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When targeting or retargeting code from a prior
design, some considerations should be made to
achieve a quicker and more optimal design when
selecting a Spartan®-6 FPGA. This white paper
identifies and details the appropriate targeting
guidelines and other considerations needed to
achieve an improved result for these devices.
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Spartan-6 Device Selection
Due to differences in the base architecture of the Spartan-6 device from previous 
FPGA generations, selection of the right Spartan-6 device for a given design is not 
always straightforward. Spartan-3 FPGA part numbers reflect system gates while 
Spartan-6 FPGA part numbers reflect approximate logic cell count divided by 1,000. 
Also, Spartan-6 devices use different ratios of block RAMs, multiplier/DSP blocks, 
DCMs, and pins.

Compare the feature summary tables in DS160, Spartan-6 Family Overview, 
DS099, Spartan-3 FPGA Family Data Sheet, DS312, Spartan-3E FPGA Family Data Sheet, 
and DS706, Extended Spartan-3A Family Overview, for details on the resources and 
architectures of Spartan-3 and Spartan-6 devices.

Beyond LUTs and flip-flops, each new generation of Xilinx FPGAs tends to include 
larger block functionality over previous generations, and the Spartan-6 FPGA is no 
exception. The Spartan-6 architecture includes an integrated memory controller, 
integrated PCI Express® logic, and gigabit transceivers. In Spartan-6 devices, the 
18 Kb block RAMs can be split into two 9 Kb RAMs, which allow for greater 
utilization in designs not requiring deep memory structures. Compared with devices 
earlier than Spartan-3A DSP devices, the DSP48A1 slice adds additional functionality 
over the MULT18X18 primitive as well. The use of such functions compared to prior 
families adds capabilities not reflected in the logic cell count of the device. This can 
reduce the logic count as well as reduce the amount of block RAMs, multipliers, I/Os, 
and other resources. All of these subjects should be considered when determining 
device selection.

Comparing Logic Utilization in Spartan-6 Devices
Some logic functions benefit from the 6-input LUT more than others. For example, a 
32-bit XOR gate consumes seven 6-input LUTs (with some logic to spare), where a 
32-bit XOR gate consumes 11 4-input LUTs (with no logic to spare). The use of 6-input 
LUTs with a 32-bit XOR gate represents a 45% reduction in the required number of 
LUTs.

A single 2-to-1 MUX maps into a single 4-input LUT in the same manner as a single 
6-input LUT. Thus, there is less advantage to using the 6-input LUT with a 2-to-1 MUX 
(although other logic could potentially be placed into that same LUT). 

A 2-input adder requires one 4-input LUT or one 6-input LUT per bit of addition. 
Thus, certain types of designs that use small MUXes, adders, and other logic functions 
might not realize improved LUT utilization or performance from a Spartan-6 FPGA. 

DSP designs generally use these logic functions and extensive pipelining as the basis 
for many of their operations. Therefore, DSP designs do not realize as much benefit 
transitioning to the Spartan-6 architecture outside of the availability of the DSP48A1 
slice. Alternatively, some embedded processor designs realize more benefits from 
Spartan-6 devices because they:

• Use fewer registers (less pipelining).
• Have higher fan-in functions.
• Use fewer functions that do not realize the mapping improvements for the 6-input 

LUT.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds706.pdf
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The schematic representation in Figure 1 shows a 32-bit XOR function mapped into 
Spartan-6 FPGA 6-input LUTs.
X-Ref Target - Figure 1

Figure 1: 32-Bit XOR Mapped into 6-Input LUTs of a Spartan-6 FPGA
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The schematic representation in Figure 2 shows a 32-bit XOR function mapped into 
Spartan-3 FPGA 4-input LUTs.
X-Ref Target - Figure 2

Figure 2: 32-Bit XOR Mapped into 4-Input LUTs of a Spartan-3 FPGA
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Use of LUTs as Route-Thrus
When comparing Spartan-6 FPGA LUT utilization to prior architectures, the use of 
LUTs as route-thrus must be considered. LUT route-thrus in the Map report are 
created when access is needed to internal slice logic or registers when no other input 
path is available into the slice, most commonly when the bypass inputs (AX, BX, CX, 
or DX) are not available. A LUT route-thru uses a single input to the LUT to obtain 
access into the slice. A few situations can cause this:

1. A flip-flop, RAM, or other non-LUT source drives a flip-flop (where bypass lines 
are occupied). 

2. A flip-flop, RAM, or other non-LUT source drives the MUXF7/MUXF8 data 
inputs. 

3. A flip-flop, RAM, or other non-LUT source drives a select line of CARRY4 (select 
line of MUXCY and/or DI of XORCY). 

Situations 2 and 3 are not unique to Spartan-6 FPGAs but are applicable to 
Spartan-3 and Virtex®-5 FPGAs. Situation 1 is the most common.

Spartan-6 devices have eight registers within a slice, which is beneficial for both 
performance and area. For many designs, fewer registers require more slices due to 
the higher logic content of the 6-input LUT vs. the 4-input LUT in conjunction with the 
improved use of the dual outputs of the 6-input LUT structure.

Having eight registers often allows fewer slices to be consumed for registers driven by 
non-LUT sources (such as block RAM, another flip-flop, or a DSP slice). The Xilinx 
software tools are tuned to place these slice registers to yield the best characteristics in 
terms of performance, area, and power. However, when more than four registers are 
placed into a single slice, a LUT route-thru is necessary and thus reported in the Map 
file. 

