clock in the four coefficients in a cyclic order.

Decimation Using the DSP48 Slice
This section describes the implementation of a 4:1 decimator using the DSP48 slice. In a 4:1
decimator, every fourth input sample value is retained, and the three sample values in
between are ignored. Consider a stream of samples T(n-4) to T(n) to T(n+4) in the input
signal. The output for this stream is shown in Figure 7-9.

Table 7-1: Interpolator Input Signal and Corresponding Coefficients

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15

clk1 x1 0 0 0 x2 0 0 0 x3 0 0 0 x4 0 0 0

2 x1 0 0 0 x2 0 0 0 x3 0 0 0 x4 0 0

3 x1 0 0 0 x2 0 0 0 x3 0 0 0 x4 0

4 x1 0 0 0 x2 0 0 0 x3 0 0 0 x4

5 x1 0 0 0 x2 0 0 0 x3 0 0 0

6 x1 0 0 0 x2 0 0 0 x3 0 0

7 x1 0 0 0 x2 0 0 0 x3 0

8 x1 0 0 0 x2 0 0 0 x3

9 x1 0 0 0 x2 0 0 0

http://www.xilinx.com

118 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 7: Multirate Filters Using the DSP48
R

X-Ref Target - Figure 7-9

Block Diagram
Table 7-2 shows the input stream shifting through the taps in a 4:1 decimator and the time
at which outputs are valid. An output is taken at every fourth clock. The output is the sum
of the 16 coefficients multiplied by the corresponding input signals.

Looking at the input x1 in Table 7-2, outputs are valid whenever x1 is multiplied with
coefficients h0, h4, h8, h12, and h16. Though x1 gets multiplied by the remaining coefficients,
the outputs at those clocks are ignored. Implementing these multiplies in hardware is a
waste of resources. In the polyphase decimation filter, input and coefficients are arranged
such that an input is only multiplied with a valid coefficient, that is, the coefficient when

Figure 7-9: Original vs. Decimated Input Stream

T+4 T+3 T+2 T+1 T T-1 T-2 T-3 T-4

Original Input Stream

T+4 T+3 T+2 T+1 T T-1 T-2 T-3 T-4

Decimated Input Stream
UG073_c7_09_063004

Table 7-2: Decimator Input Signal and Corresponding Coefficients

out1 out2 out3 out4

↑ ↑ ↑ ↑

coefficient h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15

inputs

clock1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

clock2 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

clock3 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

clock4 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

clock5 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

clock6 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

clock7 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

clock8 x1 x2 x3 x4 x5 x6 x7 x8 x9

clock9 x1 x2 x3 x4 x5 x6 x7 x8

http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 119
UG073 (v2.7) May 15, 2008

Decimation Using the DSP48 Slice
R

the output is valid. For the first M+1 inputs, the coefficients used to multiply each input is
as shown in Figure 7-10.

The input signals to each polyphase filter are delayed by (M+1) clocks from the previous
filter. Shift registers are used to achieve this delay, as shown in Figure 7-11. The coefficient
inputs to each of the filters are arranged such that each filter rotates through four different
coefficients.

X-Ref Target - Figure 7-10

Figure 7-10: Input and Corresponding Coefficients for a 4:1 Decimator

h0X1

Dec

Dec

X2

X3

X4

h4 h8 h12

h1 h5 h9 h13

h2 h6 h10 h14

h3 h7 h11 h15

UG073_c7_10_072605

X-Ref Target - Figure 7-11

Figure 7-11: 16-tap 4:1 Decimation Filter

UG073_c7_11_091905

x(n+1)

M+1
FIFO

M+1
FIFO

M+1
FIFO

Z-1 Z-1

0

0

SRL16
Coefficient ROM

h(3)
h(2)
h(1)
h(0)

Z-1

Z-1

Z-1

X

+

Z-1

SRL16
Coefficient ROM

h(7)
h(6)
h(5)
h(4)

Z-1

Z-1

Z-1

X

+

Z-1

SRL16
Coefficient ROM

h(11)
h(10)
h(9)
h(8)

Z-1

Z-1

Z-1

X

+

Z-1

SRL16
Coefficient ROM

h(15)
h(14)
h(13)
h(12)

Z-1

Z-1 Control
Logic

Z-1

X

+ +

Z-1

Z-1

http://www.xilinx.com

120 www.xilinx.com XtremeDSP for Virtex-4 FPGAs
UG073 (v2.7) May 15, 2008

Chapter 7: Multirate Filters Using the DSP48
R

The decimator creates one output value for every four input values. The design uses a
16-tap filter to do the interpolation. Four parallel polyphase filters are used to implement
the 16 taps of the filter. The output value is a weighted function of the 16 input values.