In a given design, when comparing LUT resources between Spartan-6 and prior 
device families, more LUTs can be reported as being used in Spartan-6 devices, but in 
fact fewer slices are required because of the route-thrus. This can be misleading 
because it is common to consider LUT usage and not slice usage for utilization 
comparisons. For designers concerned with how much logic is left, the route-thru 
consumes one input (generally not the A6 input, but one of the lower inputs to get 
access to the O5 output) and one output of the LUT, leaving four inputs and one 
output for any given function. Thus, even when a route-thru is needed, in the worst-
case situation, a 4-input LUT remains unused.

In a typical situation, the registers can be distributed over more slices, if necessary, and 
not consume any route-thrus. Thus, designers get the entire 6-input LUT for logic but 
might need to consume more slices or possibly see performance penalties for the 
spreading of these registers. Route-thrus are reported as consuming an entire LUT 
when in fact they only consume a partial LUT, or in a different placement might not 
consume a LUT at all. Here is a portion of the resource reporting in the Map (.mrp) file 
that reports route-thrus and their purpose:

Number used exclusively as route-thrus:      1,483
      Number with same-slice register load:  1,450
      Number with same-slice carry load:        26
      Number with other load:                    7

http://www.xilinx.com
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Figure 3 shows an FPGA Editor view of the use of a route-thru for gaining access to all 
eight registers within a slice. 

Well-Crafted Designs for Older Architectures
Designs that are tuned to run at top performance in a Spartan-3 device see less 
improvement in performance or reduction in LUT utilization with a Spartan-6 device 
than designs that run at more nominal speeds. This is because fast designs that are 
well-optimized to the 4-input LUT structure, with low fan-in logic and few logic levels 
between synchronous objects, are more likely to have one-to-one mapping from the 
4-input LUT to a 6-input LUT. Thus, there is little potential for LUT or logic reduction 
with the Spartan-6 device logic structure and little improvement in performance. 

Often, retargeted designs that benefit most from the larger LUT structure of 
Spartan-6 devices are those designs that previously ran slowly in Spartan-3 devices, 
with many logic levels and larger LUT-to-register ratios. In these designs with large 
fan-in logic cones, there is greater potential for the 6-input LUT to considerably reduce 
the number of logic levels as well as the number of LUTs necessary to build a logic 

X-Ref Target - Figure 3

Figure 3: FPGA Editor Representation of a Route-Thru
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function. Such designs achieve a greater LUT reduction and performance boost when 
retargeting to the Spartan-6 architecture. 

When updating, changing, or building new circuitry for Spartan-6 devices in an 
attempt to achieve improved speed, area, and power, the user must understand the 
underlying architecture and note the differences in design choices the 6-input LUT 
and other architectural features can provide.

Where designers could consider four inputs per logic level in earlier architectures, 
they can now accept wider fan-in logic and achieve the same amount of logic levels. 
Carry-chain boundaries considered at 2-bit intervals previously should now be 
considered with 4-bit intervals. As with prior generations, considering the underlying 
architecture and how the code generated maps into it almost always yields improved 
and more predictable results. However, the underlying differences in the Spartan-6 
architecture compared with older architectures need to be taken into account when 
constructing the HDL code.

Use of Old Soft IP, EDIF, or NGC Netlists
It is highly recommended to regenerate or resynthesize any old soft IP or black box 
netlists in the design prior to implementation in the Spartan-6 device. Most netlists 
targeting earlier Spartan architectures can be implemented without error when 
targeting Spartan-6 devices. 

However, in almost every case, netlists retargeted to the Spartan-6 architecture can 
result in slower and larger implementations, that have additional logic levels and 
utilize more resources.

This trade-off is due to the differences in the underlying FPGA logic architecture (such 
as 4-input LUTs vs. 6-input LUTs), as well as the timing and optimizations for the 
different architectures. Retargeting of these black box instances ensures that they are 
optimized for the Spartan-6 architecture.

When resynthesis is not possible, an alternative is to use the global optimization 
switch (-global_opt) during the Map phase. The global optimization switch has three 
arguments: speed, area, and power. These arguments indicate the primary goal for the 
optimization. Although global optimization is generally not as effective as direct 
resynthesis of the black box instance, it allows the tools to resynthesize and restructure 
the netlist, which can result in a better implementation.

The main disadvantages of using global optimization are increased run time and 
possibly further obscurity (renaming and restructuring) to the internal logic paths, 
which can make a design more difficult to debug. While the -global_opt switch might 
allow the use of some soft IP in Spartan-6 devices, other soft IP must be retargeted due 
to the use of specific circuitry when targeting Spartan-6 devices. Such IP includes MIG, 
MicroBlaze™ processors, PCI™ IP, and any with gigabit transceivers. Use of this IP 
requires retargeting to Spartan-6 devices for proper functionality in this architecture.

http://www.xilinx.com
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Use of Physical Constraints
Any LOCs, RLOCs, BEL constraints, or other physical constraints, embedded in the 
code, netlist, or UCF file of the existing design should be removed before retargeting to 
a Spartan-6 FPGA. An optimal placement for an older architecture is likely not optimal 
in a Spartan-6 FPGA due to differences in the slice structure, the CLB, RAM (LUT 
RAM or block RAM), logic, I/O layout, and timing. In some cases, errors can occur 
due to layout and coordinate differences. However, even if no errors occur, timing, 
density, and power can be suboptimal unless the physical constraints are removed or 
updated for the new architecture.

Software Algorithms
Current software algorithms for Spartan-6 FPGAs are designed to deliver a balance 
between device area (and thus cost) and performance. Options in the ISE® software 
allow designers to improve device area at the cost of performance or improve 
performance at the cost of device area. There are also options to reduce power that can 
often result in trade-offs in performance, area, and/or software run time. Options in 
the software can be specified to achieve design goals when the default balanced 
approach does not.

First, synthesis timing constraints should be specified that relate realistic timing 
objectives. The synthesis software can apply area-saving algorithms where 
performance objectives can still be met in areas with excess timing slack. Timing 
optimization algorithms can be applied in areas with tight timing slack. Without 
timing constraints, the synthesis tools must optimize all parts of the design for timing, 
often at the expense of area.

Second, the LUT and slice packing behaviors can be changed within the Map portion 
of the ISE software. The ISE software contains a switch within synthesis (XST) and 
Map called -lc that employs a LUT compression algorithm to reduce the number of 
LUTs required in a design. The -lc switch accepts three arguments: off, auto, and area. 

• The -lc auto setting causes the software to attempt to combine LUTs with little 
impact on timing.

• The -lc area setting causes LUT packing with a greater impact on timing. This 
algorithm can be used to achieve better LUT utilization for designs that have 
margin in performance or power. However, this setting is not recommended for 
designs that have difficulty in meeting performance or power budgets.

• The –lc off setting is the best option for performance in general. However, this 
setting often results in an increased amount of LUTs being used. This is the 
default setting for Spartan-6 FPGAs.

Another method to reduce the required number of LUTs is slice compression. 
Compression is done by setting the -c 1 switch in Map, which invokes both LUT and 
slice compression, resulting in fewer required slices. However, this method often gives 
up greater performance and power over using the -lc area switch.

http://www.xilinx.com
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Use of Control Signals
The use of control signals (signals that control synchronous elements such as clock, set, 
reset, and clock enable) can impact device utilization. This is true in almost any FPGA 
technology. However, the difference in the topology of the Spartan-6 device has 
changed some considerations in selecting and using control signals. These 
considerations are necessary to achieve the best device utilization.

Use of Both a Set and a Reset on a Register or Latch
To reduce cost of the overall architecture, slices in Spartan-6 FPGAs do not have a REV 
pin. As a result, flip-flops no longer implement both a set signal and a reset signal. In 
addition, a register with a set or reset signal can only have an initialization value of the 
same polarity. For example, a flip-flop with an asynchronous reset can only have an 
initialization value of 0. This changes the implementation results, which can change 
the designer’s strategy for register sets, resets, and initialization. 

Using Latches for Implementation of Registers
Registers that contain both asynchronous reset and asynchronous set signals and/or 
contain an asynchronous reset or set signal with an initialization value of the opposite 
polarity can be implemented using a few components and a latch.

This configuration can be described in RTL or be instantiated with FDCE, FDPE, or 
FDCPE in HDL, EDIF, or NGC formats. When the software encounters these 
configurations, it issues a warning message describing the problem and lists the 
corresponding registers:

WARNING:Xst:3002 - This design contains one or more 
registers/latches that are directly incompatible with the Spartan-6 
architecture. The two primary causes of this is either a register or 
latch described with both an asynchronous set and asynchronous 
reset, or a register or latch described with an asynchronous set or 
reset which however has an initialization value of the opposite 
polarity (i.e. asynchronous reset with an initialization value of 
1). While this circuit can be built, it creates a sub-optimal 
implementation in terms of area, power and performance. For a more 
optimal implementation Xilinx highly recommends one of the 
following:

     1) Remove either the set or reset from all registers and latches
       if not needed for required functionality
    2) Modify the code in order to produce a synchronous set
       and/or reset (both is preferred)
    3) Ensure all registers have the same initialization value as
       the described asynchronous set or reset polarity
    4) Use the -async_to_sync option to transform the asynchronous
       set/reset to synchronous operation
        (timing simulation highly recommended when using this option)

Please refer to http://www.xilinx.com search string "Spartan6 
asynchronous set/reset" for more details.

List of register instances with asynchronous set or reset and 
opposite initialization value:
    q_int in unit <r_ff_init1>

http://www.xilinx.com
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Register Initialization
Many engineers use the inherent initialization of registers and latches in the FPGA via 
the global set/reset (GSR) signal by implicitly specifying initialization of an inferred 
register, thus creating a more robust and sometimes smaller circuit.

In this code example, the reg register is initialized with the value of 1:
signal reg: std_logic := ‘1’;
...
process (clk, rst)
begin
  if (rst=‘1’) then
    reg <= ‘0’;
  elsif (clk’event and clk=‘1’) then
    reg <= val;
  end if;
end process;

With the restrictions of the initialization polarity in Spartan-6 devices, initialization 
must be more closely monitored to ensure it does not negatively impact area, power, 
and performance. 

It is still recommended to initialize registers. However, it is suggested to always match 
this initialization value with the described asynchronous/synchronous set or reset 
unless needed for design functionality. When a different initialization is needed from 
the set/reset value, then it is highly recommended to use synchronous sets/resets 
whenever possible. 

When an initial value of a signal is not explicitly specified in VHDL code, it can still 
exist and depend on signal type. Several design cases are presented as follows.