After an initial latency, a four-tap filter output is obtained at the fourth polyphase filter.
This output is added in a final accumulation block. The accumulation block is in
accumulation mode for four clock cycles after the initial latency. Each clock cycle gives a
four-tap result, and at the end of the fourth clock, the accumulation block has a 16-tap
result. After this, the accumulation block goes into an addition mode where the feedback
path receives an input of 0.

The 4-bit barrel shifter is used to enable the accumulation block into an “add mode” every
fourth clock cycle.

Implementation Results
A 1:4 interpolator can be implemented in four DSP slices at an output frequency of over
450 MHz. This design uses four DSP48 slices in the Virtex®-4 device. The interpolator can
also be implemented using one DSP48 slice if a higher clock latency or slower clock is
sufficient.

The decimator can be implemented in four DSP slices at an output frequency of over
450 MHz. The design uses five DSP48 slices in the Virtex-4 device. The decimator can also
be created in a single DSP48 slice if a higher clock latency or slower clock is sufficient.

The implementation results for the interpolator and decimator are shown in Table 7-3.

Reference Design Files
The reference design files associated with this chapter, ug073_c07.zip, can be found at:
https://secure.xilinx.com/webreg/clickthrough.do?cid=30162

PolyIntrpFilter.zip and PolyDecFilter.zip, included in the reference design
files, provide examples of portable, parameterized, design, and simulation VHDL files that
infer DSP48 slices when creating Polyphase Interpolating/Decimating FIR filters in
Virtex-4 devices. The number of filter taps, interpolation/decimation factors, and data bit
widths are parameterizable. Synplify 8.1 was used to synthesize this portable, RTL VHDL
code with generics for parameterization.

Table 7-3: Implementation Results for Interpolator and Decimator

Speed in MHz Utilization
Power in mW using

XPower

1:4, 16 Tap
Interpolator

XC4VLX15 -11 sf363 450 (2.2 ns) 61 slices, 4 DSP48 205

XC2VP2 -7 fg456 110.49 (7 ns) 339 slices, 12 mults 590

XC2V250 -6 fg456 99.49 (8 ns) 339 slices, 12 mults 449

4:1, 16 Tap Decimator XC4VLX15 -11 sf363 450 (2.2 ns) 228 slices, 5 DSP48 136

XC2VP2 -7 fg456 116.84 (7 ns) 467 slices, 12 mults 682

XC2V250 -6 fg456 98.2 (8 ns) 466 slices, 12 mults 454

https://secure.xilinx.com/webreg/clickthrough.do?cid=30162
http://www.xilinx.com

XtremeDSP for Virtex-4 FPGAs www.xilinx.com 121
UG073 (v2.7) May 15, 2008

Conclusion
R

Conclusion
The multirate filtering technique is extensively used in DSP functions. A common
application of multirate filtering is in video scaling. The availability of cascaded path, shift
registers, multiplier, and accumulator in the DSP blocks of Virtex-4 devices, combined with
the high performance, helps in implementing multirate functions very effectively.

Note: Xilinx ISE 6.3i was used to implement these designs.

References
1. “A Digital Signal Processing Primer” by Ken Steiglitz, ISBN: 0-8053-1684-1.

2. “Digital Video and HDTV Algorithms and Interfaces” by Charles Poynton, ISBN: 1-
55860-792-7.

3. “DSP Primer” by C. Britton Rorabaugh, ISBN: 0-07-054004-7.

4. Xilinx, Inc., Virtex-4 User Guide

http://www.xilinx.com