Type: integer

The default value of the integer type is equal to the left bound value of the integer type 
definition (similar to the std_logic type). However, the final result differs from the 
std_logic type, as shown in this example, where the reg signal has an integer type:

signal reg: integer range 0 to 7;
...
process (clk, rst)
begin
  if (rst=‘1’) then
    reg <= 7;
  elsif (clk’event and clk=‘1’) then
    reg <= reg + 1;
  end if;
end process;

In this example, the default value of the reg signal is equal to 0. Because the reg register 
is reset to 7 and initialized to 0, the synthesis tool must use additional FPGA resources 
for its implementation. 

If an initialized value of 0 is not necessary for functionality, the reg signal should be 
manually initialized to 7 to match the reset value specified in the associated process. If 
an initialized value of 0 is needed, then the asynchronous rst signal should be 
described synchronously to avoid using latches for its implementation. 

http://www.xilinx.com
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Type: enumerated

Another case with state machines using the enumerated type requires the designer’s 
attention. The default value of the enumerated type is equal to the left bound value of 
the enumerated type definition (similar to std_logic and integer types). In this 
example, the default value of the next_state state register is not explicitly specified and 
therefore equal to s1:

Type my_statetype is (s1, s2);
signal next_state: my_statetype;
...
process (clk, rst)
begin
  if (rst=‘1’) then
    next_state <= s1;
  elsif (clk’event and clk=‘1’) then
    if (PayloadTaken = ‘1’) then
      next_state <= s1;
    else
      next_state <= s2;
    end if;
  end if;
end process;

Because one or more registers results in a different initialization value from the 
asynchronous reset value, depending on state mapping, the modified register circuit 
containing a latch must be used. 

In addition to the extra logic compared with older FPGA families, extra timing paths 
are also created. To ensure these timing paths are properly analyzed, the software 
inserts an additional constraint on any register covered by a PERIOD constraint 
containing this expansion in order to ensure that the synchronous release of the 
asynchronous set or reset does not create a timing hazard. The inserted constraint can 
look like the following:

================================================================================

Timing constraint: TS_TO_q_int_0_LDC = MAXDELAY TO TIMEGRP "TO_q_int_0_LDC" TS_CLK 

DATAPATHONLY;

 2 paths analyzed, 2 endpoints analyzed, 0 failing endpoints

 0 timing errors detected. (0 setup errors, 0 hold errors)

 Maximum delay is   2.534ns.

--------------------------------------------------------------------------------

If this time constraint passes, the asynchronous reset is timed to allow the release 
within the designated clock period. If this path fails, the deassertion of the reset can 
fail timing.

In general, it is best practice to avoid using unnecessary sets or resets in the design and 
to initialize any inferred registers in the design. It is a good idea to describe 
synchronous sets and resets whenever possible, and to use the same initialization 
value as the described set or reset to avoid any unnecessary logic inference.

http://www.xilinx.com


12 www.xilinx.com WP309 (v1.1) January 21, 2010

Use of Control Signals

Limit Use of Active-Low Control Signals
It is not recommended to use inferred or instantiated components with active-Low 
control signals due to the combination of:

• The Spartan-6 device’s coarser granular slice composition.
• The absence of a programmable inversion element on the slice control signals in 

the Spartan-6 device.
• Hierarchical design methods that do not allow optimization across hierarchical 

boundaries.

In certain situations, device utilization can decrease due to the use of a LUT as an 
inverter and the additional restrictions of register packing sometimes caused by 
active-Low control signals. 

Timing can also be affected by the use of active-Low control signals. Active-High 
control signals should be used wherever possible in the HDL code or instantiated 
components. When a control signal’s polarity cannot be controlled within the design 
(such as when it is driven by an external, non-programmable source), the signal in the 
top-level hierarchy of the code should be inverted, and active-High control signals 
driven by the inverter to get the same polarity (functionality) should be described.

Limit Use of Low Fanout Control Signals
The number of unique control signals in the design should be limited to those 
necessary for design functionality and operation. Low fanout, unique control signals 
can result in underutilized slices in terms of registers, SRLs, and LUT RAM. These 
control signals can have negative impacts on placement and timing. A set, reset, or 
clock enable should not be implemented in the code unless it is required for the active 
functionality of the design.

Unnecessary Use of Sets or Resets
Unnecessary sets and resets in the code can prevent the inference of SRLs, RAMs (LUT 
RAMs or block RAMs), and other logic structures that are otherwise possible. To get 
the most efficiency out of the architecture, sets and resets should only be coded when 
they are necessary for the active functionality of the design. 

Sets and resets should not be coded when they are not required. For example, a reset is 
not required when it is only used for initialization of the register because register 
initialization occurs automatically upon completion of configuration.

Another example where a reset is not required is when a circuit remains idle for long 
periods and a simple reset on the input registers eventually flushes out the data on the 
rest of the circuit. 

A third example is in the case of inner registers when the reset is held for multiple 
clock cycles. In this case, the inner registers are flushed during reset, so the reset is not 
necessary. By reducing the use of unnecessary sets or resets, greater device utilization 
and improved performance can be achieved.

Sets for Multipliers or Adders/Subtractors in DSP48A1 Slice Registers
DSP48A1 slice registers contain only resets and not sets. For this reason, unless 
necessary, a set (value equals logic 1 upon an applied signal) should not be coded 
around multipliers, adders, counters, or other logic that can be implemented within a 
DSP48A1 slice.

http://www.xilinx.com
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Use of Synchronous Sets/Resets
If a set or reset is necessary for the proper operation of the circuit, a synchronous reset 
should always be coded. Synchronous sets/resets not only have improved timing 
characteristics and stability but can also result in smaller, better utilization within the 
FPGA. 

Synchronous sets/resets can result in less logic (fewer LUTs), fewer restrictions on 
packing, and, often, faster circuits. If the designer does not want to recode existing 
asynchronous resets to synchronous resets, the asynchronous resets can be treated as 
synchronous resets by using the Asynchronous To Synchronous switch, if available, in 
the synthesis tool. 

If Xilinx Synthesis Technology (XST) is the synthesis tool, the Asynchronous To 
Synchronous switch is available in the GUI, or the –async_to_sync switch can be 
used as a synthesis option. This option is not as effective as recoding to use a 
synchronous reset in terms of reducing resources and improving performance. 
However, it does allow for some register packing, which is not possible otherwise.

Use of Clock Enables
When high fan-out clock enables are used, they should not be manually split or 
replicated but coded as a single clock enable. If replication becomes necessary for 
timing or other reasons, it should be controlled within the synthesis tool. 

Analysis and Use of Control Signals and Control Sets
As explained in Limit Use of Low Fanout Control Signals, the use of control signals 
can hinder or facilitate device optimization. Ideally, control signals should be 
observed both individually and also as a collection or a control set.

A control set consists of the unique grouping of a clock, clock enable, set, reset, and in 
the case of LUT RAM, write-enable signals. Control set information is important 
because in any given slice, eight registers must share the same control set to be used. 
Similarly, all SRLs and LUT RAMs must share the same control signals within a 
SLICEM. 

For designs with few control sets, there is generally no issue with device utilization 
because there is a lesser impact on packing and combining of elements into slices. 
However, designs with a high number of control sets can have a negative impact on 
utilization and performance because register, SRL and LUT RAM placement can be 
more limited due to incompatible control sets. 

When synthesizing a design, the synthesis tool evaluates this situation. For low 
utilization control sets, the synthesis tool attempts a remapping to reduce the overall 
control set count. This is important to know for two reasons:

• Logic could be added to the datapath to account for remapping that might not 
have appeared in prior architectures.

• The use of asynchronous sets or resets severely limits the ability to remap. It can 
be more effective to change the sets and resets to synchronous. 
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Use of Control Signals

If it is necessary to analyze the design for the use of unique control sets, the Synthesis 
report (.syr file if using XST, .srr file if using Synplicity) or the Map (.mrp) report 
can give details about each control set. When using XST synthesis, the Design 
Summary reports the number of unique control sets as follows:

Slice Logic Distribution: 
 Number of LUT Flip Flop pairs used:  50479
   Number with an unused Flip Flop:   24773  out of  50479    49%  
   Number with an unused LUT:         10703  out of  50479    21%  
   Number of fully used LUT-FF pairs: 15003  out of  50479    29%  
   Number of unique control sets:      1461

Additional details can also be seen in the Clock Information and Asynchronous 
Signals Information sections of the XST report. 

If using Synplify, the synthesis report reveals a detailed breakdown of all control sets 
and the number of members to each control set. Similar to the XST report, the Map 
report also reports the number of unique control sets in the resource section of the 
report as well as the number of register sites lost due to control set incompatibilities. 
To view more detailed information in the Map report, the -detail switch should be 
enabled. This populates section 13 of the report with a complete breakdown of the 
control set information from the implemented design.

If it is suspected that a large number of unique, low fan-out control signals are causing 
low register utilization, steps can be taken to control the inference of control signals for 
either part of the design (such as a particular net or hierarchy) or globally in the 
design. 

The first and most beneficial item to evaluate is whether all control signals are 
necessary for design implementation. Any unused or unnecessary set, reset, or clock 
enable described in the code should be removed. All described asynchronous sets and 
resets should be evaluated as to whether their descriptions can be changed to 
synchronous sets and resets. This gives flexibility to remap the set/reset function 
and/or the clock enable function to the logical datapath for paths with adequate 
timing slack.

The next step is to examine the settings for the tools. If XST synthesis is used, the 
Reduce Control Sets option must be set to Auto, as shown in Figure 4.

http://www.xilinx.com
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This setting enables a synthesis algorithm to automatically remap low fan-out control 
signals. If using Synplify, similar algorithms exist but are not user controlled. For 
further fine tuning of control set mapping, synthesis attributes can be placed on 
specific hierarchical instances or inferred registers to dictate mapping. 

For instance, when using XST, the following Verilog code results in circuit shown in 
Figure 5.

reg reg_with_inferred_ce;
    
 always @(posedge CLK)
   if (CE)
      reg_with_inferred_ce <= D;

X-Ref Target - Figure 4

Figure 4: XST Process Properties

X-Ref Target - Figure 5

Figure 5: Default Implementation for the Code Inferring a Register with a Clock Enable
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Use of DSP and Other Arithmetic Intensive Code

If CE is determined to be a low fan-out control signal that reduces the overall register 
density of the design, designers can apply an attribute to the declaration in Figure 5, 
such as in the following Verilog code, resulting in the circuit shown in Figure 6.

(* use_clock_enable = "no" *) reg reg_with_inferred_ce;
    
 always @(posedge CLK)
   if (CE)
      reg_with_inferred_ce <= D;

The register in Figure 6 can now be packed with other registers with a common clock. 
The register also has the clock enable circuitry applied to the input path of the register. 
While it is not recommended to always manage control signal mapping in this way, 
this technique can prove useful in certain situations where it is desired to control the 
trade-offs of register density versus logic (LUT) use.

Use of DSP and Other Arithmetic Intensive Code
Many types of DSP designs are well suited for the Spartan-6 architecture. To obtain 
best use of the architecture, the underlying features and capabilities need to be 
understood so that design entry code can take advantage of these resources. 

If the design originates from a Spartan-3A DSP FPGA using the DSP48A slice, usually 
little change is necessary. Well constructed filters using the DSP48A slice should 
directly target the DSP48A1 slice for Spartan-6 devices.

An important change is the addition of the MOUT port. If the DSP block is being used 
as a multiplier without post-add functionality, the MOUT port provides faster 
implementation that consumes less power.

For instantiated DSP48A slices not using the post-adder, it is not necessary to change 
the code. However, moving the output data from the P port to the M port can result in 
a faster and more power efficient implementation.

For designs using MULT18X18, MULT18X18S, or the MULT18X18SIO, these 
components retarget to a DSP48A1 slice. However, it is suggested to evaluate how the 
multiplier is used. If the pre-adder and/or post-adder can be used, it is likely that an 
improved implementation can be created by recoding the function to more efficiently 
use the capabilities of the DSP48A1 slice. Refer to UG389, Spartan-6 FPGA DSP48A1 
Slice User Guide, for details on using this slice.

Another notable difference in the Spartan-6 architecture is the addition of the SLICEX. 
The SLICEX is similar to the SLICEL; however, the SLICEX has no carry logic. In most 

X-Ref Target - Figure 6

Figure 6: Adding the use_clock_enable = “no” Synthesis Attribute
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designs, carry logic is an under-utilized feature, and thus its absence has little impact 
on performance. In adder intensive designs, the lack of carry logic could be a 
limitation. 

If the target design is expected to contain a large number of adders and thus consume 
a large portion of carry logic resources, it is suggested to evaluate the design to make 
greater use of the DSP48A1 slice adders. For example, with FIR filters, the adder 
cascade can be used to build a systolic filter rather than using multiple successive add 
functions (adder trees).

If adder trees are necessary, the 6-input LUT architecture can efficiently create ternary 
addition (A + B + C = D) using the same amount of resource as a simple 2-input 
addition. This can help save and conserve carry logic resources, when needed. In most 
cases, there is no need to use these techniques. However, by knowing these 
capabilities, the proper trade-offs can be acknowledged.

Clocking
The Spartan-6 architecture has twice the global clocking over the Spartan-3 
architecture (16 BUFGs compared with 8 BUFGs in the Spartan-3 architecture). In 
many cases, clocking availability is not an issue when migrating designs from a 
Spartan-3 architecture to a Spartan-6 architecture.

A designer might choose to use local clocking resources to capture input data and 
synchronize it to the FPGA system clock. In these cases, a change must be made to the 
clocking structure to enable a safe target to the Spartan-6 architecture. It is suggested 
to use the BUFIO2 clocking resource to capture and synchronize data. Consult UG382, 
Spartan-6 FPGA Clocking Resources User Guide, for details.

Depending on how the clocking resources are used, the Spartan-6 architecture can 
appear to have greater or fewer global clocking resources compared with 
Spartan-3A and Spartan-3E architectures. Spartan-3A and Spartan-3E architectures 
have eight BUFGs that can source any synchronous element in the array, similar to the 
Spartan-3 architecture. However, Spartan-3A and Spartan-3E architectures have eight 
additional buffers on the left and right sides, which can only source half of the device. 

As previously mentioned, the Spartan-6 architecture has 16 clocks that can source the 
entire device. If more than 16 unique clocks are required, clocking changes might be 
required to either consolidate or use alternative clocking resources like the BUFIO2s or 
the BUFPLLs in place of the BUFGs used in Spartan-3 architecture. 

BUFGMUXes can be used in the same manner as previously used. If an asynchronous 
transfer of clocking is desired, a capability in the Spartan-6 architecture allows 
asynchronous clock transfers in case of a stopped clock or when a faster switchover is 
needed. 

To enable this functionality, the attribute, CLK_SEL_TYPE, should be added to the 
parameter passing (Verilog) or generic map (VHDL) of the instantiated BUFGMUX 
component, which enables this behavior. If this feature is used, runt clock pulses or 
glitches might occur on the clock lines, so design practices that can tolerate these are 
highly recommended.

http://www.xilinx.com
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RAM Considerations

Driving Non-Clock Loads with Global Buffers
As with prior architectures, it is highly recommended to only drive clock loads with a 
global buffer. The connectivity to non-clock sources is limited and can, under some 
conditions, result in unroutable situations. For this reason, the software issues the 
following error when a BUFG is driving non-clock loads:

ERROR:Place:1136 - This design contains a global buffer instance, <BUFG_inst>,

   driving the net, <clk_int>, that is driving the following (first 30)

   non-clock source pins.

   < PIN: D_AND_CLK1.A6; >

   This is not a recommended design practice in Spartan-6 due to limitations in

   the global routing that may cause excessive delay, skew or unroutable

   situations. It is recommended to only use a BUFG resource to drive clock

   loads. If you wish to override this recommendation, you may use the

   CLOCK_DEDICATED_ROUTE constraint (given below) in the .ucf file to demote

   this message to a WARNING and allow your design to continue.

   < PIN "BUFG_inst.O" CLOCK_DEDICATED_ROUTE = FALSE; >

Adding the CLOCK_DEDICATED_ROUTE constraint as a temporary override of this 
condition is not a guarantee that the design will implement reliably, but it can be used 
as a temporary measure to allow for design analysis. Whenever this error is 
encountered, it is suggested to modify the code so that a global buffer only drives 
clock sources, if possible.

Synthesis tools will attempt to infer correct clocking. However, clocking networks can 
be improperly constructed when using soft IP that appears to be black boxes. For this 
reason, it is always suggested to read in all implementation netlists into synthesis for 
them to be constructed properly. Otherwise, skew and other possible clocking issues 
might be encountered. 

RAM Considerations
To maximize the use of block RAMs and LUTs in the Spartan-6 architecture, certain 
considerations must be understood when retargeting block RAM and LUT RAM by 
inference, instantiated primitive, or CORE Generator™ software. If the CORE 
Generator software is used for RAM generation, the IP should be regenerated for the 
Spartan-6 device, or the RAM should be recoded for proper synthesis inference.

Either method often gives good results for utilization and performance. However, it is 
recommended to infer memory where possible to improve understanding of the code, 
simulation, and future portability of the code.

Instantiating RAMs
The recommendations in this section are for cases in which RAM primitives are 
instantiated in the design or when it is not possible to regenerate CORE Generator 
software IP for Spartan-6 devices. These suggestions should also be implemented by 
code that infers RAM, especially when using synthesis attributes to guide which RAM 
resources are used (such as syn_ramstyle = blockram). The suggestions are divided by 
RAM depth, which generally is the most important factor in determining which RAM 
resource to use.
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Depths Less Than 128 Bits
Due to the larger LUTs and deeper LUT RAMs in Spartan-6 FPGAs, the criteria for 
choosing between a block RAM and LUT RAM are different compared to those for 
previous FPGA generations. In general, a LUT RAM should be used for all memories 
that consist of 64 bits or less, unless there is a shortage of logic resources (LUTs) 
and/or SLICEMs for the target device.

Using LUT RAMs for memory depths of 64 bits or less, regardless of data width, is 
generally more efficient in terms of resources, performance, and power. For depths 
greater than 64 bits but less than or equal to 128 bits, the decision on the best resource 
to use depends on several factors:

1. Are extra block RAMs available? If not, LUT RAM should be used. 

2. What are the latency requirements? If asynchronous read capability is needed, 
LUT RAMs must be used. 

3. What is the data width? Widths greater than 16 bits should probably use block 
RAM, if available. 

4. What are the necessary performance requirements? Registered LUT RAMs 
generally have shorter clock-to-out timing and fewer placement restrictions than 
block RAMs. If the design already contains instantiated LUT RAMs with depths 
greater than 16 bits, the deeper primitive (for example, RAM32X1S or RAM64X1S) 
should be used.

RAM16X1Ss, used in conjunction with MUXF5s or other logic, are not properly 
retargeted to automatically use the greater depth LUT. In such cases, the code should 
be modified to properly use the deeper primitives.

Depths Greater Than 128 Bits and Less Than or Equal to 256 Bits
Memory depths greater than 128 bits and less than or equal to 256 bits can be 
efficiently mapped into a block RAM or a LUT RAM. The decision here depends on 
the necessary width, RAM requirements, and the available RAM resources. In most 
cases, if block RAM is available and the width is greater than 8 bits, it is advantageous 
to use an 8 Kb block RAM. However, in some cases the block RAM can be 
underutilized. Synthesis algorithms exist so that some configurations of inferred 
RAMs can be placed into a single block RAM if common clock and addressing are 
used. 

The special case of a simple dual-port configuration greater than 18 bits but less than 
or equal to 36 bits can efficiently map into a RAMB8. However, many configurations 
of memory in this range can result in underutilized block RAM. Conversely, if LUT 
RAM is selected, an entire SLICEM is used per bit, which might not be the most 
efficient use the slice resources. So these two factors must be considered for RAM 
depths in this range. In most cases, it is suggested to simply infer the RAM and allow 
the synthesis tool to decide the appropriate RAM components based on available 
resources, performance requirements, and other factors.

http://www.xilinx.com
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Other Primitive Retargeting Considerations

Depths Greater than 256 Bits
In most cases, described RAM for the Spartan-3 architecture properly retargets to 
Spartan-6 devices without modification regardless of how it is entered. Added 
features in block RAM of Spartan-6 FPGAs should be evaluated to determine if they 
could benefit the design. Some of these features include:

• Output Register. Spartan-3A DSP devices contain an output register for the block 
RAM. However, designs created prior to the Spartan-3A DSP architecture do not 
use this feature. Use of the output register can significantly improve performance 
(clock-to-out) of the block RAM, while also improving power and device 
utilization. If a design is ported into the Spartan-6 architecture from a prior 
architecture, the code should be re-examined to see if the output register can be 
incorporated into the design.

• Byte-Wide Write Enables. Spartan-6 devices have byte-wide write enables. This 
feature can be beneficial to the block RAM access and utilization for the device. In 
some cases, more efficient use of block RAMs and other resources can be seen 
with the use of this feature.

• Enable/Reset Priority. Spartan-6 FPGAs can change the priority of enables versus 
resets, allowing for greater consistency of output register control to that of slices 
and I/O registers.

Current Limitations on Inferring Block RAMs
For information on limitations on inferring block RAMs, refer to Answer Record 33474 
at http://www.xilinx.com/support/answers/33474.htm.

Refer to UG383, Spartan-6 FPGA Block RAM Resources User Guide, for more details on 
the Spartan-6 block RAM resources.

Other Primitive Retargeting Considerations
Some device primitives instantiated for previous Spartan architectures are not 
automatically retargeted to the Spartan-6 architecture, or they are retargeted with 
some notable differences. Refer to UG615, Spartan-6 Libraries Guide for HDL Designs, 
for more details on any UNISIM component when targeting Spartan-6 FPGAs.

A few components are highlighted in this section.

IBUF_DLY_ADJ
The IBUF_DLY_ADJ primitive from the Spartan-3A architecture is not supported and 
cannot be retargeted to the Spartan-6 architecture. If this component is being used in 
the current design, it must be replaced with a normal IBUF followed by an IODELAY2 
to gain similar functionality.

DCM
The DCM_SP component used in Spartan-6, Spartan-3A, and Spartan-3E FPGAs 
behaves differently from the DCMs in Spartan-3 and Virtex FPGAs. For example, in 
variable phase shift, the taps advance at different intervals. For many designs, this 
might not have an effect if the phase shift control looks solely at data patterns. 
Re-examination might be needed if the control circuitry expects a certain number of 
steps account to a certain delay.
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PLL_ADV
The PLL_ADV might retarget in some circumstances, and might not retarget in others. 
Clock switchover functionality is not supported in the Spartan-6 architecture; thus, 
use of the CLKIN1 and CLKIN2 and the associated CLKINSEL can result in an error 
condition. 

Use of the DRP is also not currently recommended. The recommended component to 
use when targeting the Spartan-6 architecture PLL is the PLL_BASE. However, it is 
strongly suggested to simply use the Clocking Wizard to ensure a correctly 
constructed PLL for this architecture.

MUXCY, XORCY, MULTAND, MUXF5, and MUXF6
Due to differences in the Spartan-3 and Spartan-6 architectures, the MULTAND, 
MUXF5, and MUXF6 are not always retargeted in the most efficient way for area, 
density, or timing. Instantiated MUXCY and XORCY components are generally 
retargeted efficiently but must be grouped into a larger CARRY4 components to 
properly model the timing differences when targeting Spartan-6 devices. 

Designs that contain these instantiated components should be re-evaluated to 
determine whether the code section containing these components can be inferable or 
replaced with the structural equivalent primitives from the Spartan-6 architecture. 
These primitives are automatically retargeted.

RAMB4
If a design contains RAMB4 primitives from the original Virtex or Spartan-II families, 
those block RAM primitives are not automatically retargeted. They must be manually 
changed to either inference code (preferred) or an instantiation primitive supported 
by the Spartan-6 device. The primary reason why this retargeting is not supported is 
the gross inefficiency associated with a direct retarget of the 4 Kb block RAM to the 
18 Kb RAM.

I/O Considerations
This section describes retargeting considerations specifically for the Spartan-6 FPGA 
I/Os. It is strongly suggested that designers become familiar with UG381, Spartan-6 
FPGA SelectIO Resources User Guide, for details and specifics of the Spartan-6 FPGA 
I/O features and capabilities to get the most use out of this resource.

Choosing a Pinout
Selecting a pinout in today’s FPGAs can be challenging. Designers must weigh 
different I/O standards, operating and reference voltages, along with other banking 
rules. At the same time, designers must take into account clocking resources, PCB, 
simultaneous switching, signal integrity, and pinout selections that give the best 
possible performance and power results. 

This difficult challenge involves many trade-offs not initially apparent. For this reason, 
it is suggested to always use the PlanAhead™ tool’s pin planning environment. Using 
the PlanAhead tool reduces the risk of creating an invalid pinout and allows better 
visualization of how the selected pinout can affect design placement, routing, and 
eventual performance. The PlanAhead tool has many associated design rule checks 
and other tools to help validate pinouts, reducing the chance of a PCB respin.

http://www.xilinx.com/support/documentation/user_guides/ug381.pdf
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Conclusion

Use of the IBUF_DELAY or IFD_DELAY Attributes
The Spartan-6 architecture does not directly support adding a finite input delay to an 
input path with the IBUF_DELAY and IFD_DELAY attributes. If these attributes are 
used, it is suggested that the designer instead instantiate an IODELAY2 component 
and set the appropriate fixed tap value to set an amount of input delay to a path.

Use of DCI
DCI functionality is no longer supported in the Spartan-6 architecture. An alternative 
is to use the IN_TERM and OUT_TERM attributes. These attributes are easier to use 
and do not require the external circuitry that DCI requires. However, the I/O 
impedances are uncalibrated for the effects of PVT, and thus, might have less precise 
values than DCI.

Conclusion
In general, targeting or retargeting to a Spartan-6 FPGA design can be accomplished 
without much planning or modification of the existing design. To get the best use of 
the underlying innovations of the Spartan-6 architecture, additional considerations 
must be taken into account. Understanding and following many of the guidelines 
outlined in this white paper can result in improved density (cost), performance, and 
power.
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